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Abstract

Binary stars play significant role in the dynamical evolution of stellar clusters.
The effect of interaction of a star from the cluster with the binary has been studied
before in detail, but using the Newtonian formalism. We have used the Post-
Newtonian model here to study the effect of the interaction of the star with the
binary and compare them with the classical results. Also a different algorithm
developed by Seppo Mikkola has been used instead of the usual leap frog integrator
method to carry out the integrations.

1 Introduction

Interaction of binary stars and a 3rd-body (star from the surrounding cluster) can
be considered as the energy exchange between two systems. As long as the binary is
bound, the orbit of the reduced particle is a Kepler ellipse with semi major axis ’a’ and
the internal energy is given by E = −Gm1m2

2a where m1 and m2 are the masses of the
two binary stars. Now during an interaction of a binary with a star, the star can either
extract energy from the binary, and thus increasing its kinetic energy or it can lose a
fraction of its energy to the binary which is converted into the binding energy of the
binary. Now, out of the two scenarios which is more likely to happen depends on the
internal energy of the binary. Hard binaries which have binding energies exceeding the
mean kinetic energy per star in the stellar cluster tend to act as energy providers to the
star and in the process becomes harder and for soft binaries having binding energies
smaller than the average kinetic energy of the cluster tend to gain energy from the
star and expand. This phenomenon is known as Heggie’s Law[1].
However all the simulations that led to the results are done using Newtonian energy
formalism and thus neglecting the post-Newtonian effect and the energy loss due to
Gravitational radiation. In this project, we want to investigate how the binding energy
of the binary changes when it interacts with a star and build up a statistics of the
energy change if we consider the post-Newtonian terms of order 1, 2 and 2.5 (as an
approximation for the Einstein field equations for the binary). Also we want to compare
the results with the No-PN case to see the difference.

2 Simulations

The integration algorithm that has been used in our study is developed by Seppo
Mikkola[2] which is based on the chain regularization algorithm and is faster and more
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accurate than the traditional leap-frog integration method. The validity of the method
has been verified by checking the energy conservation. In the simulations we have used
standard units for mass and distance which is 109 solar mass and 100 parsec and G
is taken to be 1. With these units, the velocity of light is c = 477.12 units. The
binary components are black holes with masses 3.2670693472027779E-03 mass units
and 8.7121763499453664E-04 mass units respectively. The field star mass is taken
as 10−7 mass units. The initial position and velocity of the binaries are obtained
from available black-hole binary data and the initial position of the star is taken to
distributed on a sphere of radius 0.1 unit with centre of the sphere at the C.o.M. of
the binary. For the first set of runs the initial velocity has been fixed and is given by

0.01 × Vesc where Vesc is the escape velocity given by Vesc =
√

2GM12
D where D = 0.1

length units and M12 is the total mass of the binary. For the next set of runs, the
initial velocity is dependent on the pericenter distance which is a parameter of our
simulations. The initial velocity is determined by the following formula

V =

√
(1− e)M12

(1 + e)a
(1)

where a and e are given by:
a = D+ka0

2 and e = D−ka0
D+ka0

. Here D is the apocenter distance (D=0.1 length units), a0

is the initial binary semi major axis and k is a multiplier. The simulations are repeated
for different initial conditions of the binary, i.e. for different snapshots of the binary
for t=2,3,4,5 and 6. The integration is carried out until the star is ejected from the
system (i.e. total energy of the star is positive) or upto a time period of t=100 with
time steps dt = 0.01.
The formulae used to calculate the PN energies are same as mentioned in L. Blanchet
and B.R. Iyer (2003) paper[3]. The gravitational radiation loss is cross-checked with
P.C. Peters formula of change in semi-major axis of binary orbit[4].

3 Observation and Analysis

3.1 Energy Conservation

To show the energy conservation and validity of the code we have plotted the difference
in total energy of the system for each time step. As we can see from figure 1, the order
of error in energy conservation is at max of the order 10−5. So, the accuracy is to the
order of 0.1%. The total energy of the system that must be conserved is taken as B.E.
of the binary + total energy of the star where B.E. consists of the PN1,2,2.5 terms
along with the newtonian terms.
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Figure 1: Energy conservation

3.2 Trajectory of the star

Next we show the trajectory of the star for a single run. The trajectory shows the
interaction of the star with the binary and finally it gets ejected from the system. Fig.
2,3, and 4 shows the variation of three co-ordinates with time and Fig.5 shows the X-Y
plot.
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Figure 2: X vs t plot
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Figure 3: Y vs. t plot
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Figure 4: Z vs. t plot
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Figure 5: X vs Y plot

3.3 Energy Change in a single interaction

To show the variation of energy change in a single interaction, we have plotted the
binding energy variation of the binary with time (Fig.6).
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Figure 6: Binding energy (Newt+PN1+PN2) of the binary

The sudden jump indicates the ejection of the star from the system. This shows
that the binary becomes harder after the ejection of the star.
To show that the kinetic energy of the star increases after the interaction we have
plotted the variation of kinetic energy of the star with time.
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Figure 7: Kinetic energy of the star
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Though the kinetic energy of the center of mass is almost negligible, it also receives
an increase in energy as shown in Fig.8.
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Figure 8: Change in center of mass kinetic energy of BBH

3.4 PN 2.5 term

The PN 2.5 term corresponds to the quadrupole moment of the gravitational field
(given by Einstein). This 2.5 term (due to the 1/c5 dependence) indicates how much
energy is lost due to the gravitational radiation from the binaries. This approximation
is valid only for weak fields, but applies quite appropriately for the binary black hole
case. The 2.5PN term has been calculated using Blanchet’s formula (See ref. [3]). But
this is cross-checked with the formula of Peters (See ref. [4]) which gives the variation
of ’a’, the semi-major axis of the binary, with time.
Fig 9. shows the comparison of the energy change due to gravitational radiation as
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Figure 9: Comparison of Peters’ formula of energy change and 2.5PN (y in logscale)
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calculated by the two different formula. The evaluation of change in ’a’ is calculated
using Euler integration method (to integrate da

dt ) and then it is multiplied by Gm1m2
2

(i.e.∆E = −Gm1m2
2

∫ t
0

da
dt ). It can be that due to the first order approximation in inte-

gration we see the slight difference between the two approach.
Now, to show how the PN2.5 term depends on time-scale, we present Fig. 10.
As can be seen, the effect of PN2.5 term is more prominent in the case of t=6 than
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Figure 10: Effect of PN 2.5 terms for different cases

t=2 case which is understandable, but it does not depend on the 3rd-body’s velocity
of approach.

3.5 Effect of the PN 2.5 term

Fig. 11 and Fig.12 shows the effect of the PN2.5 term on the total energy and how
the binding energy changes if we add the PN 2.5 term to Newtonian + PN1 +PN2
energy. As we can see that the effect of PN2.5 is really small. The PN2.5 energy is
only about 0.5% of the total energy.

In all the sections that follows we have used the corrected energy i.e. Newtonian
+ PN1 + PN2 energy to calculate the cumulative energy and plot the differential
distrbution. If only the word ’energy’ is mentioned, it means this corrected energy.
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Figure 11: Time varia-
tion of Newt+PN1+PN2 and
Newt+PN1+PN2+PN2.5 for a single
run
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Figure 12: Comparison of PN2.5 energy
with Newt+PN1+PN2 (y in logscale)

3.6 Comparison of cumulative energy change

This part provides the idea of the how much the energy change in an interaction on an
average. Three parameters are considered here for the comparison. The parameters
are, a) different initial position for the binaries (t=2 and t=6 case), b) different velocity
of approach for the intruder (corresponding to different pericenter distance a0 and 2a0)
and c) PN, No-PN case. a0 for t = 6 is 3.153813835E-005 and for t = 2 is 1.12812866E-
004. Ellipticity of the binary orbit: for t=2, e0 = 2.6203501433E-002, and for t=6, e0

= 0.147133170924
The binding energy in case of PN activated simulations are calculated using Blanchet’s
formula of energy[5], and in case of No-PN, simple Newtonian formalism has been used
to calculate the binary binding energy (given by Gm1m2

2a ).
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PN-NoPN comparison
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Figure 13: for t=2, rper = 2a0, cumulative energy
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Figure 14: for t=2, rper = a0, cumulative energy
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Figure 15: t=6, rper = 2a0
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Figure 16: t=6, rper = 2a0(logscale)
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Figure 17: t=6, rper = a0
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Figure 18: t=6, rper = a0(logscale)

As expected, from the above figures we can see that the energy difference between
PN and NoPN is more prominent for t=6 case than the t=2 case. Also the cumulative
PN energy change is more than the No-PN energy change.

NoPN comparison

We have compared here the No-PN cases for different times (t=2 and t=6) and also
for different approach velocity of the intruder. The comparison plots are shown below.
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Figure 19: rper = 2a0
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Figure 20: rper = 2a0(logscale)
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Figure 21: rper = a0
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Figure 22: rper = a0(logscale)

So, even for the NoPN case the t=6 case represents more energy change. However
if we look into the ratio of average energy change and initial energy (∆E/E0), we get
the following results.

∆E/E0 = 2.411033655× 10−5 for t =2, rper = 2a0

∆E/E0 = 2.429431270× 10−5 for t =6, rper = 2a0, and

∆E/E0 = 5.748491589× 10−5 for t =2, rper = a0

∆E/E0 = 5.781095833× 10−5 for t =6, rper = a0

So, it’s evident that the ∆E/E0 value is almost same for t=2 and t=6 cases for
a given value of rper, i.e., it does not depend on the time snap but as we can see
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a significant difference between the simulations for different approach velocity of the
intruder, i.e., for the rper = a0 case and rper = 2a0 case the ∆E/E0 value is quite
different (almost double).

Now, we compare the NoPN cumulative plots for same time but different rper.
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Figure 23: t = 2
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Figure 24: t = 2 (logscale)
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Figure 25: t = 6
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Figure 26: t = 6 (logscale)

Clearly the Newtonian energy change is larger for a0 than for 2a0 .
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PN comparison

First the cumulative energy change for t=2 and t=6 is compared for a given rper. As
expected the t=6 instance indicates more energy change.
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Figure 27: rper = 2a0
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Figure 28: rper = 2a0 (logscale)
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Figure 29: rper = a0
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Figure 30: rper = a0 (logscale)

Now we compare the cumulative energy change for different pericenter distance but
for a given instance (t=2 or t=6).
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Figure 31: t = 2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1e-07  1e-06  1e-05  0.0001  0.001  0.01

N
c
u
m

Ecum

rper=2a0
rper=a0

Figure 32: t = 2 (logscale)
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Figure 33: t = 6
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Figure 34: t = 6 (logscale)

Fig. 32 and Fig. 33 shows that the cumulative energy change is not much different
for different pericenter distances. The dependence of binding energy on rper is not
very prominent. Another thing to observe is that, for the Newtonian case (NoPN), the
cumulative energy change is dependent on rper and for lower rper we get more energy
change. But in case of PN activated simulation, though the difference is very small,
for higher rper we get more energy change. This may be because of the fact that the
time of interaction for a0 case is less than the 2a0 case (for a0, taverage = 0.6165, for
2a0, taverage = 0.8114).
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3.7 Differential distribution

Now we want to see, how the amount of energy change is distributed. The plots in
this section shows the frequency counts in the histograms of energy change.

NoPN comparison

We first compare the differential distribution for same pericenter distance but different
binary time scale.
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Figure 35: rper = 2a0 NoPN comparison
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Figure 36: rper = a0 NoPN comparison
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Now we compare NoPN diff. distributions for same time snap but for different
pericenter distance.
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Figure 37: Comparison for t=2 but different rper
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Figure 38: Comparison for t=6 but different rper

PN comparison

First we compare for same pericenter distance but different time.
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Figure 39: Comparison for rper = 2a0
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Figure 40: Comparison for rper = a0

Now we show the comparison of differential distribution for same time but for dif-
ferent pericenter distance.
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Figure 41: Comparison for t=2
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Figure 42: Comparison for t=6

PN NoPN comparison

We show in this section how the PN-NoPN differential distribution comparison looks.
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Figure 43: for t=2 and rper = 2a0
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Figure 44: for t=6 and rper = 2a0

So, we see that for both PN and NoPN case the shape of the differential distri-
bution is same but their origin is shifted giving the difference in energy change. The
distribution looks like exponential decay, but a good fitting could not be obtained.

3.8 Newtonian Energy comparison

If we compare simply the Newtonian energy (Gm1m2/2a) for PN and NoPN cases, we
get quite different results which shows that, it is incorrect to compare the Newtonian
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energy of PN cases with the Newtonian energy of NoPN cases. In PN cases, the
Newtonian binding energy can be both positive and negative depending on the intruder
mass and time snap (for t=2 we get both positive and negative). Here we show
cumulative Newtonian energy change comparison of PN and NoPN, for t=2 and t=6
case (Fig. 45 and Fig. 46).
So, we should consider the Newtonian+PN1+PN2 energy as the binding energy for
the binary in the PN case.
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Figure 45: for t=2, rper = 2a0 Newtonian energy comparison
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Figure 46: for t=2, rper = 2a0 Newtonian energy comparison
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3.9 Effect of PN terms in corrected energy

Fig. 47 and Fig.48 shows the effect of the PN terms in cases of t=2 and t=6. To
demonstrate the effect we have plotted the differential distribution of Newtonian energy
and corrected energy for both the cases t=2 and t=6. The big tics on the X axis mark
the expectation value of energy change.
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Figure 47: t=2 Comparison of Newtonian energy and Corrected energy
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Figure 48: t=6 Comparison of Newtonian energy and Corrected energy

This shows that, though the effect of PN in case of t is very small, it is essential to
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make the correction to get the right result. Otherwise we get negative energy changes
in case of t=2 in disagreement of Heggie’s Law.

3.10 Total star energy and Kinetic Energy of center of mass of BBH

A comparative plot of total star energy and K.E. of C.o.M of BBH variation with time
for different cases is shown in Fig. 49 and Fig. 50.
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Figure 49: Total star energy comparison for different cases
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Figure 50: kincm comparison for different cases

We can see that the Kincm contributes a negligible amount of energy change to
the system, so for all practical purposes we can neglect this energy.
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3.11 With initial velocity of star tangential

We also have simulations with initial velocity of the stars only tangential (but same
in magnitude), so that they follow a parabolic path on the way to encounter with the
star. But we can see from the plots in this section that it does not affect the final
energy change much.
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Figure 51: NoPN Cumulative energy change for t=6, rper = a0
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Figure 52: PN Cumulative energy change for t=6, rper = a0

So, we see that the initial direction of the velocity does not matter much.
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3.12 Normalized Cumulative energy change

Till now we have shown the plots of cumulative energy change. Now, we plot the
normalized cumulative energy change which is basically the plot of (∆E)/E0, where
E0 is the initial binding energy. The plots are shown for both PN and NOPN cases.
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Figure 53: NoPN case
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Figure 54: NoPN case (logscale)

Though they all should coincide, this may be because of the combined fact that
about number of fly-by events are more and number of high energy interactions are
less in the case of 2a0. So, we see a difference for the 2a0 and a0 case. To somehow
compensate this, we show the normalization plot where the normalization is done with
the expectation value of (∆E)/E0. The X axis now represents cumulative value of
(∆E/E0)
〈∆E/E0〉 .
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Figure 55: NoPN case normalized w.r.t.
expectation value
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Figure 56: NoPN case normalized w.r.t.
expectation value (logscale)

Similarly we show the plots for PN cases. (both normalized w.r.t. E0 and w.r.t.
〈∆E/E0〉).
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Figure 57: PN case
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Figure 58: PN case (logscale)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  200  400  600  800  1000  1200

N
c
u
m

Ecum

t=2 rper = 2a0
t=2 rper = a0

t=6 rper = 2a0
t=6 rper = a0

Figure 59: PN case normalized w.r.t.
expectation value
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Figure 60: PN case normalized w.r.t.
expectation value (logscale)

Here we observe a different pattern than the case of NoPN. The t=6 runs overlap
and t=2 runs overlap. However for the normalized using expectation value plots, the
difference is not very large.

3.13 Simulations for different masses

No-PN cases

Till now, for all the simulations, the intruder mass has been kept fixed. Now we vary
the intruder mass. Three values of masses have been taken. These are 10−6, 10−7, and
10−8 mass units. The simulations are done for both time t=2 and t=6 and for both PN
and NoPN cases. Then the cumulative energy change and the normalized cumulative
energy change (normalized w.r.t. mass, i.e. X axis represents ∆E/m3, where m3 is
mass of intruder) plots are shown in Fig. 61-64.
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Figure 61: t=2 cumulative energy change for three different masses (linear scale and
logscale)
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Figure 62: t=2 normalized cumulative energy change for three different masses (linear
scale and logscale)
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Figure 63: t=6 cumulative energy change for three different masses (linear scale and
logscale)
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Figure 64: t=6 normalized cumulative energy change for three different masses (linear
scale and logscale)

So, we see that the energy change for no PN case is directly proportional to the mass
of the intruder. To show this dependence further we have plotted all the normalized
curves in the same plot, (i.e. for both t=2 and t=6 and different masses) but now the
normalization factor is (m3/a0), i.e. we have taken the initial energy into account as
well in the normalization factor. Now all of them should co-incide as can be seen from
fig.65.
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Figure 65: Normalized cumulative energy change w.r.t. both mass and initial energy

PN cases

We did the same simulation for the PN cases as well which resulted in Fig. 66-69.
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Figure 66: t=2 cumulative energy change for three different masses (linear scale and
logscale)
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Figure 67: t=2 normalized cumulative energy change for three different masses (linear
scale and logscale)
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Figure 68: t=6 cumulative energy change for three different masses (linear scale and
logscale)
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Figure 69: t=6 normalized cumulative energy change for three different masses (linear
scale and logscale)

So, we see that the dependence of PN energy change on m3 is not linear as was
the case for No-PN. Also, after normalizing the order of energy change reverses which
is an interesting thing to notice.
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4 Simulation to see the frequency of fly-by events

For the No-PN cases, we have simulated the program for t=2, m3 = 10−7 and for
different rper. As the pericenter distance is increased, the probability of interaction
decreases significantly. For rper = 4a0 only about 20% of the particles interact whereas
for rper = 6a0 only 10% interact. So, to maintain efficiency of the program a0 or 2a0 is
the maximum safe pericenter distance. To show the comparison of cumulative energy
change between a0 run and 4a0 run we have shown Fig. 70. The plot shows that most
of the events in 4a0 case is fly-by and hence very small energy change is noticed.
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Figure 70: Normalized cumulative energy change w.r.t. both mass and initial energy

5 Results

Finally we summarize here the results of the simulations.

• The effect of PN is more evident for binaries in their later life stages.

• The effect of PN2.5 term is very small. It is only about 0.5% of the total energy.

• The cumulative energy change for NoPN case is dependent on the pericenter
distance but for the PN case the dependence is very negligible.

• We see that the average ∆E/E0 value for NoPN is same for different time stages
for a given pericenter distance but changes significantly for different pericenter
distances.

30



• However for the PN case, the average ∆E/E0 value is dependent on both time
and pericenter distance. The following values suggest this fact.

∆E/E0 = 1.3670× 10−5 for t =2, rper = 2a0

∆E/E0 = 6.0016× 10−3 for t =6, rper = 2a0, and

∆E/E0 = 8.53861× 10−5 for t =2, rper = a0

∆E/E0 = 4.47863× 10−3 for t =6, rper = a0

• Number of high energy encounter is more in the case of rper = a0 than the case
of rper = 2a0.

• In some cases (for t=2) we can see that the Newtonian binding energy change
is negative rather than positive which indicates that the semi major axis of the
binary is increased in the interaction rather than decreasing, thus contradicting
the prevailing ideas. But if we consider the total PN energy, we see that the
overall PN binding energy has increased (without considering the radiation en-
ergy loss). Thus we see that, the binary has become harder though there is a
small increase in semi-major axis.

• Energy change in an interaction is linearly proportional to the intruder mass for
no PN case but it is not for the case of PN interactions.

• The maximum pericenter distance for efficient program allowed, is 2a0. However
a0 is a better choice. Otherwise most of the encounters are fly-by.

• Though the PN terms are small compared to total energy for t=2 case, they
are required for the correct energy value. Otherwise one gets negative binding
energy change for interactions.
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