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Abstract

We investigate here the consequences of wave propagation within a
media of negative permittivity (ε) and negative permeability (µ) which is
known as metamaterials. The study includes the reverse Doppler e�ect,
Cherenkov e�ect and study of the e�ect of evanescent waves in the meta-
materials. Further we also discuss the idea behind construction of perfect
lens.

1 Introduction

Permeability and permittivity are the two properties of a medium which deter-
mines the propagation of electromagnetic waves in the medium. Permeability
denotes the degree of magnetisation that a material obtains when external mag-
netic �eld is applied. On the other hand permittivity describes how much electric
�eld is generated per unit electric charge in that medium or the resistance that
is encountered when forming an electric �eld in a medium. Generally these two
quantities are positive for most materials. But in 1968 Veselago analysed what
would happen to the electromagnetic waves if both permeability and permittiv-
ity is negative in a medium[1]. Though the whole idea was theoretical, soon it
was possible to develop such materials with e�ective negative permeability and
permittivity[2] and experimenting on it. Further this idea gave rise to various
new ideas and modi�cations of the existing ones. People found various applica-
tions of the metamaterial in real life because of its interesting qualities[3]. Some
of the interesting consequences are discussed in this review including reverse
Doppler e�ect and reverse Cherenkov e�ect. In 2000 Dr. J. B. Pendry proposed
a new idea about making a perfect lens which would not be di�raction limited
like the optical lenses we have today[4]. With many people already exploring
the modi�cations in classical electromagnetism, others started working on the
quantum domain and proposed theories about how the quantum �eld theory
for electromagnetic �eld propagation will change for metamaterials[5][6]. Study
of metamaterials also led to the idea of a (2+1) Minkowsky space (one of the
cartesian co-ordinates is equivalent to time axis) where one can show that an
e�ective black-hole-like horizon appears for electromagnetic waves in a medium
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at a surface of singular permeability and permittivity[7][8]. Also a solid state
analogue of Hawking radiation is proposed using metamaterials[9]. Thus the
paper of Veselago opened a whole new branch of Physics. This study, how-
ever, is limited to a very small area, mostly on the classical electromagnetic
domain. This review includes detailed discussion on how the EM waves behave
in metamaterials, and the modi�caitons required to our study of refraction and
transmission. It also includes a small discussion on the theoretical idea behind
perfect lens.

2 Wave propagation in metamaterials

Maxwell's equations in a right handed medium (µ,ε>0) can be written as

∇×−→E = - 1c
∂
−→
B
∂t

∇×−→B = µε
c

∂
−→
E
∂t (1)

Substituting the plane wave solutions−→
E=

−→
E 0exp−i(−→k .−→r -ωt) and

−→
B=

−→
B 0exp−i(−→k .−→r -ωt) in the Maxwell's equations we get,

−→
k ×−→E = µω

c

−→
H and

−→
k ×−→H = - εωc

−→
E (2)

Clearly
−→
k ,
−→
E , and

−→
H construct a right handed system together in the case

of a normal material with µ,ε>0.
Now we will see what happen to the Maxwell's equations in case of the

metamaterials where µ,ε<0. We simply substitute µ with - |µ| and ε with -|ε|
and rewrite equations (2) as
−→
k ×−→E = - |µ|ωc

−→
H and

−→
k ×−→H = |ε|ω

c

−→
E (3)

which clearly show that now
−→
k ,
−→
E , and

−→
H make a left handed system in

contrast with the previous case. It is for this reason the metamaterials are called
left handed materials.

Now we know that the refractive index (n) of a material is given by n =
√
εµ.

So what happen in case of metamaterials? At �rst look one may say that there
should be no change in the refractive index as both ε and µhas same sign that
leave n una�ected. However the case is not the same. In general the physical
quantities ε and µ are complex. So we can write ε= εr+ iεi and µ= µr+ iµi.
Consequently n must also be written as n = nr+ ini.

So we get n2 = n2r − n2i + 2inrni (4)
and εµ = εrµr − εiµi + i(εrµi + εiµr) (5)
but the LHS of equations (4) and (5) are equal as n =

√
εµ. So the RHS are

also same. Equating the imaginary parts of the RHS we get
2nrni = εrµi + εiµr (6)
But the imaginary parts of ε and µ must be always positive because elec-

tromagnetic loss in a medium is always postive[10] and in case of metamaterials
µrand εr are negative. So overall the RHS of (6) is negative. On the other hand
ni is also positive for the same physical reasons. Hence nr must be negative. So
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in an Argand plane all the quantities will be in the second quadrant. This is the
reason why we take the refractive index of a left handed substance as negative
and we will work with the real part of the refractive index hereafter.

Due to the negative refractive index, the Snell-Descartes Law[11] changes.
The refraction at the interface of a right handed media and a Veselago media
shows opposite e�ect. Suppose a monochromatic plane wave

−→
Ei=

−→
E 0iexp−i(−→ki .−→r -

ωt) approaches to the interface (the subscript 'i' denotes incident wave) and gives
rise to the following re�ected and refracted waves−→

Er=
−→
E 0rexp−i(−→kr .−→r -ωt)−→

Et=
−→
E 0texp−i(−→kt .−→r -ωt) (7)

The subscripts r and t denote the re�ected and the transmitted rays re-
spectively. We also assume that the width of the metamaterial slab is in the z
direction (see Fig.1 and Fig.2). Now the wave numbers are related as :

kivi = krvr = ktvt = ω
Clearly vr and vi are equal as they denote the speed of the wave in same

medium and vt is given by
vt
vi
= n1

|n2| where n1 is the refractive index of the right

handed medium and n2 is the refractive index of the left handed media (here
we only look at the amplitudeds not directions).

Again using boundary conditions at the interface and equating the exponen-
tial parts[11] we get that−→

ki .−→r =
−→
kr .−→r =

−→
kt .−→r

If the wave is propagating in the x-z direction then we get at z = 0,
(ki)x.x = (kr)x.x = (kt)x.x (8)
which implies that kisin(θi) = - ktsin(θt). The negative sign implies that the

wave vector is in opposite direction in the Veselago media as was derived earlier.
So we conclude that the modi�ed Snell-Descartes Law for refraction will be

sin(θi)
sin(θt)

= −ktki = − vivt = − |n2|
n1

(9)

Clearly the angle θt is just the negative of the angle that it should have been
if the second medium were a right handed medium. The situation is shown in
Fig.1 and Fig.2 .

These are the basics of the wave propagation in a metamaterial. In the
following subsections we discuss how TM �elds propagate in Veselago medium
(metamaterials).
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2.1 TM wave propagation in metamaterials

Suppose the plane of incidence is the x-z plane. Then in a right handed system
the Maxwell equations for TM harmonic plane waves can be written as (we have
taken the convention c = 1 and the time factor exp(−iωt) is implicit )

∂xHy = −iωεEz
∂zHy = iωεEx (10)
∂zEx − ∂xEz = iωµHy

These three simultaneous di�erential equations, when solved, give the fol-
lowing equations

Ex = A
√
µcos(θ)φ

Ez = −A√µsin(θ)φ
Hy = A

√
εφ

φ = exp i(kxx+ kzz) (11)
kx = k sin(θ)
kz = k cos(θ)
k = ωn
If permittivity and permeability are negative as in case of Veselago slabs

then in the above expressions [in (11)] just substitute µ with |µ| , θ with θ1 and
εwith |ε| and

φ∗= exp−i(k1xx+ k1zz)
k1x = k1 sin(θ1)
k1z = k1 cos(θ1) (12)
k1 = ωn1
We see that φ∗ is the complex conjugate of φ. This is because the direction

of
−→
k is opposite in the Veselago media.

2.2 Re�ected and refracted TM �elds within a Veselago

media

We rewrite the �eld equations (11) for normal right handed system as the inci-
dent �eld

Eix = Ai
√
µ0cos(θi)φ

i

Eiz = −Ai√µ0sin(θi)φ
i

Hi
y = Ai

√
ε0φ

i

φi = exp i(kxx+ kzz) (13)
kx = k0 sin(θi)
kz = k0 cos(θi)
k0 = ωn0
So the re�ected �elds can be obtained by changing θi to (π − θi).
Erx = −Ar√µ0cos(θi)φ

i

Eiz = −Ar√µ0sin(θi)φ
i

Hi
y = Ar

√
ε0φ

i

φi = exp i(kxx+ kzz) (14)
kx = k0 sin(θi)
kz = k0 cos(θi)
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k0 = ωn0
Inside the slabs the equations of the transmitted �elds can be written easily

in analogy with the others. But in this case there will be a contribution from
the re�ected �eld from z = d interface (d is the width of the slab, see Fig.3).
So the expressions for the electric and magnetic �eld will be

Ex = [A1(z)−A2(z − d)]
√
|µ1|cos(θ1)ψ

Ez = −[A1(z) +A2(z − d)]
√
|µ1|sin(θ1)ψ

Hy = [A1(z) +A2(z − d)]
√
|ε1|ψ

ψ = exp−i(kxx)
A1(z) = exp−i(kzz) (15)
A1(z − d) = exp ikz(z − d)
kx = k1 sin(θ1)
kz = k1 cos(θ1)
k1 = ω|n1|
The expressions of the transmitted �elds (at z > d) are given by
Etx = At

√
µ0cos(θt)φ

t

Etz = −At√µ0sin(θt)φ
t

Ht
y = At

√
ε0φ

t

φt = exp i[k0 sin(θt)x+ k0 cos(θt)(z − d)]
k0 = ωn0
The above expressions (13), (14), (15) denote the TM �eld re�ection and

refraction by a Veselago slab of width d. Along with appropiate boundary
conditions and tedious algebra one can obtain the re�ected and transmitted �eld
amplitudes. Fig.3 shows the diagram for re�ection refraction and transmission.
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3 Reversal of phase velocity and its consequences

The phase velocity of a wavefront is de�ned as
−→
Vp =

ω
k k̂ where

−→
k is the wave

vector and the Poynting vector is de�ned as
−→
S = c

4π (
−→
E × −→H ). So

−→
S always

forms a right handed system with
−→
E and

−→
H . But the wave vector

−→
k forms right

handed system with
−→
E and

−→
H in normal medium whereas in metamaterials it

forms a left handed system, i.e. in case of metamaterials the direction of wave
vector and hence the direction of phase velocity is opposite to the Poynting vec-
tor which denotes the direction of the energy �ow. This reversal of the direction
of phase velocity in left handed systems has some important consequences such
as reverse Doppler e�ect and reverse Cherenkov e�ect.

3.1 Reverse Doppler e�ect

If there is relative motion between a source which emits EM wave with a certain
frequency and an observer then the frequency the observer experiences, appears
di�erent from the original frequency. As an example, if a source moves towards
the observer with a velocity ϑ and at the same time emits radiation with phase
velocity Vp and frequency f0 then to the observer the frequency appears to be

f = f0
Vp

Vp−ϑ which is larger than the original frequency f0.

But if the waves are moving within a metamaterial then the phase velocity
(Vp) has a direction opposite to the Poynting vector

−→
S . So if we reverse the

phase velocity direction and substitute Vp with -Vp in the apparent frequency
formula we get

f = f0
Vp

Vp+ϑ
which is exactly the formula that we would have obtained if the

source moved away from the observer in a right handed medium. This apparent
frequency is lower than the original frequency. Hence in case of metamaterials
we observe reverse Doppler e�ect. It has recently been possible to demonstrate
experimentally.

3.2 Reverse Cherenkov e�ect

When a charged particle moves through a dielectric medium at a speed greater
than its phase velocity at that medium (but less than the speed of light at
vaccum, i.e. c), then the electromagnetic radiation emitted by the particle is
known as Cherenkov radiation[12]. As the EM radiation cannot move through
the medium as fast as the particle (because the EM waves moves at phase
velocity of light at that medium where the particle velocity is greater than
phase velocity) it produces shock waves as it moves through the medium. A
common analogy will be the sonic boom of a supersonic jet.

The emitted radiation creates a forward light cone with half angle θ which
is given by the expression

cos(θ)= c
nvp

where vp is the velocity of the particle and n is the refractive

index of the medium.
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But in case of metamaterials the index of refraction is negative as explained
in the previous section. So substituting n with -n in the expression for the half
angle of the cone we now get

cos(θ)= - c
|n|vp which indicates that the direction of the cone has reversed.

It now produces a backward cone with half angle θ(here θ= π − θ′where θ′was
the half angle of the cone produced in the right handed medium).

4 Contribution of evanescent waves in a Vesse-

lago slab

Before starting the discussion on the e�ect of evanescent waves in a Veselago
slab, it is important to know about evanescent waves in normal right handed
system. Evanescent waves are formed when waves traveling in a medium un-
dergo total internal re�ection at its boundary because they strike it at an angle
greater than the so-called critical angle. They should exist because the electric
and magnetic �eld cannot be discontinuous at the boundary. These waves do not
propagate and hence carries no enrgy in the direction of propagation. Evanes-
cent waves decay in amplitude exponentially. The mathematical approach about
how these waves are generated is discussed below.

Suppose a wave is propagating from a denser medium to a rarer medium.
Now from Snell's Law we obtain

sin(θt)
sin(θi)

= n1

n2
where n2 < n1

So, sin(θt) =
n1

n2
sin(θi) (16)

for n1

n2
sin(θi) > 1

cos(θt) =
√

1− (n1

n2
sin θi)2 = i

√
(n1

n2
sin θi)2 − 1 and we know

−→
Et=

−→
E0exp i(k1 cos θtz + k1 sin θtx - ωt)

So substituting the value of cos(θt) we get
−→
Et=

−→
E0exp(−αz)exp i(k1 sin θtx - ωt) where α = k1

√
(n1

n2
sin θi)2 − 1 (17)

So we see that the evanescent waves are decaying in amplitude along the
z direction (which is direction of the width of the slab). If we calculate the
Poynting vector and take time average then we see that the waves carry no
energy along the z direction. The fact that these waves carry no energy can be
shown easily. It is given that [ see (13) ]
−→
Et = [A

√
µ cos(θt)x̂+A

√
µ sin(θt)ẑ] exp(−αz) exp i(k1 sin θtx−ωt) using the

expressions of sin(θt)and cos(θt) [see (16) and (17)] and taking the real part of
the x component we get

Ex= -A α
k1

√
µexp(−αz) sin(k1xx-ωt) where k1x =k1sin(θt) and we know that

[see (13)]
−→
H = A

√
ε exp(−αz) exp i(k1xx− ωt)ŷ. Taking real part of this quantity we

get
Hy = A

√
ε exp(−αz) cos(k1xx− ωt)

Now we know that the Poynting vector is given by
−→
S = c

4π (
−→
E ×−→H ) (18)

7



So if we calculate the Poynting vector component in the z direction (the
direction of decaying of the evanescent waves) we get

Sz = c
4π (ExHy) = − c

4πk1
A2α
√
µε exp(−2αz) sin(k1xx − ωt) cos(k1xx − ωt)

(19)
Taking the time average of this quantity we get <Sz> = 0. So there is no

energy propagation in the z direction.
But there is energy propagation in the x direction as :
<Sx> = c

8πA
2√µε exp(−2αz) sin(θt). So the waves carry energy in the di-

rection perpendicular to its decay.
This is the case of normal right handed systems. So what happens in a

metamaterial? It can be very easily shown that the evanescent waves which are
decaying in amplitude in right handed systems, become exploding waves with
their amplitude growing exponentially in metamaterials. This is demonstrated
below.

In a metamaterial we know
−→
Et =

−→
A exp−i(|k1| cos θtz+ |k1| sin θtx−ωt) [see

(12)] where the wave vector has opposite direction to that of the normal right
handed medium. Now using the same conditions of the quantities sin (θt) and
cos (θt) as above, we get
−→
Et =

−→
A exp(αz) exp i(k1 sin θtx− ωt) where α = |k1|

√
(n1

n2
sin θi)2 − 1 (20)

So we clearly see that the evanescent wave amplitude increases exponentially
within the material. It is also completely consistent with the conservation of
energy as these waves carry no energy in the direction of its growth.

5 Perfect Lens

In the above section we saw that evanescent waves does not propagate energy.
But then why are the evanescent waves important ? This is because in normal
imaging technique we only use the propagating waves and as the evanescent
waves are decaying in amplitude they contribute little. In the Fourier expan-
sion of the waves that comes from the substance, we only recieve the propagating
part. However in the Fourier expansion there are components also which corre-
spond to the evanescent waves that cannot be captured. So the image resolution
is di�raction limited. This could be understood as following

Consider an object and a lens placed along the z-axis so the rays from the
object are traveling in the +z direction. The �eld emanating from the object
can be written in terms of its angular spectrum method, as a superposition of
plane waves (Fourier series):

E (x,y,z,t) =
∑
kx,ky

A(kx, ky)ei(kzz+kyy+kxx−ωt) where kz is given by the
following relation

kz =
√

ω2

c2 −
(
k2x + k2y

)
(in our previous discussions the ky component is

zero)
All of the components of the angular spectrum of the image for which kz

is real are transmitted and re-focused by an ordinary lens and only these carry
energy. However, if
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k2x + k2y >
ω2

c2 (21)
then kz becomes imaginary and the wave is an evanescent wave with decaying

amplitude. These waves attenuate very fast. As a result it is very hard to recieve
these waves optically but these contain information as these are also part of
the Fourier expansion. This results in the loss of the high angular frequency
components of the wave, which contain information about the high frequency
or small scale features of the object being imaged. Hence the highest resolution
that can be obtained can be expressed in terms of the wavelength:

kz(max) ≈ ω
c = 2π

λ which is similar to the fact that ∆xmin ≈ λ and this is
roughly the di�raction limit.

But in case of metamaterials the evanescent waves are increased exponen-
tially in amplitude (as shown in the previous section, see(20)). So we can receive
the evanescent waves as well using proper thickness of a metamaterial. So they
can contribute to the image providing high scale details of the object and hence
can help us to constrct a perfect lens ( if we take n = -1 then there is no re�ec-
tion and also the incident wave is completely transmitted and the evanescent
waves are also ampli�ed) which is not di�raction limited any more.

6 Conclusion

For the past few years metamaterials have become an extremely exciting re-
search topic. The unique properties of electromagnetic waves that can be
observed in metamaterials have attracted considerable attention from the re-
searchers. Negative refractive index materials have shown us possible real life
applications also, which can be very fascinating. The prospects of metamaterials
include constructing superlens[13], invisible cloak for a object[14], a metamate-
rial absorber[15] which can be used in photovoltaic cell and so on. Not only
on classical domain, due to the unavailability of a strong model of quantum
gravity, researchers have proposed analogue gravity models using metamateri-
als which can predict certain phenomena not explored before. Thus the �eld of
metamaterials is expanding rapidly and we expect to witness and explore more
fascinating features of metamaterials in the near future.
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