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Motivation for a ’Modern Theory’

Context:- Almost all existing literature establishes sufficient conditions for sample
path continuity of Gaussian Processes separately for those defined on the real line,
those on multidimensional parameter spaces, those that are function-indexed,
set-indexed and so on.

Aim: To develop a unifying theory that does not rely on the geometrical structure
of the parameter space, and thus applies to the analysis of all kinds of Gaussian
Processes.
Two problems of focus: Sample Path continuity and Distribution of the
supremum of a Gaussian Process over a fixed subset of its parameter space

Developments: Many have worked recently on such investigations and developed
arguments based on ’metric entropy’ and ’majorising measures’ for characterizing
sample path continuity of Gaussian Processes. Here, we will only be concerned
with entropy.
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Preliminaries

{Xt |t ∈ T} such that ∀ti ∈ T , αt i∈ R;
∑

i αt iXt i is a centered Gaussian
random variable, defined on a complete probability space, (Ω, F , P).

The distribution of the centered Gaussian Process described above is
completely characterized by the positive semi-definite covariance function R
defined on T such that R(s,t) = E(WsWt).

No assumptions are made on the specific geometrical structure of the
parameter space, T. In general, it will only be required that T is a
totally bounded metric space. It is also assumed, unless stated otherwise,
that {Xt}t∈T is a separable stochastic process (for ease of analysis).

Given t ∈ T, X is said to be almost sure continuous at t if
P({ω ∈ Ω|lims− >t |Xs(ω)− Xt(ω)|= 0})=1.
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What and why?

Definition

Define d :T x T such that d(s,t) = [E (Xs − Xt)
2](

1
2 ). This naturally induces a

pseudo-metric in T through the covariance function of Xt , circumventing any
dependence on the geometry of T. This d is called the canonical metric.

Background

Say X is defined on a (T,τ) and define ρ2τ (u) = Supτ (s ,t )≤uE (Xs − Xt)
2. Then,

for X to be continuous, we atleast need ρ2τ (u) −→ 0 as u −→ 0.
Assuming we have mean square continuity (iff R is continuous), it is observed that
for almost sure continuity, only the the rate of convergence of ρ remains the
additional concern.

Equivalence of d-continuity and τ -continuity

If X is defined on a compact metric space, (T,τ) with a continuous covariance
function R; then τ -continuity and d-continuity of X are equivalent.
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Assuming we have mean square continuity (iff R is continuous), it is observed that
for almost sure continuity, only the the rate of convergence of ρ remains the
additional concern.

Notice now that ρ2d(u) loses information of the covariance matrix, and hence the
process itself. We need to tap into the information about the process from d,
contained in its relationship with the size and structure of T. How do we go about
this?
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The First ’General Theory’ Result

It is time to jump to the most important result yet. It’s applications and
implications for various different Gaussian processes shall be visited now.

Definition

Let N(ϵ) be the least number of d-balls of radius ϵ required to cover (T,d). Then,
H(ϵ) = log(N(ϵ) is called the Metric Entropy Function for T (or X).

Note: N(ϵ) < ∞ ∀ ϵ > 0

Main Result
If X is a centered Gaussian Process on a totally bounded parameter space T, and
if the integral of the metric entropy over [0,∞),

∫∞
0

[log(N(ϵ))]
1
2 dϵ <∞; then X

is almost surely continuous on T. .............(1)

Remark: The upper limit of the integral can be replaced with diam(T).
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Gaussian White Noise

Definition

Let (E, ε, ν) be a σ-finite measure space. A Gaussian White Noise based on ν is a
random set function W on the sets A ∈ ε of finite ν-measure such that:
i) W(A) is centered Gaussian and EW2(A) =ν(A) <∞
ii) A ∩ B = ϕ =⇒ W(A ∩ B) = W(A)+W(B) a.s.
iii) If A ∩ B = ϕ, then W(A) and W(B) are independent.

Remarks

1. The covariance function Rν : εxε −→ R+ ∪ {0} defined as Rν(A x B) =
EW(A)W(B) = ν(A ∩ B) , is well defined and positive semi-definite.
2. d2(A,B) =ν(A∆B) ∀A,B ∈ ε.
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Brownian Sheets - What are they and why should one care?

Definition

Let E=Rk
+={(t1, t2, ...., tk)|t ′i s≥ 0}, ε = βRk

+
, and ν = λ, the Lebesgue Measure.

Notate (a, b] = Πk
i=1(ai , bi ] ⊂ Rk

+ for some (ai , bi ]
′s⊂ R. Definitions are similarly

extended for (a, b), [a,b] and [a, b). Then the process {Wt = W ((0, t])|t∈ Rk
+} is

called the Brownian Sheet Process on Rk
+.

Further, the processes defined by W̊t = Wt − |t|W1 is called the pinned Brownian
sheet. (where |t| = Πi=k

i=1ti )

Brownian Sheet is central to the k-dimensional functional central limit
theorem. IID processes on the k-dimensional integer lattice in Rk

+ converge
weakly to the Brownian Sheet.

Empirical cdf’s and measures built from i.i.d random variables uniformly
distributed on [0, 1]k also converge to the Pinned Brownian Sheet defined
over appropriate spaces.
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Continuity of the Brownian Sheet on [0,1]k

Proposition 1

The Brownian Sheet, Wt (and similarly, the pinned Brownian Sheet, W̊ t) is
continuous on [0,1]k .

Proof.

A partition of [0, 1]k is defined such that for each ϵ ≥ 0, the function inside the
integral of (1) is bounded by a function which has a finite integral over [0, ∞).

Step 1: Define S(t ,δ) = { s ∈ [0, 1]k : ti ≤ si ≤ ti + δ; i=1, 2, 3,..., k}. Prove
that Sups∈S(t,δ) [Π

i=k
i=1(ti + δ) - Πi=k

i=1(ti )] ≤ kδ. (Trivial for k=1, use induction)

Step 2: Fix ϵ > 0. Then, choosing δ ≤ ϵ2

k , it can be shown that S(t, δ) ⊂ Bd(t, ϵ).

Step 3: Choose the lattice defined by A= {( i1ϵ
2

k , i2ϵ
2

k , ..., ikϵ
2

k )|i1, i2, ..., ik ∈ N⌊ k
ϵ2

⌋}.
Step 4: Show that [0, 1]k ⊂ ∪t∈ABd(t, ϵ). This implies N(ϵ) ≤ (⌊ k

ϵ2 ⌋ + 1)k .

Step 5: Bound the integral of (log(N(ϵ)))
1
2 over [0,1] by a Riemann Upper sum

partitioned in a manner that allows us to obtain a finite bound on the integral.
The integral is already finite over [1,∞).

Hence, from the main result above, Wt is continuous on [0, 1]k .
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Brownian Sheet on Lower Layers

Definition

Define a partial order on Rk
+ such that s ≤ t ⇐⇒ si ≤ ti∀i ∈ Nk (Similarly

extended for ’<’). Considering Rk
+ fitted with this partial order, a set A ⊂ Rk is

said to be a lower layer if for any two points, s and t in Rk ; s ≤ t and
t ∈ A =⇒ s ∈ A.

Proposition 2

The Brownian Sheet on the lower layers in [0, 1]2 is discontinuous and unbounded
with probability 1.

Proof.

Idea: Construct two lower layers A and B, such that for any M > 0, W(A) - W(B)
> M

2 , a.e. ω ∈ Ω. Then, taking M −→ 0, will give W(A) - W(B) −→ ∞. Hence,
it is proved that W is both unbounded and discontinuous over the class of lower
layers in [0, 1]2.

Construction of the Lower Layers for this particular proof may be shown later if
time permits.
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What about other indices?

Similar proofs also show that W is unbounded over the convex subsets of
[0, 1]3. However, W is continuous over convex subsets of the [0, 1]2 !.

Example

Example 1 Let γ > 0. Let A01 =[0,1]2, and A′
ns be the closed rectangles whose

left side is the right side of An−1, so that it has height 1 and width 2n(1−γ).
Further divide each An into 2n equal horizontal slices, An1, ...,An2n . Consider this
class of sets, Aγ = {Anj} and the Gaussian White Noise Process indexed by this
class of sets.

Result

It can be shown that a1exp(b1ϵ
−2
γ−1 ) ≤ N(ϵ) ≤ a2exp(b2ϵ

−2
γ−1 ). From Theorem (1)

and the above information, we can show that W is continuous on Aγ for γ > 2;
and discontinuous on Aγ for 1 < γ ≤ 2

Clearly, continuity and boundedness depend on the relationships between the
process and its parameter space. Regardless, a common tool is handy in
analyzing them.
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Processes on R

Proposition 3

Let X be a centered Gaussian Process on a finite interval [0, T]. If for any δ > 0,∫ δ

0
(−log(u))

1
2 dp(u) <∞, then X is continuous on [0, T].

Proof.

1. Define p(u) = [Sup|s−t|≤uE (Xs − Xt)
2]

1
2 . It is easy to observe that diam(T) =

p(T). Show that Nϵ = 1 ∀ϵ > 2p(T2 ).

2. Partition [0,T] into ⌊ T
2p−1(ϵ)⌋+ 1 intervals of length 2p−1(ϵ). 3. Use Theorem

(1)’s integral, and obtain an integral of the form in the sufficient condition given,
after a change of variables. From the finiteness guaranteed by the sufficient
condition, conclude X is continuous on [0,T].
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Comments -Processes on R

Avoiding the notion of entropy, and instead relying on the specific geometry
of the parameter space in R confounds the basic issues and leads to a more
complicated analysis than the above.

On the real line, it can be shown that if for some 0 < c <∞ and
α, η > 0;E |Xs − Xt |2 ≤ c

|log |s−t||1+α ∀s, twith|s − t| < η; then X is continuous

on [0,T]. This condition actually implies the finiteness of the integral in
proposition 3.

Note that this clearly shows continuity as a consequence of the smoothness
of the covariance function at the origin.

However, as expected from a specialization, some processes are not
characterized as continuous directly from the integral in proposition 3.
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Gaussian Fourier Series - What and why?

Fourier Series Recall

Any Periodic function, f(t) can be decomposed in the following manner:
f̂ (t) =

∑∞
−∞ cne

int

Definition

The sum represented by
∑∞

0 anYne
int , t ∈ [0, 2π]; where,

-an ∈ R such that -
∑∞

0 a2n = 1,
{Yn} is an iid sequence of random variables such that Yn ∼ N(0, 1);
is called a Gaussian Fourier Series.

The uniform convergence/divergence of series similar to the one described
here has a number of consequences in non-random harmonic analysis.

We will now see how our main result (1) comes handy in proving a theorem
important in the context provided above.
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Gaussian Fourier Series - Important Result

Proposition 4

Let {Yn} and {Y ′
n} be two independent, infinite sequences of independent,

standard normal random variables, and {an} be a non-increasing real sequence.
Then the sum Xt :=

∑∞
0 an(Yncos(nt) + Y ′

nsin(nt)), t ∈ [0, 2π], converges

uniformly on [0, 2π] if, and only if, the following sum converged:
∑∞

j=2(
∑∞

n=j a
2
n)

1
2

j(logj)
1
2
.

Sketch of reverse side proof

1.Beginning with the convergence of the sum in Proposition 4, it is proven that∑
a2n <∞.

2. For each fixed t ∈ [0, 2π]; the Khinchine Kolmogorov 3-Series theorem
guarantees the almost sure convergence of

∑∞
0 an(Yncosnt + Y ′

nsinnt). This
implies the existence of the limit process almost everywhere on Ω.
3. A countably dense subset of [0,2π], T is taken and Xt is defined as the limit
process on Ω− N, where N is the countable union of Null sets for each t ∈ T
where the limit process may not be defined.
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Gaussian Fourier Series -Continued

4. X so defined is then proved continuous on T from Proposition 3. Intermediate
steps include the following:
-Finding the covariance function of Xt and deriving from there the value of p2(u).

- proving the bound p2(2−n) ≤ 4
∑n

j=0
22j

22nA(2
j , 2j+1) + B(2n) where

A(m, n) =
∑n

j=m+1 a
2
j , and B(n)=A(n,∞).

-Using the inequality (|x |+ |y |) 1
2 ≤ |x | 12 + |y | 12 and Cauchy Condensation Test to

prove the convergence of the above series.
5. Once the above is done, a result that says: If∫∞
K

p(e−x2

)dx ≤ I <∞∀K > 0 ⇐⇒ Proposition 3’s sufficient condition is
satisfied; is used.
6. A result to be studied later is used to conclude that the continuity above implies
the absolute convergence of the series required, through a few steps in between.

Notice how the entropy arguments play an important role in simpler analysis
of such processes, with implications in other fields of interest.
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The Talagrand Expansion

The Gaussian Fourier Series may be viewed as an orthonormal decomposition
of a Gaussian process on a finite interval.

Can such a decomposition be expected for a process in general? As it
happens to be, the answer is yes.

Proposition 5

Let X be a centered Gaussian process on a compact metric space T. Then X is
continuous ⇐⇒ X has a continuous covariance function and there exists a
centered Gaussian sequence {Yn} with variances σ2(Yn) such that
∀t,Xt :=

∑∞
n=0 αn(t)Yn with the following conditions satisfied:

- limn−→∞(log(n))
1
2σ(Yn) = 0

- For each t ∈ T, αn(t) ≥ 0and
∑∞

n=0 αn(t) ≤ 1.

This theorem simplifies construction of continuous Gaussian Processes, and
tells us that ALL continuous processes can be built by playing with the
orthonormal basis for functions on T.

Not many assumptions on {Yn} and {αn}.
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Generalised Random Fields

Definition
A stochastic process whose parameter space is either a k-dimensional Euclidean
space or a k-dimensional lattice is called a Random Field.

Definition

Let Xt be a centered Gaussian random field on Rk , with covariance function
R(s,t). Let F be a family of functions on Rk , and for ϕ ∈ F, define X(ϕ) =∫
Rk ϕ(t)X (t)dt.
Then, we obtain a centered Gaussian process indexed by functions in F, whose
covariance functional is given by:
R(ϕ, ψ) = EX (ϕ)X (ψ) =

∫
Rk

∫
Rk ϕ(s)R(s, t)ψ(t)dsdt.

This definition allows us to define function-indexed processes with so defined
covariance function as above, even when a point-indexed process with R(s,t)
does not exist.

A whole function indexed process can be defined for any positive definite
function R, on FR = { ϕ|

∫
Rk

∫
Rk ϕ(s)R(s, t)ψ(t)dsdt <∞}.
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Generalised Random Fields -Result and Comments

Proposition 6 (stated without proof)

Define Fq(T ,C0, ..,Cq) where T ⊂bdd Rk , q > 0 and p = ⌊q⌋ as the class of
functions on T whose partial derivatives of orders 0,1,...,p are bounded by finite
positive constants C0, ..Cp and the partial derivatives of order p satisfy Holder
conditions of order q-p with constant Cq.
A centered Gaussian process with covariance function,
R(ϕ, ψ) = EX (ϕ)X (ψ) =

∫
Rk

∫
Rk ϕ(s)R(s, t)ψ(t)dsdt where Xt is a centered

Gaussian random field on Rk , with covariance function
R(s,t)≤ c

||s−t||α ∀||s − t|| ≤ δ, for some c <∞ and δ > 0 will be continuous on

Fq(T ,C0, ..,Cq)ifk > α and q > 1+α−k
2 .

In most literature, only Schwartz space functions are used for indexing. This
is a smaller class of functions. However, the kind stated in the proof is useful
in the study of infinite dimensional diffusions, stochasticPDEs, etc.

The class of generalised fields considered here is also the ’Free Field’ used in
Euclidean Quantum Field Theory.

Similar results may be extended to measure-indexed processes.
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Near Future

There are detailed examples of Set-indexed Processes, Vector-Valued
Processes, Banach Space Valued Processes and Non Gaussian Processes.

The discussion further covers prerequisites required to prove the result (1),
and the proof of the same.

After that, the concept of ’majorising measures’ is introduced to characterize
continuity and study the distribution of Suprema of Gaussian Processes over
a finite set.

By the end of next semester, I aim to cover all the above, and be equipped
with what is needed to understand literature of similar kind.
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That’s all for now. Thank you for your patience.
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