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Abstract

Gaussian Processes are one of the most important families of stochastic
processes, with uses across multiple disciplines.

In the late 1960s - no need for finer geometric details of the parameter space

’Entropy’

Entropy arguments to establish a.s sample path continuity + Applications

Essential inequalities.
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Motivation for a ’Modern Theory’

Context:- Almost all existing literature establishes sufficient conditions for sample
path continuity of Gaussian Processes separately for those defined on the real line,
those on multidimensional parameter spaces, those that are function-indexed,
set-indexed and so on.

Aim: To develop a unifying theory that does not rely on the geometrical structure
of the parameter space, and thus applies to the analysis of all kinds of Gaussian
Processes.

Two problems of focus: Sample Path continuity and Distribution of the
supremum of a Gaussian Process over a fixed subset of its parameter
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Preliminaries

{Xt |t ∈ T} such that ∀ti ∈ T , αt i∈ R;
∑

i αt iXt i is a centered Gaussian
random variable, defined on a complete probability space, (Ω, F , P).

The distribution of the centered Gaussian Process described above is
completely characterized by the positive semi-definite covariance function R
defined on T such that R(s,t) = E(WsWt).

No assumptions are made on the specific geometrical structure of the
parameter space, T. In general, it will only be required that T is a
totally bounded metric space. It is also assumed, unless stated otherwise,
that {Xt}t∈T is a separable stochastic process (for ease of analysis).

Given t ∈ T, X is said to be almost sure continuous at t if
P({ω ∈ Ω|lims→t |Xs(ω)− Xt(ω)|= 0})=1.
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More than a Handful

N/Z/Q −→ R −→ C −→ R2 −→ F(q) −→ Measure-indexed Processes, Set-indexed, and
so on.
Only assuming a centred Gaussian process defined on a complete probability
space, and on a totally bounded, separable parameter space...

Background

Define ρ2
τ (u) = Supτ(s,t)≤uE (Xs − Xt)

2. Before investigating a.s. continuity, we
at least need ρ2

τ (u)→ 0 as u → 0.
Assuming we have mean square continuity (iff R is continuous), it is observed that
for almost sure continuity, only the the rate of convergence of ρ remains the
additional concern.
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The Canonical Metric

Defining a metric easier to work with.

Definition

Define d :T x T such that d(s,t) = [E (Xs − Xt)
2]( 1

2 ). This naturally induces a
pseudo-metric in T through the covariance function of Xt , circumventing any
dependence on the geometry of T. This d is called the canonical metric.

Equivalence of d-continuity and τ -continuity

If X is defined on a totally bounded and complete (hence, compact) metric space,
(T,τ) with a continuous covariance function R; then τ -continuity and d-continuity
of X are equivalent.
The last result means that we can work with this metric under some minimal
conditions on the parameter space. Note that this induces a metric structure
through the covariance function even in parameter spaces without an inherent
metric structure.

Notice that ρ2
d(u) loses information. We need to tap into the information about

the process from d. How do we capture it?
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The First ’General Theory’ Result

We capture the information contained in how the canonical metric measures T
and subsets of T, through the concept of Entropy.

Definition

Let N(ε) be the least number of d-balls of radius ε required to cover (T,d). Then,
H(ε) = log(N(ε) is called the Metric Entropy Function for T (or X).

Note: N(ε) < ∞ ∀ ε > 0 is assumed to be true, ie, T is totally bounded in the
canonical metric. It is a weak assumption satisfied by most general Gaussian
processes.

Main Result
If X is a centered Gaussian Process on a totally bounded parameter space T, and
if the integral of the metric entropy over [0,∞),

∫∞
0

[log(N(ε))]
1
2 dε <∞; then X

is almost surely continuous on T. .............(1)

Remark: The upper limit of the integral can be replaced with diam(T).
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The Brownian Family (Recap)

Given a σ-finite (E, ε, ν), a GWN based on ν is a random set function W on
ε such that W(A) is centred, EW 2(A) <∞, W has independent increments,
and finite additivity. Rν(A× B) = EW (A)W (B) = ν(A ∩ B)

{W ((0, t])|t ∈ R+
k } is called the Brownian Sheet Process on Rk

+. The
Brownian Sheet processes are central to the k-dimensional central limit
theorem. IID processes on the k-dimensional integer lattice in Rk

+ converge
weakly to the Brownian Sheet.

W ′t = Wt − |t|W1 is called the pinned Brownian sheet. Empirical cdfs and
measures built from iid random variables uniformly distributed on [0, 1]k also
converge to the pinned Brownian Sheet defined over appropriate spaces.

Proposition 1: The Brownian Sheet on [0, 1]k is continuous.

Consider a partial order on R+
k such that s ≤ t =⇒ si ≤ ti ∀i ∈ Nk and

similarly for ’<’. A set A ⊂ Rk
+ is said to be a lower layer if for any two

points s,t ∈ R+
k ; s≤t and t∈A =⇒ s∈A.

Proposition 2: The Brownian Sheet on the lower layers in [0, 1]2 is
discontinuous and unbounded with probability 1.

Also saw that W is unbounded over the convex subsets of [0, 1]3 but
continuous over those of [0, 1]2.
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Other Gaussian Processes (Recap)

On R: It is seen that relying on the parameter space unnecessarily
complicates the analysis. However, as expected from a specialization, some
processes are not characterized as continuous directly from the integral
condition here.
It can be shown that continuity is a consequence of the smoothness of the
covariance function at the origin.
Random Fields: Appropriate changes to the result for processes on R.
Gaussian Fourier Series: Uniform convergence of Gaussian Fourier Series
are important in non-random harmonic analysis. Entropy arguments play an
important role in simplifying analysis of such series.
Talagrand Expansion:Let X be a centered Gaussian process on a compact
metric space T. Then X is continuous ⇐⇒ X has a continuous covariance
function and there exists a centered Gaussian sequence {Yn} with variances
σ2(Yn) such that ∀t,Xt :=

∑∞
n=0 αn(t)Yn with the following conditions

satisfied:
- limn−→∞(log(n))

1
2σ(Yn) = 0

- For each t ∈ T, αn(t) ≥ 0and
∑∞

n=0 αn(t) ≤ 1.
Generalised Random Fields: Useful in study of infinite dimensional
diffusions, stochastic PDEs, Quantum Field Theory, etc.
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Set-indexed Processes

Dudley Class of Sets

Understanding set indexed processes is motivated by their role in the
development of multivariate ’Kolmogorov-Smirnov Tests’.

Take std. atlas {(Vj ,Fj)} on Sk . Define F(q)(Sk ,M) = Set of all R-valued
functions φ such that the composition of its restriction on a coordinate chart
φ|Vj ◦ Fj ∈ F(q)(Bk ,M, ...,M). Consider D(k + 1, q,M) = Πk+1

i=1 F
(q)(Sk ,M).

These families correspond to sets, on which one more alg. geometric
construction gives rise to the ’Dudley sets’.

Defining a Brownian sheet based on Lebesgue measure appropriately on them
gives a nice result that imposes conditions on q and k, to determine
continuity/unboundedness.
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Set-indexed Processes

The Vapnik-Cervonenkis (VC) Class

What if we move onto Gaussian White Noises defined with more general
σ-finite measure spaces?

Let E ⊂ Rk and ν be a probability measure on E . Given a class C of subsets
of E and a finite set F⊂E, let 4C(F) be the number of different sets C ∩ F
for C ∈ C.

For n=1,2,..., let mC(n) := max{4C(F ) :F has n elements}.

Set V (C) =

{
inf {n : mC (n) < 2n} mC(n) < 2n for some n

∞ mC(n) = 2n for all n

The class C is called a VC class if mC(n) < 2n for some n, ie, if V(C) <∞.
The number V(C) is called the VC index of C.

W is a GWN based on prob. measure ν on some (E , ε, ν).A is a VC class of
sets in ε. Then, there exists a nice bound for the entropy function, that
depends on the VC class and ε.

Corollary: W is continuous over A.
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Other Applications

Vector Valued Processes

For an RN -valued process, analyse continuity of each component process
separately...

Non-Gaussian Processes

Let F : R→ R be a continuous function and Yt = F (Xt) where X is a
Gaussian process...

If X1(t), ....,XN(t) are independent Gaussian processes defined on same

probability space, χ2-process, Zt =
∑N

i=1 χ
2
i (t), ....

There is a result by Pisier and Fernique, that uses the entropy arguments for
Gaussian processes to Banach-space valued processes (under some minimal
conditions again) unrelated to any Gaussian process.
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Motivation

Characterizing the supremum of a Gaussian process is an important aspect of
analysis in Gaussian Process Theory, apart from determining boundedness of
the process.

Statistical tests and approximations rely on some limit distribution being the
supremum of a Gaussian process.

Example (Kolmogov-Smirnov Test)

Let {Xi}ni=1 be an iid sample. Let Fn(x) =
∑n

i=1 1(−∞,x](Xi ) be the empirical
distribution function. Then, Dn(F ) = sup

x
|Fn(x)− F (x)| is called the

Kolmogorov-Smirnov Statistic for a given cdf F(x). This a.s goes to zero as n

goes to ∞, but upon normalization,
√
nDn

n→∞−→ sup
t
|B(F (t))| under the null

hypothesis that the sample comes from F(x), where B is the Brownian Bridge.

Probabilistic Questions surrounding ’hitting times’ of a process require
analysis of suprema and infima.
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Behaviour of SupTXt

P(λ)=P{Supt∈TXt ≥ λ} is known only for six specific stationary processes,
defined on a finite interval in R.
Asymptotic behaviour of P(λ) has a reasonably full theory. The behaviour of
P(λ) as λ→∞ depends on:-

1 Lack of Homogenity of X on T.
2 Local smoothness or lack thereof.

Result 0

If X is a centered Gaussian rv with variance σ2, a clever integration by parts yields

(1− σ2

λ2 )( σ√
2π

)

λ
e−

λ2

2σ2 ≤ P{X > λ} ≤
( σ√

2π
)

λ
e−

λ2

2σ2 (1)

limit λ→∞
=⇒ limλ→∞

logP{X > λ}
λ2

= − 1

2σ2
(2)
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Borell’s Inequality

Result 1 (Landau and Shepp(1970) and Marcus and Shepp (1971))

If {Xt}t∈T has bounded sample paths w.p. 1, then

limλ→∞
logP{Supt∈TXt > λ}

λ2
=
−1

2σ2
T

where σ2
T = Supt∈TEX

2
t (3)

Note that equations (2) and (3) seem to indicate that the asymptotic

distribution of SupTXt
d∼ X ∼ N(0, σ2

T ).

The strongest form of Result 1 is due to Borell.

Theorem 2: Borell’s Inequality (The Maurey-Pisier (1986) Version)

Let {Xt}t∈T be a centred Gaussian process with sample paths bounded a.s. Let
||X || = Supt∈TXt . Then, E||X || <∞ and for all λ > 0;

P{‖ ||X ||−E ||X || | > λ} ≤ 2e
−λ2

2σ2
T . Hence, ∀λ > E ||X ||;P{||X || > λ} ≤ 2e

−(λ−E||X||)2

2σ2
T
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Remarks
Take a λ large enough. Use the last inequality of Theorem 2, and applying
logarithm, limit will give (2).

E ||X || is required to be known to make any use of this theorem.

Borell’s inequality also helps find bound on Supt∈T |Xt |. P{Supt∈T |Xt | > λ}
= 2P{||X || > λ}. (Just use symmetry)

Lemma

Let f: Rk → R have derivatives of up to second order bounded pointwise by
AeB||x|| for some A, B <∞. Let X ∼ Nk(0,V ). If |f (x)− f (y)| ≤ ||x − y || for all
x, y ∈ Rk , then for all λ > 0,

P{|f (X )− Ef (X )| > λ} ≤ 2e
−λ2

2σ2 where σ2 = Sup1≤i≤kV (i , i) = Sup1≤i≤kEX
2
i

Proof of Theorem 2.

Assume |T | <∞, let T={t1, ..., tk}. Then, E[max(Xt1 , ...,Xtk )] <∞ trivially.
Now, we need an appropriate f ∈ C 2(Rk) that approximates max(x1, ..., xk)
to use the above Lemma. This is done with an appropriate convolution. We
get the result for finite T then.
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Proof of Theorem 2.

For any general T, assume E||X || =∞. Choose a λ0 > 0 such that

P{||X || < λ0} ≥ 3
4 and e

−λ2
0

σ2
t ≤ 1

4 . By MCT, E ||X ||Tn → E ||X ||T as n→∞.
Then, ∃N ∈ N st ∀n ≥ N,E ||X ||Tn > 2λ0. Then, we can show that

P{| ||X ||Tn − E ||X ||Tn | > λ0} ≤ 2e
−λ2

2σ2
T ≤ 1

2 and
P{| ||X ||Tn − E ||X ||Tn | > λ0} ≥ P{E ||X ||Tn − ||X ||Tn > λ0} ≥ P(||X ||T <
E ||X ||Tn − λ0) ≥ P(||X ||T < λ0) ≥ 3

4 , (→←) =⇒ E ||X ||T <∞.
Extend finite case to countable set: For any countable set T={t1, t2, ...},
||X ||Tn

a.s→ ||X ||T as n→∞, (use the fact that Sup
T

Xt <∞, definitions of

sup, max, and it follows) where ||X ||Tn = max{t1,...,tn}(Xt1 , ...,Xtn) for each n
∈ N.

By MCT, E ||X ||Tn → E ||X ||T , and σ2
Tn
→ σ2

T as n→∞

Then, Kn = |||X ||Tn − E ||X ||Tn

a.s→ K = |||X || − E ||X ||| as n→∞. By
Fatou’s Lemma,

P{ω|K (ω) > λ} =

∫
Ω

1{K (ω) > λ}dP ≤ liminf
n→∞

P(ω|Kn(ω) > λ) ≤ 2e
−λ2

2σ2
T
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Kahane’s Inequality

Now, use separability (initial assumptions) of T to extend to any general
separable parameter space T from the countable case, since supremum over a
countably dense subset is equal to supremum over the entire set (easy to
check with definition of sup, dense property and ε-forcing principle).

Theorem 3 - Kahane’s Inequality

Let X and Y be a.s bounded centred Gaussian random vectors on Rn. Let
f ∈ C 2(Rn) be such that its partial derivatives up to 2nd order have subgaussian

growth. Also, EYiYj ≶ EXiXj =⇒ ∂2f
∂xi∂xj

Q 0. Then, Ef(X) ≤ Ef(Y).

Proof.
Take independent copies on same probability space. Interpolate
Z=cosθX + sinθY. Prove Ψ′(θ) > 0 where Ψ(θ) = Ef (Z (θ)) (Subgaussian
growth allows DCT-use. Then, use Gaussian integration by parts)
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Slepian’s Inequality

Corollary: Slepian’s Inequality

If X,Y are a.s bounded centred Gaussian processes on T such that EX 2
t = EY 2

t for
all t ∈ T and E (Xt − Xs)2 ≤ E (Yt − Ys)2 for all s,t ∈ T ; then for all real λ,
P{||X || > λ} ≤ P{||Y || > λ}.

Overview of Proof of Slepian’s Inequality.

Take |T | = k . Consider any collection of non-negative bounded R-valued
functions on R that are smooth and non-increasing, f1, f2, ..., fk . Define

h(x)=
k

Π
i=1

fi (xi ). Then, ∂2f
∂xi∂xj

≥ 0 for each i 6= j . Then, verify requirements of

Theorem 3 and apply it to get Eh(Y ) ≤ Eh(X ). Now each i, take the

appropriate collection {f (n)
i }n such that lim

n↓∞
f

(n)
i = 1(−∞,λ]. Then, applying

DCT to interchange an appropriate limit and expectation, we get the required
result for finite T case.

Now, extend to countable T by taking limit, and applying Fatou’s Lemma
and DCT.

Finally, argue the result is true for general (separable) T using a countable
dense subset and the above.Probabilistic Analysis of Stochastic Processes Project Presentation, Spring 2023 Dakshesh Vasan, 18MS051 26 / 36



Stronger Result

Corollary of Slepian’s Inequality: E ||X || ≤ E ||Y || under the same conditions. Can
we make this result stronger?

Lemma

X,Y - 2 centred Gaussian rvs =⇒ Emax(X ,Y ) =

√
E(X−Y )2

√
2π

.

Proof of Lemma:
Note that if Z is a.s. bounded, centred Gaussian process on T, then
E (SupT (Zt + Y )) = E ||Z ||, and define process Z1 = X − Y ,Z2 = 0. Done.

Result 3
If X, Y are a.s bounded, centred Gaussian processes on T such that
E (Xs − Xt)

2 ≤ E (Ys − Yt)
2; then E ||X || ≤ 2E ||Y ||.

Idea of Proof of Result 3.

Fix t0 and define α2 = Supt∈TE (Yt − Yt0 )2. Set X ′t = Xt − Xt0 and Y ′t similarly.

Then, define X̂t = X ′t + ηα, Ŷt = Y ′t + η′g(t) where η, η′
iid∼ N(0, 1) and

g2(t) = α2 − E (Y ′t )2 + E (X ′t )2. Apply above corollary and lemma.
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Sudakov-Fernique Inequality - Going more stronger

Theorem 4
X, Y are a.s bounded, centred Gaussian processes on T such that
E (Xs − Xt)

2 ≤ E (Ys − Yt)
2 =⇒ E ||X || ≤ E ||Y ||.

Proof.

|T | = k <∞: Define fβ(x) =
log(

∑k
i=1 e

βxi )
β for some β > 0. Clearly f∈ C 2(R)

and fβ being a smooth approximation of max function, is integrable since X,
Y are bounded a.s. Repeat the methods used in Kahane’s inequality, to get
Efβ(X ) ≤ Efβ(Y ). Take limit β to zero both sides and apply DCT, to get the
desired result.

Take general (separable) T. Let T’={t1, t2, ...} be a countable dense subset
of T. Let Tn = {t1, ..., tn} for each n ∈ N. For each n, use the finite case and
apply limit n→∞ both sides with MCT to get E ||X ||T ′ ≤ E ||Y ||T ′ . Hence
proved.
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Introduction

If X is a centred Gaussian process on a totally bounded and complete (ie,
compact) parameter space, then a.s continuity =⇒ Supt∈TXt is a.s bounded.
Under what conditions is the converse true?

Lemma
X is a centered Gaussian process on T and t0 ∈ T. Then,
Esupt∈TXt ≤ Esupt∈T |Xt | ≤ E |Xt0 |+ 2Esupt∈TXt .

This lemma essentially tells that boundedness of Supt∈TXt and Supt∈T |Xt | are
equivalent. If X is centred Gaussian process on T, then;

Theorem 5

P{Supt∈TXt <∞} = 1 ⇐⇒ Esupt∈TXt ⇐⇒ Eeα||X ||
2

<∞ for small α

Proof.

Eeα||X ||
2 ≤

∫∞
0

P(||X || > λ)dλ. Break integral into 2 parts: 0 to E ||X ||, and
E ||X || to ∞. First part = E ||X || <∞, and Borell’s inequality gives a bound for

the second part which is finite if
∫∞

0
ue
αu2− (u−E||X||)2

2σ2
T du <∞. Hence follows.
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Relationship between Boundedness and Continuity

Theorem 6

X is a.s bounded on (T,τ). τ is a metric on T such that d is τ -uniformly
continuous. Then, X is τ -uniformly continuous w.p. 1 ⇐⇒ limη→∞φτ (η) = 0,
where φτ is given by φτ (η) = E [Supτ(s,t)<η(Xs − Xt)].

Corollary

Assume the conditions of Theorem 6, and that limη→0φτ (η) = 0. Then, for all
ε > 0,∃ an a.s. finite random variable δ = δ(ω) such that, for almost all ω,

Wτ (η) ≤ φτ (η)|logφτ (η)|ε,

for all η ≤ δ(ω). That is, φτ (.)|logφτ (.)|ε is a uniform sample modulus for X in
the metric τ .

Corollary

Let X be as in Theorem 6, and for t ∈ T , φtτ (η) = Esups:τ(s,t)<η(Xs − Xt). Then,
X is a.s. continuous at iff limη→0φ

t
τ (η) = 0.
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Zero-One Laws and Continuity

Gaussian process theory is apparently very rich in ’zero-one’ laws. Though the
proofs are highly involved, here are some interesting results that give a lot of
information about the continuity question for any general Gaussian process!

Theorem 7

For a Gaussian process X on T, P{ lim
s→t

Xs = Xt for all t ∈ T} = 1 ⇐⇒
P{ lim

s→t
Xs = Xt} = 1, for each t ∈ T .

Theorem 8

P{X is continuous for all t ∈ T} = 0 or 1.
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Summary

A custom-tailored device to handle several kinds of Gaussian processes at
once.

Main Entropy Result, applications and implications.

The supremum of a Gaussian process behaves like a normal random variable.

Borell’s Inequality- bounds the tail of suprema of Gaussian distributions, helps
prove important results relating continuity and boundedness

Kahane’s Inequality- gives a nice comparison between two processes, with
respect to expectations of certain functions. Helps prove several other
inequalities including Slepian’s, Sudakov-Fernique- that give a lot of
information about the supremum too.

Boundedness of supremum implies boundedness of exponential moments too
under some conditions.

Saw a nice result charactrizing continuity with boundedness of supremum and
vice versa.

The Zero-One Laws
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That’s pretty much it. Thank you.
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