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1 Introduction

In Quintessence, the late-time acceleration is driven by the potential energy of the scalar field.
If the potential dominates the kinetic energy the effective pressure becomes negative giving rise
to acceleration. However, it is possible to have accelerated expansion with kinetic energy only.
Originally this idea was introduced to describe inflation of the early universe and this model was
named as K-inflation (the model was motivated from string theoretic calculations) [1]. Then
this concept was used in explaining the late time acceleration [2]. In K-essence the Lagrangian
contains a non-canonical kinetic energy term. A generic action in K-essence is given by,

S =

∫
d4x
√
−g L(φ,X) (1)

where X is given by X = 1
2 φ̇

2. We take L as a polynomial of X of degree 2, where the coefficients
are functions of φ,

L = α(φ)X + β(φ)X2 − V (φ) (2)

We take a new approach to this model, where we analyse the model using stability analysis
of a dynamical system. The purpose of this analysis is twofold:

• To see whether V(φ) = 0 can give rise to acceleration. If it can, then whether there are
any constraints on α(φ) and β(φ).

• To analyse the stability of the model with V (φ) 6= 0.

2 Friedmann Equations

For the given Lagrangian, the pressure and energy density is given by,

pφ = L(φ,X) = α(φ)X + β(φ)X2 − V (φ) (3a)

ρφ = −L+ 2XLX = α(φ)X + 3β(φ)X2 + V (φ) (3b)

The Friedmann equations are given by

H2 =
1

3
(ρb + ρφ) (4a)

Ḣ = −1

2
(ρm + ρφ + pm + pφ) (4b)

We take dust as the baryogenic matter (pm = 0) and substitute 4(a) in 4(b), and get,

Ḣ = −1

2
(pφ + 3H2) (5)

Thus we eliminate a variable ρm using the constraint equation 4(a). The corresponding Klein-
Gordon equation (or the conservation equation) is given by,

φ̈
[
α(φ) + 3β(φ)φ̇2

]
+ α′(φ)

φ̇2

2
+ 3β′(φ)

φ̇4

4
+ 3Hφ̇

[
α(φ) + β(φ)φ̇2

]
= 0 (6)
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3 Dynamic System Analysis

The system has five unknowns viz. a(t), φ, α(φ), β(φ), and V (φ). To describe the system we
define five variables,

x =

√
α(φ)φ̇√
6H

(7a)

y =

√
β(φ)φ̇2

2
√

3H
(7b)

z =

√
V

3H2
(7c)

λ =
1

α

dα

dφ

φ̇

H
(7d)

δ =
1

β

dβ

dφ

φ̇

H
(7e)

The corresponding differential equations can be written as,

x′ =
3

2
x(x2 + y2 − z2 + 1) +

λ

2
x− x

[
3(x2 + 2y2)

x2 + 6y2
+
λx2 + 3δy2 + σz2

2(x2 + 6y2)

]
(8a)

y′ =
3

2
y(x2 + y2 − z2 + 1) +

δ

2
y − 2y

[
3(x2 + 2y2)

x2 + 6y2
+
λx2 + 3δy2 + σz2

2(x2 + 6y2)

]
(8b)

z′ =
3

2
z(x2 + y2 − z2 + 1) +

σ

2
z (8c)

λ′ =
3

2
λ(x2 + y2 − z2 + 1)− λ2 + λ2Γ− λ

[
3(x2 + 2y2)

x2 + 6y2
+
λx2 + 3δy2 + σz2

2(x2 + 6y2)

]
(8d)

δ′ =
3

2
δ(x2 + y2 − z2 + 1)− δ2 + δ2τ − λ

[
3(x2 + 2y2)

x2 + 6y2
+
λx2 + 3δy2 + σz2

2(x2 + 6y2)

]
(8e)

where Γ =
α( d

2α
dφ2

)

( dα
dφ

)2
, τ =

β( d
2β

dφ2
)

( dβ
dφ

)2
, and σ = d(ln V )

dξ are parameters. All the primes are with respect

to ξ where ξ =ln(a).

Case I: V(φ) = 0, λ and δ are constants.

For this case, the RHS of eqn. 8(c)-(e) are zero along with z=0. The corresponding fixed points
for the system described by 8(a)-(b) are given in Table 1.

Point x y Eigenvalues

A. 0 ± 1√
3

{(1− δ
4 + λ

2 ), 1}
B. ±1 0 {3, (−3 + δ

2 − λ)}
C. ±

√
δ−2λ−4

2 ±
√

6−δ+2λ
6 { (2λ−δ+6)(2λ−δ+4)

−2λ+δ−8 , (δ − 2λ− 3)}

Clearly the fixed points A and B are either unstable node or saddle point depending upon
the values λ and δ. However the final fixed point can give rise to a stable node. The condition
for point C to be a stable fixed point is,

2λ > δ − 3 (9)

2



Now, if the system has to have a stable fixed point, then the condition on the quantities λ and δ
are given by (9). This is a constraint on the coefficients α(φ) and β(φ). If we use this condition
in the fixed pt. C we get imaginary values for x and real values for y. This imply that in order
to have a stable fixed point, α(φ) has to be negative and β(φ) has to be positive. This is another
constraint on the coefficients of X.

α(φ) < 0, β(φ) > 0 (10)

Now in Table 2 we give the corresponding scalar field energy density parameter (Ωφ) and effective
equation of state γφ which are given by,

Ωφ = x2 + 3y2 (11a)

γφ =
2x2 + 4y2

x2 + 3y2
(11b)

Point Ωφ γφ
A. 1 4

3
B. 1 1

C. 1 δ−2λ
3

So all of them result in a scalar field dominated universe but if a stable fixed point has to exist,
then the final equation of state can be either a decelerated one or a accelerated one depending
on the values of λ and δ. For accelerated universe γφ <

2
3 . Now, for the universe going to a

stable fixed point, if we impose the condition (9) we get, γφ < 1. For an accelerated universe in
the future we get,

2λ > δ − 2 (12)

Now we impose the current observations for scalar field energy parameter and effective equation
of state,

Ωφ = 0.685 (13a)

γφ = 0.05 (13b)

Solving these two equations for x and y we get, x = 1.147i and y = 0.817. The imaginary value
of x implies that the universe will evolve to point C if condition (9) is satisfied, otherwise it
will diverge. It will be a accelerated expansion if condition (12) is satisfied. Otherwise, after a
certain time the current acceleration will stop and deceleration will start.

Case II: V(φ) = 0, λ and δ are arbitrary.

In this case only z=0 and the system reduces to a 4-dimensional one. The corresponding fixed
points are given in Table 3.

Point x y λ δ

A. 0 ± 1√
3

0 0

B. 0 ± 1√
3

0 − 4
4τ−5

C. 0 ± 1√
3

1
1−Γ 0

D. 0 ± 1√
3
− 4(τ−1)

(Γ−1)(4τ−5) − 4
4τ−5

E. ±i
√

2 ±1 0 0
F. ±1 0 0 0

To find out the stability we analyse the eigenvalues for these fixed points which are given in
Table 4,
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Point e1 e2 e3 e4 Stability

A. 1 1 1 1 unstable

B. -1 1 1 2Γ−3
2(Γ−1) unstable

C. -1 1 4(τ−1)
4τ−5

4(τ−1)
4τ−5 unstable

D. -1 1 −4(τ−1)
4τ−5

2(2Γ−3)(τ−1)
(Γ−1)(4τ−5) unstable

E. -3 -3 0 0 stable
F. -3 3 0 0 unstable

So we see that only point E is a stable fixed point which has an imaginary value for x. This
implies that α(φ) has to be negative in order to obtain a stable fixed point for the system. The
current observations given by (13) supports this fact and indicates that the universe will evolve
to this fixed point if there is no potential.

The scalar energy density parameter and the effective equation of state for all the fixed
points are listed in Table 5 below.

Point Ωφ γφ
A, B, C, D 1 4

3
E. 1 0
F. 1 2

So all of them denotes a scalar field only universe scenario. Point E suggests the final equation
of state will be 0 like the cosmological constant model. The other unstable fixed points indicate
decelerated expansion phase. Hence we see that if we take the current observation as the initial
condition the universe will continue its accelerated expansion phase until only dark energy
contribution remains and the e.o.s. becomes that of the cosmological constant. It also indicates
that it is possible to obtain the cosmological constant limit using K-essence only without any
potential term. The only constraint that remains here is that α(φ) has to be negative and β(φ)
has to be positive.

Case III: V(φ) 6= 0, λ and δ are constants.

In this case we have z 6=0. So we have the RHS of 8(d)-(e) as zero. The system reduces to a
3-dimensional system. The fixed points of this system are given in Table 6,

Point x y z Eigenvalues

A. 0 ± i
√
σ

2
√

3
±
√

4+σ
2 {1

4(−δ + 2λ− σ), −(3 + σ), −(4 + σ)}
B ± i

√
σ√
6

0 ±
√

6+σ√
6

{1
2(δ − 2λ+ σ), −(3 + σ), −(6 + σ)}

So, for a stable fixed point to exist, the first condition is σ > −3. Now we list in Table 7 the
scalar field energy density parameter and effective equation of state value for the above fixed
points,

Ωφ = x2 + 3y2 + z2 (14a)

γφ =
2x2 + 4y2

x2 + 3y2 + z2
(14b)

Point Ωφ γφ
A. 1 -σ3
B. 1 -σ3
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So, if we omit the possibility of phantom fields, we must have the condition σ < 0. For
−3 < σ < 0, both A and B can be stable fixed points depending upon λ and δ. For 2λ > δ + σ
point B is stable and for 2λ < δ + σ point A is stable.

If we ignore phantom fields, we should note that 0 < γφ < 1, i.e. for −2 < σ < 0 we get the
fate of the universe as continued accelerated expansion and for −3 < σ < −2 we get decelerated
expansion as the future stage of the universe. So, there are both possibilities depending upon
the slope of the potential.

Another thing to notice is that, for y = 0, the Lagrangian is basically the Lagrangian for
Quintessence. Hence point B indicates a universe following the Quintessence scenario. Hence
we can conclude that Quintessence can be obtained from K-essence as a stable solution of the
system for 2λ > δ + σ.

In both Case I and Case III we note that all the fixed point corresponds to scalar field energy
density parameter to be 1, i.e. in the future matter density will be zero. So, only scalar field
will exist (i.e. only dark energy). Also we notice that if we allow phantom fields, then either
α(φ) has to be negative or β(φ) has to be negative.

Case IV: V(φ) 6= 0, λ and δ are arbitrary.

Now the system is 5-dimensional. The corresponding fixed points are given in Table 8,

Point x y z λ δ

A. 0 ± i
√
σ

2
√

3
±
√

4+σ
2 0 0

B. 0 ± i
√
σ

2
√

3
±
√

4+σ
2

σ
4(Γ−1) 0

C. 0 ± i
√
σ

2
√

3
±
√

4+σ
2 0 σ

4τ−5

D. 0 ± i
√
σ

2
√

3
±
√

4+σ
2

σ(τ−1)
(4τ−5)(Γ−1)

σ
4τ−5

E. ± i
√
σ√
6

0 ±
√

6+σ√
6

0 0

In this case also, if we avoid phantom fields, σ must be negative for the effective equation of
state to be positive.

The corresponding eigenvalues for each point are given in Table 9 along with the condition
for which the fixed points will be stable node,

Point e1 e2 e3 e4 e5 Stability Condition

A. −σ
4 −σ

4 −σ
4 −(σ + 3) −(σ + 4) unstable

B. −σ
4

σ
4 − (2Γ−3)σ

8(Γ−1) −(σ + 3) −(σ + 4) unstable

C. σ
4 − (τ−1)σ

(4τ−5) − (τ−1)σ
(4τ−5) −(σ + 3) −(σ + 4)

σ > −3
1 < τ < 5/4

D. σ
4

(τ−1)σ
(4τ−5) − (2Γ−3)(τ−1)σ

2(Γ−1)(4τ−5) −(σ + 3) −(σ + 4)

τ > 5/4 or τ < 1

1 < Γ < 3/2
σ > −3

E. 0 0 σ
2 −(σ + 3) −(σ + 4) σ > −3

We see that point A. and B. will never give rise to a stable fixed point. Depending upon very
strict conditions on Γ and τ we will get stable fixed points for C and D. So, basically the choice
for valid forms of α(φ) and β(φ) are severely restricted. However point E gives a stable node
without any further restriction on Γ and τ . Hence it allows more generic forms of α(φ) and
β(φ). Also we should keep in mind that this is the Quintessence case. Hence even if we start
with K-essence, for point E we end up with Quintessence only and this is more generic choice
since this allows more forms of α(φ) and β(φ).
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4 Summary

To summarize the discussion so far,

• Case I : V(φ) = 0, λ and δ are constants.

– It is possible to obtain late time acceleration using K-essence without a potential
term.

– For the system to have a stable fixed point 2λ > δ−3. This also implies that α(φ) < 0
and β(φ) > 0. This constraint is also supported by the current observations of scalar
energy density parameter and effective equation of state.

– The final effective equation of state is always less than 1. For a continued accelerated
expansion the condition is 2λ > δ − 2.

• Case II : V(φ) = 0, λ and δ are variables.

– The only stable fixed point for the system is given by x = ±i
√

2 and y = ±1. This
implies that α(φ) < 0 and β(φ) > 0 in absence of the potential.

– The universe will reach the cosmological constant limit if there is no potential term
in the K-essence. So, it is possible to reach cosmological constant limit without
the potential in contrast to Quintessence. In Quintessence, the domination of the
potential gave rise to the cosmological constant limit.

• Case III: V(φ) 6= 0, λ and δ are constants.

– If we avoid the Phantom Field scenario, σ < 0.

– There are two fixed points, both of which can be stable and unstable depending on
λ and δ. For a stable fixed point to exist σ > −3. Point A is stable for 2λ < δ + σ
and Point B is stable for 2λ > δ + σ.

– Point B is the Quintessence case. So we can get Quintessence as an end product of
K-essence.

– For both point A and B, e.o.s. γφ = −σ
3 . So whether the universe will continue

to accelerate forever or whether it will start to decelerate depends on the slope of
the potential. For −3 < σ < −2 the finals stage of universe is decelerated. For
−2 < σ < 0, the universe will continue its accelerated expansion phase.

• Case IV: V(φ) 6= 0, λ and δ are variables.

– For a stable fixed point to exist we must have σ > −3. To avoid phantom field we
should have σ < 0.

– A and B fixed points are unstable. C and D are stable for very restricted values of
τ and Γ. Hence a small class of coefficients α(φ) and β(φ) are allowed.

– E is stable fixed point without any further condition on τ and Γ, i.e. no further
constraints on the form of the coefficients. It also is the case of Quintessence since
y = 0. So, Quintessence comes as a fate of the K-essence model.

– The equation of state and scalar energy density parameter conditions are the same
as Case III.
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