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1 Introduction

Recent observations suggest that the universe is in the state of accelerated expansion[1]-
[2]. The matter dominated universe model fails to explain this. The Λ-CDM model
can give rise to accelerated expansion but the value of the cosmological constant (Λ)
to match the current energy density of the universe and the value obtained from high
energy physics calculations has huge discrepancy[3]. To solve this, various models
have been proposed with a scalar field which contributes negative pressure in the
Friedmann equations[4]-[5]. This scalar field models are called dark energy models and
the substance to produce this effect is called dark energy which is yet to be detected.
The scalar field potentials determine the evolution of the universe as a system. The
potentials can be broadly categorized into two types, Tracking and Thawing[10]-[12].
For tracking potentials, the equation of state (e.o.s.) of the universe gradually decreases
to its asymptotic limit -1 (e.o.s. for Λ). On the other hand, the thawing potentials
suggest that the e.o.s. of the universe is increasing very slowly from -1 following a slow-
roll potential. The advantage of both of these models are that, they both bypasses the
fine-tuning problem and co-incidence problem[6] by choosing a group of potentials and
allowing a broad range of initial conditions, not a particular one. This helps in avoiding
the choice of a precise initial condition that will give rise to current universe energy
density. But none of these models has yet been hailed as the correct or preferred.
However, if one can identify the correct model based on the recent observational data
and predict the correct redshift value (z) when the expansion started from the model,
it will be a huge advancement and give a boost to the dark energy model. The current
objective of this project is to try to determine the preferred model using stability
analysis tools for a dynamic system where the system is the universe.

2 The FRW metric and Friedmann equations

The FRW metric is taken here to find out Einstein’s equations with a spatial curvature
k=0 and also the homogeneity and isotropy of universe is considered (cosmological
principle). The FRW metric is given by

ds2 = −dt2 + a2(t)[dr2 + r2(dθ2 + sin2θ dφ2)] (1)

where a(t) is the scale factor. Using this metric, and the stress-energy tensor for the
perfect fluid,

Tµν = (p+ ρ)uµuν + Pgµν (2)

we get the Friedmann equations from the Einstein Equation Gµν = 8πGTµν as,

(
ȧ

a
)2 =

8πG

3
ρ (3)

ä

a
= −4πG

3
(3p + ρ) (4)
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3 Scalar field model

The Friedmann equations with known matter cannot explain the accelerated expansion
since in eqn(3) both pressure and energy density is non-negative for any known matter.
Hence ä is always negative. So, we introduce a scalar field to produce a negative pres-
sure contribution in the Friedmann equations. If this negative pressure contribution is
sufficiently high then, ä can be positive giving rise to a accelerated expansion.

For this, we introduce a Lagrangian corresponding to the scalar field with the
Einstein- Hilbert Lagrangian.

Lφ = −1

2
∂µφ∂

µφ− V (φ) (5)

Taking variation with respect to the metric gµν and comparing with perfect fluid
equation we get the pressure and energy density of the scalar field, which are given by
eqn(5) and (6) respectively. The pressure and energy for the scalar field is given by,

pφ =
φ̇2

2
− V (φ) (6)

ρφ =
φ̇2

2
+ V (φ) (7)

Again, taking variation with respect to the scalar field we get the Klein Gordon equa-
tion for this scalar field (also sometimes called as the continuity equation) given by,

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 (8)

The corresponding equation of state is given by

wφ =
φ̇2

2 − V (φ)

φ̇2

2 + V (φ)
(9)

Clearly we get the cosmological constant model for V (φ) >> φ̇2

2 as then wφ tends to
-1. The Friedmann equations for a universe containing both matter and this scalar
field can be written as

H2 =
1

3
(ρb + ρφ) (10a)

Ḣ = −1

2
(ρb + ρφ + pb + pφ) (10b)

where H is the Hubble parameter, given by H = ȧ
a . Here 8πG has been taken equal

to 1. From here on, this unit will be used throughout this discussion.

4 System of equations

In order to transform the cosmological equations into an autonomous dynamical sys-
tem, new auxiliary variables are introduced[7]. The variables x, y, and λ are defined
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as

x =
φ̇√
6H

(11a)

y =

√
V

3H2
(11b)

λ = − 1

V

dV

dφ
(11c)

The system of equations in terms of these newly defined variables are given by

x′ =

√
3

2
λy2 +

3

2
x(x2 − y2 − 1) (12a)

y′ = −
√

3

2
λxy +

3

2
y(1 + x2 − y2) (12b)

λ′ = −
√

6λ2(Γ− 1)x (12c)

where Γ = V
d2V
dφ2

( dV
dφ

)2
. We introduce another new set of variables which are observable

quantities and hence makes the phase-space diagrams more comprehensible[8].

Ωφ =
ρφ

3H2
= x2 + y2 (13a)

γφ = 1 + wφ =
2x2

x2 + y2
(13b)

Using this redefined variables, the equations become,

Ω′
φ = 3(1− γφ)Ωφ(1− Ωφ) (14a)

γ′φ = (2− γφ)(−3γφ + λ
√

3γφΩφ) (14b)

λ′ = −
√

3γφΩφλ
2(Γ− 1) (14c)

5 Thawing Model

The Thawing model states that the equation of state (wφ) was -1 and it slowly increased
to its current value. The corresponding potential is a slow rolling potential which
satisfies the following slow roll approximations[9]:(

1

V

dV

dφ

)2

<< 1 (15)

1

V

(
d2V

dφ2

)
<< 1 (16)

Though the slow roll approximations were derived for potentials causing inflation when
only the scalar field was present (contrary to the case now, because now both matter
and scalar field are present in the universe), in this case we only take the approximation
conditions to group together different types of potentials with the slow roll behaviour
which can model the thawing case.
The three evolution equations (the derivatives are taken with respect to ln(a)) are
written below with wb = 0 (for matter)
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Assumptions

For this model the assumptions are made,[10]

• The first assumption is that γφ << 1 since wφ is very close to -1.

• The second assumption is that λ is approximately constant, i.e.,

λ = λ0 = − 1

V

dV

dφ

∣∣∣
φ=φ0

(17)

Here λ0 is the initial value of λ before the slow roll down the potential begins.
This approximation follows from the slow roll approximation itself,

1

V

(
d2V

dφ2

)
−
(

1

V

dV

dφ

)2

<< 1 (18)

which is basically the two slow roll approximation conditions put together. This
can be rewritten as the condition

|λ
′

λ
| << 1 (19)

which yields that λ is almost constant.

• This condition can be achieved by two ways, by demanding either Γ ≈ 1 or λ to
be small.

These assumptions indicate that the equation of state for the scalar field was frozen
at -1 for a long time until Hubble expansion made the energy density of the scalar field
and the matter comparable. The scalar field then began to thaw down the very flat
potential and wφ starts increasing slowly. Hence the value of wφ is close to -1.

Approximated equations

The equations 14(a)-(c), with the above mentioned assumptions become,

Ω′
φ = 3Ωφ(1− Ωφ) (20a)

γ′φ = −6γφ + 2λ
√

3γφΩφ (20b)

with λ = constant.
The first equation is an uncoupled equation and can be solved easily. We can find γφ
as a function of Ωφ and the scale factor a as well (Fig. 1).

Jacobian and Fixed points

The Jacobian of the system of equations is given by

J =

(
3(1− 2Ωφ) 0

λ
√

3γφ
Ωφ

−6 + λ
√

3Ωφ
γφ

)
(21)

The corresponding fixed points are
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Figure 1: The dependence of γφ/λ2
0 on Ωφ for a nearly flat potential. λ0 is the initial

value of λ. (Source: R. Scherrer, A.A. Sen, Phys. Rev. D77, 083515, 2008.)

γφ Ωφ

0 0
0 1

λ2/3 1

Now, we see that the second and third fixed points in the table are same as the
case without any assumptions. The first fixed point is of interest because it gives rise
to a singular Jacobian, as can be seen by putting γφ = 0, and Ωφ = 0 in the Jacobian
matrix. However, when we plot the trajectory we see a saddle at (0,0).

• The physical significance of the fixed point (0,0) is that both effective equation of
state and scalar field energy density parameter (Ωφ) can be zero at the beginning
of the universe when H = ȧ

a (the Hubble parameter) value was infinity.

• When we extrapolate the system of equation backwards in time, we see that the
system approaches the saddle.

• The system approaches the fixed point (1, λ2/3) when simulated forward in time
(Fig. 2). It is a stable fixed point as can be verified by putting the fixed point
values in the Jacobian. To be specific, it is a degenerate node with only one
eigen-direction.

• The (0,0) fixed point can be justified as a saddle point if we make the transfor-
mation γφ = α2. Then it is easy to check that the Jacobian yields a saddle point
(as det(J)<0).

• Instead of evolving the system backwards and try to approach the point (0,0), we
start with an initial condition sufficiently close to zero and integrate the system
(Fig.3). We see that, after a perturbation from the point (0,0), the effective
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equation of state rapidly comes down to a value very close to zero and then starts
increasing very slowly (due to the nearly flat potential) and finally reaches the
fixed point (1,λ2/3). The rapid coming down of wφ to -1 is somewhat reminiscent
of inflation but during inflation there was no matter distribution in the universe.

Figure 2: Trajectory for a thawing potential with λ2
0 = 0.25

Figure 3: Perturbation from the fixed point (0,0) with λ0 = 0.2
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Thawing model in 3D

Here we consider the whole 3D model without the assumption that λ is a constant and
let λ evolve as well.

• For Γ ≈ 1
The fixed points are (0,0,0), (1,0,0), and (1,λ2/3,λ). Out of these, the point
(0,0,0) is unstable in all three directions. The fixed point (1,0,0) is attracting in
the Ωφ and γφ direction but the λ direction is unstable. The other fixed point
or we should say set of fixed points are attracting. The evolution in this case is
quasi-static, i.e., as λ increases with time, γφ goes to a new fixed point (λ2/3).

• For Γ ∼ O(1) or bigger
In this case all the fixed points are unstable and the (1,λ2/3,λ) fixed point does
not exist.

• All the stability analysis is done by evolving a small perturbation from the fixed
points. The diagrams for the first case is shown in the following figures (Fig.4
and Fig.5).

Figure 4: γφ vs. Ωφ and γφ vs. λ plot. The red line in the second plot indicates λ2/3
line.

Figure 5: Time series plots of the 3 variables
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6 Tracking Model

The tracking model[11] suggests that the equation of state wφ is decreasing gradually
and have reached its current value which is close to -1. It is called ’Tracking’ because the
energy density of the scalar field tracks the background energy density. In the radiation
dominated era Ωφ < Ωm < Ωr, and in the matter dominated era Ωr < Ωφ < Ωm and
in this epoch, the scalar field energy density finally began to dominate giving rise to
accelerated expansion. This is because the scalar field energy density falls at a slower
rate than matter and radiation.
However the name tracking has another significance. It is insensitive to initial scalar
field energy density upto a order of 100 magnitude. That is all the trajectories starting
within this range follows a trajectory and finally converges to a solution called ’tracker
solution’. Thus only the tracker solution which is a representative of the set of solutions
for a given potential matters, and the initial information does not matter. Thus it
evades the fine-tuning problem.
Tracking is exactly the opposite case of thawing. Here wφ starts from a value higher
than -1 and then evolves down the trajectory following the tracker solution and finally
gets frozen at a value very very close to -1. So, sometimes it is also called ’Freezing
model’.

Assumptions

The assumptions for this model are, [12]

• γ̇φ is negligible, i.e. the e.o.s. varies very slowly with time.

• Γ ≥ 1 for tracking solution. This condition is needed to satisfy the following
approximated equation (after the first assumption)

V ′

V
∼ 1√

Ωφ

(22)

What this condition basically implies, is that |V ′

V | decreases as V decreases.

• Γ is almost constant w.r.t. time. This is needed for the converging behaviour of
the tracker solutions.

• Γ ≈ 1 for ‘near tracking’ solutions.

System of equations

The system of equation for Tracking model is same almost same as equation (14) except
equation 14(c) which yields λ′ ≈ 0. So we consider λ = constant.

Fixed points

The fixed points of the system along with the stability is given by,
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γφ Ωφ Existence Stability

2 1 ∀ λ
unstable if λ ≥ −

√
6

saddle if λ < −
√

6

1 3
λ2

λ2 ≥ 3 Stable

λ2

3 1 λ2 < 6
stable if λ2 < 3

saddle if 3 ≤ λ2 < 6

• The (1,2) point is either a saddle or an unstable fixed point. Hence it is considered
as the point where universe has started evolving.

• The fixed point (1,λ2/3) is the same one obtained in the thawing case (Fig. 6(a)).
This is a stable fixed point for λ2 < 3, which is always the case for thawing but
not for tracking. For tracking, the stable fixed point is decided depending upon
the value of λ.

• For λ2 ≥ 3, the stable fixed point is (3/λ2, 1). For this case, the system cannot
be backtracked in time to the fixed point (1,2). Also, depending upon the values
of λ the trajectory could be spiral. Numerical calculation show that for λ2 > 3.4
the trajectory will be a spiral (Fig. 6(b)).

• The spiral is affected by the influence of the fixed point (1,2). If the initial
condition is given to be the current values of γφ and Ωφ, the spiral never crosses
the line γφ = 2/3 more than thrice (the line γφ = 2/3 is important because
for γφ < 2/3, we get accelerated expansion). This means that after the current
phase of accelerated expansion there can only be another period of accelerated
expansion before the universe settles down to the fixed point with no acceleration
(Fig.7).

• After the current phase of acceleration, whether there will be another phase of
acceleration depends upon the values of λ. For λ ≥ 3.57 we get another phase of
acceleration.

• As λ is increased, γφ tends to 2. The trajectory gradually converges with the
manifolds of the saddle point (1,2).

• For λ2 < 3, the stable fixed point (3/λ2,1) disappears and we get a new stable
fixed point (1,λ2/3). Trajectories for these values of λ can be backtracked in
time to the fixed point (1,2). So, this fixed point is preferred to the previous one.
This fixed point also appears in the thawing case, though in that case it was the
only fixed point for the system.
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(a) λ = 0.5 (b) λ = 3

Figure 6: Phase space plot for two different values of λ. The black dot represents the
current value of Ωφ and γφ

 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

γφ

Ωφ

Figure 7: Trajectory for various λ values (from λ = 3-7). As λ increases the trajectory
approaches the γφ = 2 line.

7 Conclusion and Future Work

In conclusion we can say,

• Thawing and Tracking both gives a fixed point (1,λ2/3).

• In thawing, the past cannot be tracked to a fixed point exactly but in tracking,
it depends on λ.
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• However, in thawing the (0,0) point is a saddle and can be interpreted as a
singularity at the beginning of the universe. A small perturbation shows inflation
like behaviour at first. However since our system is has both scalar field and
matter, drawing any conclusion from this similarity would be naive. Further
investigation on this needed and is in the future scope of this project.

• The dynamical system analysis does not clearly favour one of these two models
which was our primary aim. However further investigation on the time-scale of
the evolution and start of accelerated expansion needs to be done in order be
conclusive on this topic. This is also a scope of this project.
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