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Abstract

Gaussian Processes are one of the most important family of stochastic processes given
their wide range of use across scientific disciplines and profound implications in Statistics
and Mathematics. This report, in three parts, covers some modern developments of tools
that are applicable to the analysis of general Gaussian processes. The first part recollects
basics, and provides motivation for a ’General Theory’. It also sets the background setup
and broad goal of this report - to concern with sample path continuity of general Gaussian
processes. The second part introduces a fundamental tool for the modern approach, based
on which the two backbone concepts of the general theory - entropy and majorising
measures are defined. Both these concepts attempt to measure the ’size’ of a parameter
space in different ways. The second part also sets the specific goal for the report - to
understand and appreciate a ’Main Entropy Result’ stated immediately after introducing
entropy. Following this, essential inequalities of Gaussian process theory are covered and
their implications in the analysis of boundedness and suprema distributions are discussed.
Boundedness is related to continuity, and this leads to the third part which introduces
majorising measures in the context of proving the Main Entropy Result. Other strong
characterisations of continuity and boundedness of any general Gaussian process are also
noted, following which the report covers specific examples of applications of the Main
Entropy Result. The report concludes after having discussed and appreciated several
motivations, applications and powerful implications of the entropy-based results while
noting the existence of more powerful but harder results based on majorising measures.
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Part I

Preliminaries
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Part I is both a recap of definitions and standard results in probability theory, and an
introduction and motivation for a ’General Theory’ of Gaussian processes. The terms
and notations introduced here are what will be used in the entire report.

Part I begins from the concept of a ’random experiment’ and takes it to the more
precise measure-theoretic definitions in an attempt to establish a connection with the
layman’s idea of probability and actual probability theory. Measure-theoretic definitions
and constructions of all fundamental concepts and entities are given a quick look. This
is followed by a brief discussion on stochastic processes, and especially Gaussian pro-
cesses. Real-life applications are mentioned along with a few mathematical implications,
to provide motivation for the analysis of stochastic processes and particularly Gaussian
processes.

Part I also gives an introduction to the dilemma of there being too many Gaussian
processes of interest in existence. It then introduces a relatively modern approach in
probabilistic analysis of stochastic processes that has been worked on by Dudley, Fer-
nique, Talagrand, Marcus, and many other mathematicians since the later part of the
last century. It stresses the need for a modern ’general’ theory encompassing the concepts
of entropy and majorising measures to study Gaussian processes, with the idea that the
geometric structure of the parameter space has little to do with continuity and bound-
edness of a Gaussian process. Finally, Part I sets the background of the analysis that
follows.
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Chapter 1

The Probability Theory Starter Pack

1.1 Fundamental Notions of Probability Theory

Measure-Theoretic Definitions

Definition 1.1.1. ARandom Experiment is an experiment that satisfies the following:

• The experiment is entirely repeatable any number of times under identical condi-
tions.

• The experiment has no deterministic outcome. That is, it is possible for the exper-
iment to produce a different outcome each time it is repeated.

• The exact outcome of the experiment cannot be predicted in advance.

Now, consider a random experiment. Let Ω be the sample space, ie, the set of all possible
outcomes of said random experiment.

As elucidated by Stayer and Nagel[13], let F be the set of possible events, ie, a set of
some/all subsets of the sample space. The pair (Ω,F) can be formalised by considering
Ω as a non-empty set and F as a σ-algebra on Ω. Then,

• Any ω ∈ Ω is called an Outcome.

• Any {ω} is called an elementary event.

• Any F∈ F is called an event.

Further, a ’probability measure’ is defined as follows:

5
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Definition 1.1.2. Let P : F→[0,1] be a finite measure, such that P(Ω) = 1. Then P is
called a probability measure.

For real world events, this probability measure acted on an event ’measures’ the
probability of an event.

Definition 1.1.3. The measure space, (Ω,F,P) is called a Probability Space.

The conditional probability of an event E ∈ F given F is given is given by a conditional
probability measure acted on E.

Definition 1.1.4. A finite measure PF :Ω → [0, 1] defined by PF (E) = P (E∣F )∀E ∈ F is
called the F-conditional probability measure on (Ω,F).

Definition 1.1.5. Let (Ω,F.P) be a probability space. If I is a non-empty index set and
{Fi∣i ∈ I} is a family of events such that P(∩i∈I′Fi) = Πi∈I′P (Fi) ∀ I ′ ⊂ I, then the said
family of events is said to be ’independent’.

Definition 1.1.6. Say τ is some appropriate topological space and Bτ be the Borel
σ-algebra of τ . Then any measurable function X: (Ω,F,P) → (τ,Bτ) is said to be a
τ -valued random variable.

Now, let X be a τ -valued random variable defined on (Ω,F,P). Since, there is now a
measurable function, it is possible to define a push-forward measure in (τ,Bτ). How can
this be done?

Definition 1.1.7. The function FX ∶ Bτ → [0, 1] defined by FX(B) = P(X−1(B)) ∀ B∈Bτ is called the distribution function of X.

This distribution function FX is essentially the push-forward measure looked for in(τ,Bτ). This function is also called the cumulative distribution function.
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Definition 1.1.8. Note that if µ is a canonical Borel-measure in (τ,Bτ , µ) a non-negative
measurable function f ∶ (τ,Bτ , µ) → (R̄, BR̄) can be obtained such that FX(B) = ∫B fdµ∀ B ∈ BR̄. This function f is called the probability density function associated with
X.

Further, by consequence of the Lebesgue Radon-Nikodym Theorem for signed mea-
sures, the probability density function, f = dFX

dµ .

Now, consider a random variable X such that ∃ a countable subspace τ ′ ⊂ τ such that
FX(τ ′) = 1 and {x} ∈ Bτ∀x ∈ τ ′. Then, X and its distribution FX are called ’discrete’.
For this discrete case, the counting measure defined on Bτ can be used to obtain an
appropriate density (mass) function, f.

Definition 1.1.9. If X is a τ -valued random variable and g: τ → R is a Borel function,
then the expectation of g(X) is defined as the Lebesgue-Stieltjes integral E{g(X)} =∫τ g(x)dFX(x), provided the integral exists.

Definition 1.1.10. If X is a random variable, the function φ ∶ R→ C defined by, φ(t) =
E[eitX ] is called it’s characteristic function.

The characteristic function completely determines the behaviour and properties of the
probability distribution of the random variable X. In fact, each characteristic function
uniquely corresponds to a particular probability distribution and vice versa.

Modes of Convergence

Definition 1.1.11. Convergence in Probability
If (τ ,d) is a metric space and {Xn}n∈N is a sequence of τ -valued random variables and X
is a τ -valued random variable, all defined on the same probability space such that:

For every � > 0, P(d(Xn − X) > �) → 0 as n → ∞, then {Xn}n∈N is said to con-
verge in probability to X.

This is denoted as Xn
P�→ X.
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Definition 1.1.12. Convergence in Distribution/Weak Convergence
If {Xn}n∈N is a sequence of random variables and X is a random variable, which may/may
not be defined on the same probability space, such that:

P(Xn ≤ x) → P (X ≤ x) as n → ∞, then {Xn}n∈N is said to converge in distri-
bution/weakly converge to X.

This is denoted as Xn
d�→ X.

Definition 1.1.13. Convergence in Lp

If (τ ,d) is a metric space and {Xn}n∈N is a sequence of τ -valued random variables and X
is a τ -valued random variable, all defined on the same probability space such that:

E((d(Xn − X))p) → 0 as n → ∞ for some p > 0, then {Xn}n∈N is said to con-
verge in Lp to X.

This is denoted as Xn
Lp�→ X.

Definition 1.1.14. Almost Sure Convergence
If (τ ,d) is a metric space and {Xn}n∈N is a sequence of τ -valued random variables and X
is a τ -valued random variable, all defined on the same probability space such that:

P{ω ∣ d(Xn(ω) − X(ω)) → 0 as n → ∞} = 1, then {Xn}n∈N is said to converge
almost surely to X.

This is denoted as Xn
a.s�→ X.

Remark 1.1.1. Relationships between Different Modes of Convergence

1. Xn
a.s�→ X �⇒ Xn

P�→ X �⇒ Xn
d�→ X.

2. Xn
Lp�→ X for some p > 0 �⇒ Xn

P�→ X �⇒ Xn
d�→ X.

3. If p ≥ q > 0, Xn
Lp�→ X �⇒ Xn

Lq�→ X.

4. If Xn
P�→ X, then ∃ a sub-sequence {Xnk

}k∈N of {Xn}n∈N such that Xnk

a.s�→ X as
k →∞.

5. If Xn
d�→ X where X is some degenerate random variable, then Xn

P�→ X.
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1.2 Important and Useful Results

Results on Almost Sure Convergence

Result 1.2.1. If (τ ,d) is a metric space and {Xn}n∈N is a sequence of τ -valued random
variables and X is a τ -valued random variable, all defined on the same probability space;
the following are equivalent:

• Xn
a.s�→ X

• P{ω ∣ d(Xn(ω) −X(ω)) > 1
k infinitely often} = 0 ∀ k ∈ N.

Result 1.2.2. Let {Xn}n∈N be a sequence of (τ , d)-valued random variables such that∀ � > 0,∑∞n=1 P (d(Xn −X) > �) <∞ for some random variable X. Then, Xn
a.s�→ X.

Result 1.2.3. Let {Xn}n∈N be a sequence of random variables. This sequence converges
almost surely if either of the following hold:

1. ∑∞n=1 supm≥nP (d(Xn −Xm) ≥ �) <∞ for every � > 0.

2. ∑∞n=1 P (d(Xn+1 −Xn) > δn) <∞ where δn > 0 and ∑∞n=1 δn <∞.

Other Important Results

Theorem 1.2.1. (Slutsky’s Theorem)
If g ∶ R x R→ R is continuous, and {Xn}n∈N, {Yn}n∈N are sequences of real-valued random
variables such that Xn

d�→ X where X is a real valued random variable and Yn
d�→ c where

c ∈ R; then g(Xn, Yn) d�→ g(X, c) as n →∞.

Theorem 1.2.2. (Scheffe’s Theorem)
For each n ∈ N, let Xn be a random variable having density fn and X be a random variable
having density f. Then, fn → f as n →∞ �⇒ Xn

d�→ X.



10 CHAPTER 1. THE PROBABILITY THEORY STARTER PACK

Theorem 1.2.3. (Lévy Continuity Theorem)
Let {Xn}n∈N be a sequence of random variables with the corresponding unique sequence of
characteristic functions being {φn}. Then:
1. If X is a random variable X with characteristic function φ, then Xn

d�→ X ⇐⇒
φn → φ pointwise as n →∞.

2. If φn → ψ pointwise as n →∞ for some function ψ which is continuous at 0; then

• ∃ a probability measure/random variable X such that ψ is the unique charac-
teristic function of X.

• Xn
d�→ X.

Result 1.2.4. (Borel Cantelli Lemmas - 1st and 2nd respectively)

1. If {En}n∈N is a sequence of events in a probability space such that ∑∞n=1 P (En) <∞,
then P(En infinitely often) = 0 ⇐⇒ P(limsupn→∞En) = 0.

2. If {En}n∈N is a sequence of pairwise independent/mutually independent events in a
probability space such that ∑∞n=1 P (En) =∞, then P(En infinitely often) = 1 ⇐⇒
P(limsupn→∞En) = 1.

Theorem 1.2.4. (Monotone Convergence Theorem)
Let {Xn}n∈N be a sequence of non-negative real valued random variables for which Xn(ω) ≤
Xn+1(ω) for all n and ω, and suppose there exists a real valued random variable X such
that Xn

a.s�→ X. Then, E{X} = limn→∞E{Xn}.

Result 1.2.5. (Fatou’s Lemma)
Let {Xn}n∈N be a sequence of real valued random variables and suppose there exists
an integrable random variable X such that Xn(ω) ≥ Xn+1(ω) for all n and ω. Then,
liminfn→∞E{Xn} ≥ E{liminfn→∞Xn.

Theorem 1.2.5. (Dominated Convergence Theorem)
Let {Xn}n∈N be a sequence of real valued random variables and X such that Xn

a.s�→ X.
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Suppose that there exists an integrable real-valued random variable Y for which ∣Xn(ω)∣ ≤
Y (ω) for all n and ω. Then, limn→∞E{Xn} = E{X}.
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Chapter 2

Stochastic Processes

What are stochastic processes and why are they of interest?

2.1 What is a Stochastic Process?

Simply put, a stochastic process refers to any family of random variables. This could be
anything, from a finite set of random variables up-to an uncountable collection of random
variables defined on a probability space. Now, why call any such collection a ’process’?

Imagine a real-world phenomenon like rainfall at a given location. Suppose the oc-
currence of rainfall over time, at this location is to be studied. The simplest probabilistic
model is obtained by assuming the daily observations of rainfall at the given location over
a certain period of time, say a day, to be realisations of an independent and identically
distributed sequence of random variables, each denoting the amount of rainfall at the
given location on a particular day. Then, the observations are interpreted as a sample
from a collection of random variables (the iid sequence), and each new day’s observation
is a realisation of the next random variable. Thus, we are studying a system’s evolution
over time, a ’process’. An attempt to solve any problem, or any investigation related
to rainfall patterns at the given location over time, then boils down to an analysis of a
stochastic process. Here, the process is a discrete time-indexed one, also called a ’time
series’. In fact, any basic probabilistic approach to studying a real-world problem involves
stochastic processes upon which further statistical/empirical analyses are done. The word
’stochastic’ refers to the ’randomness’ in the system and so, a stochastic process can ul-
timately be interpreted as the representation of the evolution of a system (or a ’process’)
comprising of random fluctuations over time - which may be continuous or discrete.

The calculation/estimation of one or more parameters of a stochastic process is enough
to solve problems in many real-life applications, like in the studies of natural disasters,
climate change, cellular processes, plant-germination, the behaviour of celestial objects
beyond our skies, or even the random motion of molecules in specific states of matter.
Hence, results from probabilistic analyses of stochastic processes are of great interest

13
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to scientists/statisticians/applied probabilists. However, there’s much more to see than
what meets the eye.

As is typical of an exploration by a mathematician, some abstraction into stochas-
tic processes fuelled by a lot of curiosity has given way to many particularly interesting
developments. In fact, theoretical ventures have given rise to greater avenues for appli-
cations in real-life, directly and indirectly; by helping solve major problems in several
other mathematical domains of study. Quoting Robert J. Adler, ”These processes that
are used to provide mathematical models of real-life phenomena are not only the most
useful but also generate the most interesting mathematics.”[2] It is not difficult to note
that just as it is when we move on from an element to a sequence of elements or from
a function to a sequence of functions- moving from a random variable to investigating
a family of random variables brings a voluminous amount of content to their analysis.
The randomness further adds more to keep in mind while investigating the behaviour of
these ’random functions’. For example, when we want to study convergence, we need to
look at the different modes of convergence that we can arrive at. A similar situation then
arises naturally for continuity. Then there is the behaviour of tails, the boundedness and
behaviour of suprema/infima, and so on to look at. Unlike simple functions, here the
distributions of the random variables will also play an additional role in determining the
properties of the process. Hence, the stochastic nature of these processes adds to the awe
and vastness of the subject.

Further, any stochastic process is also indexed by a non-empty set called the pa-
rameter space. Does the parameter space contribute to the nature of a process, and its
applicability in any field of study? Let us first consider a simple time-indexed process
{Wt∣t ≥ 0}. This process can also be visualised as {W ((0, t])∣t ≥ 0}. Now, we have a
set-indexed process. From here, we can extend to a set-indexed process on the Borel
σ−algebra: {W(B) ∣B ∈ BR}. Going in another direction, we can obtain higher-order
Euclidean space-indexed processes called Random Fields. These random fields have
tremendous applications in the modelling of surfaces that are generally rough and er-
ratic, in areas as diverse as biology, geography, and turbulence studies.[2]. Studies of the
ocean surface, metallic surfaces, image analysis, etc. have all been benefited by develop-
ments in the study of random fields. Yet another direction yields the function-indexed
Generalised Random Fields, and measure-indexed processes. Vector-valued and
Banach space-valued processes are other examples. Thus, the parameter space clearly
brings more flavour into the study and analysis of stochastic processes.

The undoubted importance that stochastic analysis holds, given the vast implications
of stochastic processes, serves as motivation to understand recent developments in the
probabilistic analysis of an important family of stochastic processes. In fact, the diverse
subject matter involved in the study of stochastic processes itself serves as motivation to
invest into probability theory.

Let us now go through some fundamentals about stochastic process, beginning with
a countably infinite sequence of random variables.
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Infinite Sequence of Random Variables

By extending on the measure-theoretic construction of a random variable, we can also
construct finite sequences of random variables (or random vectors in a finite dimensional
vector space). However, the existence of an infinite sequence of random variables is not
trivial because whenever we think of a sequence of random variables, we can at most
be sure of the distribution of a finite sub-collection. The following result allows us to
’extend’ on the same.

Result 2.1.1. Let {µn}n≥1 be a sequence of probability measures such that:
i) for each n ∈ N, µn is a probability measure on (Rn,BRn),
ii) for each n ∈ N, µn+1(B x R) = µn∀ B ∈BRn .

Then, ∃ an infinite sequence {Xn ∶ n ≥ 1} on a probability space (Ω,F,P) with
Ω = R∞,F = BR∞ such that for each n ∈ N, the distribution of (Xt1 , Xt2 , ...., Xtn) is µn,
for any t1, t2, ..., tn ∈ N, for each n ∈ N.
Note: R∞ is the space of all real sequences, ie, R∞ = {(x1, x2, ..., xn, ...)∣xj ∈ R∀j ∈ N}.

Construction

By defining an appropriate sequence of measures that follow the conditions (i) and (ii)
of the above result, any sequence of random variables can be constructed.

An independent and identically distributed (iid) sequence is the most frequently used
concept in many applications. Lets look at a construction of the same.

Example 2.1.1. Construction of an iid Unif([0,1]) sequence:

• Define F: ([0, 1],B[0,1]) → [0,1] such that F(B) = ∫B∩[0,1] dν(x) ∀ B ∈B[0,1] where
ν is the Borel measure on BR.

• Define a sequence of probability measures {µn}n≥1 such that for each n ∈ N, µn

is a probability measure on (Rn, BRn) defined by µn(A) = Πn
i=1(∫Ai∩[0,1] ν(dx)) =

Πn
i=1F (Ai) where A = Πn

i=1Ai ∈BRn and each Ai ∈BR.

• Then, it is easily verified that the sequence {µn}n∈N obeys conditions (i) and (ii) in
the above Result 2.2.1.
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• Hence, ∃ an infinite sequence of random variables {Xn ∶ n ≥ 1} on a probability
space (R∞,BR∞,P) such that the distribution of (Xt1 , Xt2 , ...., Xtn) is µn, for any
t1, t2, ..., tn ∈ N, for each n ∈ N.

• Now, observe that for each n ∈ N, the distribution of Xi is µ1. Further, for any n∈ N, for any t1, t2, ..., tn ∈ N, and for any A1, ...., An ∈BR;

P (Xt1 ∈ A1∣(Xt2 , ..., Xtn) ∈ Πn
i=2Ai) = P ((Xt1 , Xt2 , ...., Xtn) ∈ Πn

i=1Ai)
P ((Xt2 , ..., Xtn) ∈ ∣Πn

i=2Ai

= µn(Πn
i=1Ai)

µn−1(Πn
i=2Ai)

= Πn
i=1F (Ai)

Πn
i=2F (Ai) = F (A1) = µ1(A1) = P (Xt1 ∈ A1).

Hence, we have an iid sequence of Unif([0,1]) random variables.

Standard Results on Sequences of Random Variables

Result 2.1.2. Strong Law of Large Numbers (SLLN)
Let {Xn}n∈N be a sequence of pairwise independent and identically distributed random
random variables with E∣X1∣ <∞. Then, ∑n

1 Xi

n

a.s�→ EX1 as n→∞. [This version of SLLN
was proved first by Etemadi.]

Result 2.1.3. Weak Law of Large Numbers (WLLN)
Let {Xn}n∈N be a sequence of pairwise independent and identically distributed random
random variables with E∣X1∣ <∞. Then, ∑n

1 Xi

n

P�→ EX1 as n→∞.

Result 2.1.4. Central Limit Theorem (CLT)
Let {Xn}n∈N be a sequence of independent and identically distributed random variables.
Then, √

n
∑n

1 Xi

n −EX1�(EX2
1 −E2X1)

d�→ N(0, 1)

Standard Results on Series of Independent Random Variables

Let {Xn}n∈N be a sequence of independent random variables on a probability space
(Ω,F,P). Here listed are some interesting standard results that come handy, on the
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behaviour of the sequence of partial sums of these random variables {Sn}n∈N where for
each n ∈ N, Sn = ∑n

i=1 Xi.

Result 2.1.5. (Lévy): If Sn
P�→ S, then Sn

a.s�→ S as n →∞.

Result 2.1.6. Khinchin-Kolmogorov 1-Series Theorem
If EXn = 0 ∀ n ∈ N and ∑∞n=1 EX2

n <∞, then Sn converges almost surely and in L2.

Result 2.1.7. Kolmogorov’s 3-Series Theorem
Sn converges almost surely iff 1., 2., and 3. hold for some 0 < c <∞; where 1., 2., and 3.
are as follows:

1. ∑∞i=1 P (∣Xi∣ > c) <∞
2. ∑∞i=1 EYi <∞
3. ∑∞i=1 V arYi <∞

where Yi =Xi�(∣Xi∣≤c);∀ i ≥ 1.

Note: � is the indicator function on Ω, ie, For any A ∈ F, �A(ω) = 1 when ω ∈ A and
0, otherwise.

Remark 2.1.1. Sn converges almost surely if 1., 2., 3. hold for some 0 < c <∞ and only
if 1., 2., 3. hold ∀ c ∈ (0,∞).

From Sequence to Processes

Now, the notion of an infinite sequence of random variables can be generalised and ex-
tended to a collection of random variables indexed by an arbitrary non-empty set.
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What makes a Stochastic Process?

Definition 2.1.1. A stochastic process with index set/parameter space, T is a family
of random variables {Xt∣t ∈ T} defined on an appropriate probability space (Ω,F,P). [T
can be any arbitrary well-defined set/family/collection of mathematical objects.]

An infinite sequence of random variables can model random phenomena occurring over
a discrete set of time-points, etc. However, a collection of random variables indexed over
say, [0,1], or R, would be able to model random phenomena over a continuum.
Stochastic processes can also be perceived as random functions. {Xt(ω)∣t ∈ T} can be
equivalently written as {f(ω, t)∣t ∈ T}. Then,

• If we fix ω ∈ Ω,{f(ω, t)∣t ∈ T} is a function. This is also called a sample path.

• If we fix t ∈ T,{f(ω, t)∣ω ∈ Ω} is a random variable.

Just as we analyse real-valued functions, we can analyse these ’random’ functions. Does
the stochastic process have continuous sample paths? Are the sample paths differen-
tiable/integrable? Such questions then arise and give rise to the analysis of stochastic
processes.

While the existence and construction of an infinite sequence of random variables has
been discussed appropriately, how can we be guaranteed the existence of any stochastic
process? For this, we need a fundamental result credited to Kolmogorov.

Existence of a Stochastic Process

Definition 2.1.2. The Family of finite dimensional distributions (fidis) associated
with a stochastic process {Xt∣t ∈ T} is the family of probability distributions,

µt1,t2,t3,...,tk
(.) = P{(Xt1 , Xt2 , ..., Xtk

) ∈ (.)∣t1, t2, ..., tk ∈ T, 1 ≤ k <∞}.

Given a stochastic process exists, we would have a fidis associated with it. Furthermore,
this fidis would satisfy the following consistency conditions:

For any t1, t2, ..., tk ∈ T, 2 ≤ k <∞, and B1, B2, ..., Bk ∈BR;

C.1 µt1,t2,...,tk
(B1 ×B2 × ... ×Bk−1 ×R) = µt1,t2,...,tk−1(B1 × ... ×Bk−1).
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C.2 For any permutation (i1, i2, ..., ik) of (1, 2, ..., k) we have µti1,ti2,...,tik
(Bi1× ...×Bik) =

µt1,t2,...,tk
(B1 × .... ×Bk).

Then, given any fidis, does there exist a stochastic process whose associated fidis is
the same fidis given? And that is what the Kolmogorov Consistency/Existence Theorem
tells us.

Theorem 2.1.1. Kolmogorov Consistency/Existence Theorem
Let T be a non empty set. Let QT = {µt1,t2,...,tk

∣ t1, ..., tk ∈ T ; 1 ≤ k < ∞} be a family of
probability distributions such that for each t1, ..., tk ∈ T ; 1 ≤ k <∞, we have :

• µt1,...,tk
is a valid probability distribution on (Rk,BRk)

• The Consistency Conditions (C1) and (C2) mentioned above are satisfied by QT .

Then, ∃ a probability space (Ω,F,P) and a stochastic process {Xt∣ t ∈ T} such that QT is
the collection of fidis of {Xt∣ t ∈ T}.

The Kolmogorov Consistency/Existence Theorem not only guarantees the existence
of a stochastic process when given a certain family of probability distributions following
some specifications. It also hints at how we can construct a stochastic process.

Continuity of a Stochastic process

Let X (or {Xt ∶ (Ω,F,P) → (τ,Bτ)∣t ∈ T}) be a τ -valued stochastic process defined on
a parameter space T with metric d. Since there are different modes of convergence, the
continuity of the sample paths of a stochastic process can also be of different kinds, which
are:

• Almost Sure Continuity: Given t ∈ T, X is said to be almost sure (a.s) continuous
at t if P{ω ∈ Ω ∣ lim

d(s,t)→0
τ(Xs(ω), Xt(ω)) = 0} = 1.

• Mean Square Continuity: Given t ∈ T, X is said to be continuous in mean-square
at t if E∣Xt∣2 <∞ and lim

d(s,t)→0
E((τ(Xs, Xt))2) = 0.

• Continuity in Probability: Given t ∈ T, X is said to be continuous in probability
at t if ∀ � > 0; lim

d(s,t)→0
P{ω ∈ Ω ∣ τ(Xs(ω), Xt(ω)) ≥ �} = 0.

• Continuity in Distribution: Given t ∈ T, if lim
d(s,t)→0

FXs(x) = FXt(x) at each
continuity point x of FXt ; then X is said to be continuous in distribution at t.
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2.2 Gaussian Processes

So far, we have looked at some common results, basics and provided ourselves some
motivation to study stochastic processes. Now we move to the main essence of this
report - recent developments in the Probabilistic Analysis of general Gaussian Processes.

What makes a Gaussian Process and what roles do Gaussian Processes play in the
science of today? What makes Gaussian Processes as important a family of stochastic
processes as they happen to be? Let us quickly go through why amongst the several
stochastic processes available, Gaussian processes are of great interest, before embarking
on the actual journey this report shall take us through.

What is a Gaussian Process?

Definition 2.2.1. Let T be a non-empty index set on which a stochastic process {Xt}t∈T
is defined. We say that this stochastic process is a Gaussian Process if for any choice of
t1, t2, ..., tk ∈ T ; α1, α2, ..., αk ∈ R and k ≥ 1, the random variable ∑k

i=1 αiXti
has a univariate

normal distribution.

For such processes, we define:

• The mean function, ν ∶ T → R by ν(t) ∶= EXt

• The Covariance function/kernel, σ ∶ T × T → R by σ(s, t) = Cov(Xs, Xt). Alterna-
tively, we could define the Correlation function appropriately.

Remark 2.2.1. The Covariance Function is positive semi-definite.
For any k ∈ N, t1, t2, ..., tk ∈ Λ, and α1, α2, ..., αk ∈ R;∑k

i=1 αiσ(ti, tj)αj = ∑k
i=1 αiEXti

Xtj
αj = Var(∑k

i=1 αiXti
) ≥ 0.

Remark 2.2.2. Note that given a real-valued function defined on T and a posi-
tive semi-definite real valued function on T × T , then a Gaussian process can be
completely defined.
Thus, the mean and covariance function determine a Gaussian process completely
and uniquely up to distribution.
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Construction of a Gaussian Process

• Let ν ∶ T → R be an arbitrary function. Let σ ∶ T × T → R be an arbitrary
positive semi-definite function. Then, for each each k ≥ 1, and t1, t2, ..., tk ∈ T ,
define µt1,t2,...,tk

as the k-variate normal probability distribution with mean m⃗k =(ν(t1), ν(t2), ..., ν(tk))T and covariance matrix Σk = ((σ(ti, tj))ki,j=1. Let QT ={µt1,t2,...,tk
∣ t1, t2, ..., tk ∈ T ; k ∈ N}.

• Given the fidis QT , we have that for each k ∈ N and for any choice of t1, t2, ..., tk ∈ T ;
µt1,t2,...,tk

is a valid probability distribution on (Rk,Bk
R).

• The Consistency Condition C.1 required by Theorem 2.1.1 is satisfied by QT . This
can be verified by an application of the Fubini-Tonelli Theorem for iterated inte-
gration.

• The Consistency Condition C.2 required by Theorem 2.1.1 is satisfied byQT . This is
a consequence of the form of the probability distribution of a multivariate Gaussian
random variable(vector) and is easy to verify.

• Then, from Theorem 2.1.1, we obtain a stochastic process X or {Xt∣t ∈ T} whose
fidis is QT .

The process X obtained is such that for any k ∈ N and t1, t2, ..., tk ∈ T , (Xt1 , Xt2 , ..., Xtk
) is

distributed as a k-variate normal random variable(vector). Hence, for any α1, ...., αk ∈ R,∑k
i=1 αiXti

is distributed normally, ie, the process obtained is a Gaussian process.

Importance of Gaussian Processes

”Gaussian processes can be viewed as a far-reaching infinite-dimensional extension of
classical normal random variables.”[9] This allows one to build up on the properties of
symmetry, existence of moments, and other consequences of the relatively more convenient
form that the multivariate normal density function takes. The resulting features and
characteristics of Gaussian processes enable their use in probabilistic modelling across
fields of study like Statistics, Climate and Weather Forecasting, Financial Mathematics,
Information Theory, and even the largest goldmine in a world taken over by ’ChatGPT’,
’Dall-E’ and the likes - Machine Learning & Artificial Intelligence.

Regarded as the easiest to use in computation and derivation of explicit solutions to
the most difficult problems in mathematics and beyond, Gaussian processes are heavily
studied. Yet, they still provide vast scope for exploration. Even in the case of random
fields - stochastic processes whose parameter space is a Euclidean Space/lattice - many
problems are solvable only if the field generated is a Gaussian random field.[2] While this
can again be attributed to the convenient form that the multivariate Gaussian density
function takes, another particular fact also adds weight to the significance of Gaussian
Processes. This being: Two Gaussian random variables are independent if and only
if their covariance is zero. This makes much of the theory and analysis of Gaussian



22 CHAPTER 2. STOCHASTIC PROCESSES

processes simpler and more interesting compared to other processes. One of the key
mathematical properties of Gaussian processes is their probabilistic interpretation, which
allows for uncertainty quantification and probabilistic predictions. In addition, Gaussian
processes have a rich mathematical structure, including kernel functions that specify the
covariance between points, and they can be used for regression, classification, and other
tasks in statistics. Gaussian processes also have important implications for statistical
inference, particularly in the context of Bayesian methods. They can be used as prior
distributions over functions, and posterior distributions can be obtained using Bayes’
rule. This allows for flexible and interpretable models that can be updated with new
data. In addition, Gaussian processes can be used for model selection, as different kernel
functions can be compared based on their fit to the data.

The mathematical analysis of Gaussian processes is an active area of research, with
many open questions and challenges. Some of the topics of interest include the asymp-
totic behaviour of Gaussian process models as the number of data points increases, the
generalisation of properties of Gaussian process models, and the development of efficient
computational methods for inference and prediction. There are also connections between
Gaussian processes and other areas of mathematics, such as functional analysis, and
harmonic analysis. This report will take us through some such interesting and deeply
implicating results.

Beyond the mathematics, Gaussian processes find much importance across scientific
disciplines. Gaussian Processes especially make attractive models when the requirement
is to optimise prediction under the constraint of low sample size, a constraint common
to many investigations under all disciplines of science. Some interesting examples are
described below:

• Gaussian Processes in Astrophysics: There are particular astrophysical investiga-
tions into ’Active Galactic Nuclei’[single: Active Galactic Nucleus (AGN)] which
refer to the compact regions at the centres of galaxies that have been observed to
be unusually luminous with unusual spectral properties that are uncharacteristic of
ordinary stars. The emission spectra from these AGNs cover multiple wavelengths.
Physicists are especially curious about the variability of optical and UV emissions
from an AGN. To interpret the ’stochasticity’ involved, stationary Gaussian pro-
cess models with the auto-correlation function adhering to a ’damped random walk’
model are employed. Gaussian models apparently fit well with the data obtained
from telescopes for the study of emission fluctuations. A very well collected com-
prehensive summary of these applications are available in Dr. Rhan-Rhys Griffith’s
PhD Dissertation[6]. The Gaussian Process model has also proved effective in the
time-series (time-indexed processes) analysis done to analyse stellar activity signals
and to infer stellar rotation periods. In fact, using Gaussian processes to model has
at times proved better than standard Fourier transform techniques that are used
for appropriate purposes otherwise (Wilkins, 2019).

• Gaussian Processes in Chemistry: In this age of machine learning and pattern recog-
nition, chemists too are looking at computational techniques to model and predict
the chemical behaviour and properties of molecules, as well as the outcome of their
reactions with other molecules. These techniques give a lot of valuable information
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on what molecular structures are more stable and so on, allowing prioritisation
of different aspects during any laboratory synthesis of chemicals. Computational
techniques also allow prediction of the yield of a chemical reaction, and thus can be
used to investigate ways to optimise chemical reactions. Since laboratory synthesis
of molecules and chemical reactions can be time and money intensive, these tech-
niques help researchers enhance their efficiencies by many times. Quoting Sir David
MacKay (MacKay (2003)), ”Gaussian processes are useful tools for automated tasks
where fine tuning for each problem is not possible”. Software like GAUCHE have
modules specifically catering to Gaussian processes in Chemistry. They help simu-
late frequent scenarios in experimental chemistry and facilitate molecule discovery
& chemical reaction optimisation through suitable techniques to train Gaussian
Process models and obtain desirable results.[5]

Takeaway

Stochastic processes are instrumental in several investigations aiming to understand evo-
lution of a system over time or make a prediction/forecast. They find use across domains
and disciplines of study. Stochastic processes can be viewed as random functions upon
which probabilistic analysis can be done similar to the analysis of functions in general.
Among stochastic processes, Gaussian processes are of particular significance. The pecu-
liar characteristics of a Gaussian distribution, along with the tendency of most random
phenomena in nature to follow/approximately follow a Gaussian distribution; extend
value to the Gaussian process appropriately as well.

The remainder of this report will now take us across several recent developments in
probabilistic analysis of Gaussian processes specifically.

2.3 The Diversity in Gaussian Processes

Gaussian Processes find themselves in many mathematical, statistical and real-life appli-
cations. Apart from the consequent results being useful, their analysis is also intriguing,
evoking a lot of study and exploration into different kinds of Gaussian processes.

While the layman would only be familiar with the usual discrete-time indexed pro-
cess, mathematicians have defined much more in an attempt to satiate their unbounded
curiosity. The upward climb is natural. We first begin at the base, with a Gaussian
process defined on Z or any other countable set, the simplest and most easily visualised
family of Gaussian processes. Any person into economics/finance understands a time
series reasonably well. A short climb up would eventually lead us to a ’height that still
lets us breathe comfortably’, the real-indexed Gaussian process. Real-indexed Gaussian
processes can be used to represent the evolution of any natural system over a continuum.
Now, we have advanced from Z to R. Naturally, a climb along number systems leads us
to a C-indexed Gaussian process. This can now be regarded as a R ×R-indexed process
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instead. At this point, we have already entered the domain of Random Fields which are
just stochastic processes whose parameter space is a Euclidean space/lattice. Here, we
get to see processes with parameter spaces that could be a circle in R2 or some non-trivial
subset of Rn where n can be any natural number. This is where the climb becomes steep;
and interesting.

Consider a particular centred Gaussian random field, say {Xα∣α ∈ Rk}. Note that
any Gaussian random variable is characterised by its mean and variance, implying that
a centred Gaussian process is uniquely characterised by its covariance function. Let σ:
Rk × Rk → R be the covariance function (as defined in 2.2) of the Gaussian random
field considered. Now, consider a special class of real-valued functions defined on Rk, F .
Define for each φ ∈ F , a random variable X(φ) = ∫Rk φ(t)X(t)dt. Then, since arbitrary
sums of Gaussian random variables are Gaussian, and an integral is fundamentally the
limit of a sum, each X(φ) is a newly defined Gaussian random variable. The stochastic
process defined now by {X(φ)∣φ ∈ F}, whose parameter space is a family of R-valued
functions, is called a Generalised Random Field. These processes add a whole new level
of complexity compared to what we began with, don’t they? Further, anyone familiar
with measure theory would be aware of the one-one correspondence with measures and
distribution functions. This means we can define measure-indexed processes. Gaussian
processes with measures as index parameters have not been studied much and provide
great scope for exploration.[?]

When we arrived at random fields, we could have chosen paths that are altogether
different from the one taken above. One such trail takes us to set-indexed processes.
Set-indexed Gaussian processes are widely known and are of great research interest too.
These include everything from Brownian Processes to biophysicists’ favourite problem of
a drunkard walking one step forward and two steps backward. Extending on Euclidean
spaces, Gaussian processes may be defined on other Metric Spaces and Banach spaces
too. And another interesting family is that of Manifold-indexed Gaussian processes,
naturally extending from the Euclidean spaces once again in another direction. They are
apparently a fad now in Machine Learning discussions where they are trying to interpret
data as a manifold.

We began with a simple discrete time-indexed Gaussian process. However, our climb
is unending. Of course, for every hard problem, a mathematician can construct a harder
problem for the world to go crazy with. If we now consider any general Gaussian process
defined on a parameter space, we now know that it belongs to one of the many fami-
lies that can be defined. Depending on the parameter space, what kind of space it is,
and so on, we can get different Gaussian processes with different properties, some with
established applications and others of great potential use.

One natural worry then appears. How are we going to study such a vast number of
different kinds of Gaussian processes?
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2.4 One Theory to Rule Them All

As discussed previously, our problem is no longer the analysis of some family of Gaussian
processes. The problem now is the analysis of ALL Gaussian processes.

AIM: To study the sample path properties of a general Gaussian process.

For a long time now, literature has treated the different kinds of Gaussian processes
separately. Necessary and sufficient conditions for sample path continuity, etc. have
been obtained separately for R-indexed Gaussian processes, multi-parameter processes,
function-indexed processes, set-indexed processes and so on. These results have been
derived with great importance awarded to the geometry of the parameter space of the
Gaussian processes that they were derived for and are applicable to. The focus on the finer
aspects of the parameter space and using them directly with the definitions of continuity,
etc. to derive results thus makes the study of general Gaussian processes rather difficult.

Difficulty: The difficulties are two-fold, one being that the huge number of Gaussian
processes that have been/can be defined on different parameter spaces with different geo-
metrical properties would then have to be tediously analysed one by one separately each
time. Two, many processes defined on parameter spaces with particularly complicated
geometric structures might prove daunting, if not entirely impossible at times.

Fortunately, probabilists in the late 1960s began to notice that the precise geometric
structure of the parameter space on which a Gaussian process is defined, had very little
to do with the sample path properties of said process[1]. Probabilists then began working
on the possibility of characterising sample path properties of all Gaussian processes with
a single/few results under very minimal assumptions, if required. This soon led to the
development of two key concepts: entropy and majorising measures, which form
the entire basis for a ”Modern Theory” of sample path properties of general Gaussian
processes. This Modern Theory focuses on bypassing the geometric structure and finer
details of the parameter space by only dealing with the ’size’ of the parameter space,
measured in terms of a metric that is defined appropriately so that it is applicable on
any general parameter space. The concepts of metric entropy and majorising measures
help measure this size and use it to obtain results that characterise some sample path
properties.

Solution: To develop a unifying theory based on the modern attitude described
above, that applies to the analysis of all kinds of Gaussian processes at once.

Setting: From hereon, the below is fixed and shall be taken for granted as the
background setting for all the discussions that follow, unless otherwise stated.

1. All random variables, sequences of random variables or Gaussian processes consid-
ered in this report hereafter are real-valued and defined on a complete proba-
bility space, (Ω,F,P) appropriately.

2. If X denotes a Gaussian process, X refers to the Gaussian process as defined in 2.2.
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X is said to be defined on T, the parameter space.

3. All Gaussian processes considered hereafter are assumed to be centred,
that is, the mean function associated with them is a zero map.

Remark 2.4.1. Results obtained for a centred Gaussian process can be easily
extended to non-centred Gaussian processes by addition of a constant. Hence,
analysis of a general Gaussian process under the assumption that it is centred is
equivalent to analysing any general Gaussian process. The ease of dealing with
centred processes is thus helpful.

Remark 2.4.2. Note that for a centred Gaussian process, the covariance function
determines the process completely and uniquely up to distribution.

Result 2.4.1. The covariance function of a centred Gaussian process is
a positive semi-definite function as discussed in 2.2.1. The converse is
also true. For any given real-valued positive semi-definite function σ on T × T ,
there exists a centred Gaussian process parameterised by elements of T whose
covariance function is σ. This converse is a direct consequence of Theorem 2.1.1:
the construction is the same as in Section 2.2 with ν taken to be the zero map.

4. All Gaussian processes considered hereafter are assumed to be defined on any gen-
eralmetric space as its parameter space. The parameter space is also assumed
to be totally bounded in its metric.

Remark 2.4.3. In the next chapter, a metric that can induce a metric structure
even in a parameter space that does not have its own inherent metric structure,
will be defined. Thus, assuming a metric structure does not affect the quest for
’generality’. Starting with any general metric space is a natural way to go.
Totally boundedness will allow for ’uniformly continuous functions map totally
bounded sets to totally bounded sets’-type and other similar arguments, keeping
the difficulties of an unbounded process away.

5. Hereafter, the parameter space of the Gaussian processes considered are assumed
to be separable (has a countable dense subset). That is, the processes considered
are assumed to be separable stochastic process.

Remark 2.4.4. The separability of the parameter space makes proofs of results
easier. This is because, we can extend proofs from a finite set to a countable set,
and then to the whole set since separability ensure the denseness of at least one
countable set.
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Hereafter, the goal of this report is to introduce and use ’modern’ techniques that help
determine/characterise sample path continuity and later relate sample path continuity
with the boundedness of the supremum, of any general Gaussian process. While doing so,
we will also touch upon some interesting information about the distribution of suprema
of any general Gaussian process over a fixed subset of the parameter space.

The Modern Approach in the context of analysing sample path continuity of general
Gaussian processes is introduced next. Part II will take the discussion further.
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Part II

Preparing for a Modern Attack

29





Now that Part I has fixed the background setup and a broad goal - to analyse sample
path continuity of general Gaussian processes using modern developments with a more
efficient attitude, Part II introduces the basic ideas behind a ’General Theory’. As it does
so, it first motivates the definition of the most fundamental tool in the entirety of the
content in this report - the canonical metric.

The canonical metric serves as a hack that removes reliance on specific geometry of
parameter spaces in an ingenious manner. This leads to the definition of entropy and the
introduction to the Main Result of this Report. The Main Result uses an entropy-based
argument to establish almost sure sample path continuity of a Gaussian process. This
Main Result is then left for later, so as to first cover the pre-requisites for being able to
appreciate and understand the Main Theorem sufficiently. Essentially, Part II fixes the
specific, ultimate goal of this report in the context of appreciating the Modern Theory:
to understand and appreciate the Main Result and its implications.

Part II then goes ahead to introduce concepts and results that are essential in Gaussian
Process Theory. Whole doing so, Part II will introduce the ’Distribution of suprema’
problem, and cover essential inequalities including Borell’s and Slepian’s that give a lot
of information useful for the analysis of the supremum of a general Gaussian process.
These inequalities specifically concern with two lines of thought: one trying to figure out
how the supremum of a Gaussian process is distributed (asymptotically), and the other,
to compare the suprema distributions of two Gaussian processes defined on the same
parameter space.

At the end of Part II, a connection is made between the almost sure boundedness of the
supremum of a Gaussian process and the almost sure continuity of its sample paths. Some
interesting results about continuity are then stated without proof to provide motivation
for what follows in Part III.
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Chapter 3

To Determine Sample Path
Continuity

Approach

Let X be a centred Gaussian process with a parameter space (T, τ), which may be any
arbitrary metric space. We want to determine the a.s. continuity of X on T .

Define
ρ2

τ(u) = Sup{(s,t)∈T ∣τ(s,t)≤u}E(Xs −Xt)2 (3.1)
.
Now, if X were a.s continuous, then

P (ω∣ lim
τ(s,t)→0

∣Xs(ω) −Xt(ω)∣ = 0) = 1.

Let ω ∈ Ω be such that X(ω) is continuous. Then clearly,

Sup{(s,t)∈T ∣τ(s,t)≤u}∣Xs −Xt∣ a.s.�→ 0,as u→ 0.

Since expectation is the value of an integral, we can use Dominated Convergence Theorem
with appropriate boundedness assumptions on the sample paths of X, say Sup

t∈T Xt ≤ Y a.s
for some random variable Y with EY 2 <∞, to argue that

ρ2
τ(u)→ 0,as u→ 0 (3.2)

. Note that the limit (3.2) basically says that X is mean square continuous. Essentially,
this means that a.s. continuity implies mean square continuity. Since a.s continuity
requires X to be mean square continuous, questioning the a.s continuity of X makes little
sense unless we accept that X is at least be mean square continuous on its parameter space.

Let us then take X to be mean square continuous, ie, 3.2 holds true
throughout this report hereafter. To obtain full, almost sure sample path conti-
nuity, something more is needed on ρ2

τ .

33
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Given: X is mean square continuous.
To prove: X is a.s continuous, ie,

Sup{(s,t)∈T ∣τ(s,t)≤u}∣Xs −Xt∣ a.s.�→ 0,as u→ 0.

Idea: For each k ∈ N, let
En(k) = {ω ∈ Ω ∣ Sup{(s,t)∈T ∣τ(s,t)≤ 1

n
}∣Xs(ω) −Xt(ω)∣ > 1

k
}.

If we prove that for each k ∈ N,

∞�
n=1 P (En(k)) <∞ Result 1.2.4�⇒ P (En(k) infinitely often) = 0,

then from Result 1.2.1, we have a.s continuity.

Now, note that for each k, n ∈ N, using Markov’s Inequality, after noting that P (X >
c) = P (X2 > c2) when X is a non-negative random variable and c is a positive constant,
implies

P (En(k)) ≤ E(Supτ(s,t)≤ 1
n
∣Xs −Xt∣)2

1
k

≤ k2ρ2
τ(1n)

. Therefore for each k ∈ N, we can bound ∑∞n=1 P (En(k)) by bounding the series∑∞n=1 k2ρ2
τ( 1

n). Whether the latter can be bounded or not depends on the rate of conver-
gence of ρ2

τ(u)→ 0 as u → 0.

Thus, to move from mean square continuity to a.s continuity, we need to additionally
focus on the rate of convergence of ρ2

τ(u)→ 0 or equivalently ρτ(u)→ 0 as u → 0. We
essentially need to find some condition that sufficiently increases the rate of convergence
to imply a.s continuity of sample paths.

3.1 The Canonical (pseudo-)Metric

Definition 3.1.1. Define d ∶ T × T → R+ ∪ {0} such that

d(s, t) =�E(Xs −Xt)2.
This function naturally induces a metric structure on T and is called the canonical
metric for T and/or X.

Note that the canonical metric is actually a pseudo-metric because it satisfies all require-
ments of a metric except that d(s, t) = 0 does not imply s = t. However, this fact is
insignificant compared to the greater implications that are arrived at using this (pseudo-
)metric.
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Now, to use this canonical metric in place of τ , we must first ensure that a.s τ -
continuity and d-continuity of Gaussian processes are equivalent. This is achieved from
the below result.

Lemma 3.1.1. Given a centred Gaussian process X under the assumptions in 2.4, X is
mean square continuous ⇐⇒ the covariance function of σ is continuous.

Proof. • Forward Direction: X is mean square continuous

�⇒ ∀� > 0,∃ δ > 0 such that Supτ(s,t)≤uE(Xs −Xt)2 < � whenever ∣u∣ < δ.

Take an arbitrary � > 0. Take any s, t ∈ T such that τ(s, t) ≤ u for some u > 0. Now,∃ δ > 0 such that whenever u < δ,

E(Xs −Xt)2 < Supτ(s,t)≤uE(Xs −Xt)2 < �. (3.1.1)

Now,
E(Xs −Xt)2 = (σ(s, s) − σ(s, t)) + (σ(t, t) − σ(s, t)) (3.1.2)

W.L.O.G assume σ(s, s) ≤ σ(t, t). Let u < δ. Using this assumption with inequality
3.1.1 and equation 3.1.2,

−�

2 < σ(s, s) − σ(s, t) < �

2 and −�

2 < σ(s, s) − σ(t, s) < �

2 .

This proves that � − δ definition of continuity is satisfied for σ(. , s) and σ(s, .)
when any arbitrary s ∈ T is fixed. Therefore, σ is continuous on T × T .

• Backward Direction: σ is continuous on T × T . Take any s, t ∈ T . Now, since σ is
continuous, taking limit τ(s, t)→ 0 on both sides of equation 3.1.2 gives

limτ(s,t)→0E(Xs −Xt)2 = 0.

Hence, follows.

Result 3.1.1. If X is a centred Gaussian process defined on a probability space and
parameter space as assumed in 2.4 with the addition that T is complete, and X is mean-
square continuous with respect to τ ; then τ -continuity and d-continuity of X are equiva-
lent.

Proof. Firstly, assume X is τ -continuous, ie,

limu→0 (Supτ(s,t)≤u ∣Xs −Xt∣) = 0
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For η > 0, let Aη = {(s, t) ∈ T × T ∣ d(s, t) ≤ η}. Now, σ is continuous. Redefine d in
terms of σ using equation 3.1.2. Clearly then, d is itself τ -continuous and each Aη is the
pre-image of a closed set (−∞, η] under a continuous map, ie, each Aη is τ -closed in the
metric topology of (T, τ) × (T, τ). Hence, ∩{η>0}Aη = A0 is closed.

Take � > 0. Now, T is complete and totally bounded, implies T is compact. Consider
the open cover of A0,

{U(s′,t′) = {(s, t) ∈ T × T ∣ max(τ(s, s′), (t, t′) < �}}(s′,t′)∈A0

Then, T × T is compact as well and A0 being a closed subset of a compact space is
compact. Therefore, ∃ finite set B ⊂ A0 such that {U(s′,t′)}(s′,t′)∈ B covers A0 and

∪{(s′,t′)∈B}{(s, t) ∈ T × T ∣ max(τ(s, s′), τ(t, t′)) ≤ �}
covers Aη� for some η� > 0. Then, for any (s, t) ∈ Aη� ; ∃ (s′, t′) ∈ B such that τ(s, s′), τ(t, t′) ≤
�. and, ∣Xs −Xt∣ ≤ ∣Xs −Xs′ ∣ + ∣Xs′ −Xt′ ∣ + ∣Xt′ −Xt∣ ∀ s, t ∈ T. (3.1.3)

Note that (s′, t′) ∈ B ⊂ A0 �⇒ d(s′, t′) ≤ η∀η > 0 �⇒ d(s′, t′) = 0 �⇒ Xs′ =Xt′ a.s.
(3.1.4)

(This justifies the subscript 0 given to A0.) Then, taking Supd(s,t)≤η� both sides of in-
equality 3.1.3 and using equality 3.1.4,

Supd(s,t)≤η� ∣Xs −Xt∣ ≤ Sup(s,t)∈Aη�
[Supτ(s,t)≤�(∣Xs −Xs′ ∣ + ∣Xt′ −Xt∣)] (3.1.5)

Now, as � → 0, the inequality 3.1.5 and τ -continuity implies the left hand side converges
to 0 because the right hand side does. Also, note that as � → 0, we have that η� → 0.

Therefore, limit � → 0 both sides of 3.1.5 gives the d-continuity of X.

To prove the converse, now assume that X is d-continuous. Take any � > 0, ∃ δ� > 0
such that d(s, t) < δ �⇒ ∣Xs −Xt∣ a.s. Since X is given to be mean square continuous,
lemma 3.1.1 and the definition of d imply d is continuous in (T, τ). This means that for
δ�,∃ ηδ� > 0 such that τ(s, t) < ηδ� �⇒ d(s, t) < δ�. Therefore, for � > 0, ∃ η(�) = ηδ� > 0
such that τ(s, t) < η(�) �⇒ ∣Xs −Xt∣ < � a.s. Hence proved.

Remark 3.1.1. We can assume T to be complete and totally bounded, or simply put,
τ -compact hereafter whenever required. This assumption is again minimal since a suf-
ficiently large number of general Gaussian processes fit into this assumption. By virtue
of Result 3.1.1 then, d-continuity and τ -continuity of a Gaussian process are equivalent.
The canonical metric is also very easy to work with. It removes direct dependence on the
intricate details of the geometry of the parameter space by varying through the covariance
function of the process. Hence, we can work with the canonical metric.
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Working with the canonical metric

Now let us consider ρd(u), just as we defined ρτ(u) earlier. Then,
ρ2

d(u) = Sup{s,t∈T ∣ d(s,t)≤u} E(Xs −Xt)2 = Sup{s,t∈T ∣ d(s,t)≤u} d2(s, t)
Suppose that ∀ u ≤ diam(T ),∃ s, t ∈ T such that d(s, t) = u. Then, ρd(u) = u for all
u ≤ diam(T ).

Clearly, ρd does not hold information about the Gaussian process. The information
which was contained in ρτ has now moved into the canonical metric itself in some sense.
Since the canonical metric is defined through the covariance function of the process, it is
likely that the information is now contained in how the metric looks at T . Better put,
the information about the Gaussian process seems to be recorded in how the canonical
metric measures the sizes of T and its subsets. This is the essence behind the concept of
’Entropy’ and the Main Result in this report, which are introduced next.

3.2 Entropy the Magnificent

To study the relationship between the canonical metric d and the parameter space T ,
that appears to be encoded in the manner that d measures ’sizes’ of T and its subsets,
we define the following:

Definition 3.2.1. Metric Entropy Function
Let N(�) be the smallest number of d-closed balls, of radius � required to cover T . Then,
H(�)=log(N(�)) is called the metric entropy function for T or X.

New Metric, New Assumption: Updating 2.4 after the introduction of the canon-
ical metric, it is hereafter assumed that T is totally bounded in the Canonical Met-
ric. Basically, this report will take for granted that for all � > 0, N(�) < ∞. There is a
result that states that a Gaussian process can have a.s continuity of sample paths and be
a.s bounded iff T is totally bounded in the canonical metric, and another condition (which
will be mentioned in Part III) is satisfied. Hence, by imposing this assumption, we are
not restricting ourselves from any cases that cater to the goal of this Report mentioned
in 2.4.

3.2.1 The Main Result - Entropy and Continuity
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Theorem 3.2.1. Let X be a centred Gaussian Process with parameter space, T equipped
with the canonical metric d. Let T be totally bounded in the canonical metric. Then,

� ∞
0
[log(N(�))] 1

2 d� <∞ �⇒ X is a.s continuous on T .

Remark 3.2.1. Define w(δ) = ∫ δ

0 (log(N(�))) 1
2 d�. Then, w actually serves as a modulus

of continuity for X. This means that ∣Xs −Xt∣ ≤ w(d(s, t)).

Remark 3.2.2. Note that if � > diam(T ), then N(�) = 1 and H(�) = 0. There-
fore to satisfy the sufficient condition in Theorem 3.2.1, we only need to prove∫ diam(T )

0 (log(N(�))) 1
2 d� <∞.

Remark 3.2.3. Note that as � increases, N(�) decreases by definition. Therefore, the
finiteness of the integral in Theorem 3.2.1 is completely determined by the behaviour of
the integrand near and at zero.

Proof of Theorem 3.2.1

There are different proofs for Theorem 3.2.1 and its earlier versions.[1]

This report will roughly cover one proof. In fact, proving this Result is the ultimate
goal of this entire report. However, the proof requires us to look at several other results
that relate supremum-based results and a.s sample path continuity of Gaussian processes,
without which we cannot move forward.

Hence, Part II hereafter will cover discussions on some essential inequalities first. The
proof of Theorem 3.2.1 will be discussed in Part III.

Examples, Applications

Applications and implications of this result for different kinds of processes will be covered
in Part III.



Chapter 4

The Behaviour of Suprema

In the study of a function in real analysis, continuity, differentiability, etc are some
important ’functionals’ that we analyse. So, it does makes sense to analyse sample path
continuity of general Gaussian processes. Continuity happens to be a basic property
of a function. Several results exist on continuous functions that can help extract more
information about other operations or ’functionals’ of a process. And hence, it made
sense to introduce the canonical metric, metric entropy function and the Theorem 3.2.1
stated earlier that gives a sufficient condition for a.s sample path continuity. However,
why worry about the distribution of the supremum of a Gaussian process?

Motivation

To begin with, analysing the behaviour of Sup
t∈T Xt for a centred Gaussian process X on

parameter space T, can indicate boundedness/unboundedness of the process.

Definition 4.0.1. X is said to be a.s bounded if P{ω∣ Sup
t∈T ∣Xt(ω)∣ < ∞} = 1. If

P{ω∣ ∣Sup
t∈T ∣Xt(ω)∣ <∞} = 0, X is a.s unbounded.

If a process is unbounded a.s, it is easy to decipher that X is a.s discontinuous.

Apart from this, there are the commonly studied probabilistic questions of ’hitting
times’.

Definition 4.0.2. For any A ⊂ R, the hitting time of A is defined as the random variable
defined by λA = inf{t ∈ T ∶ Xt ∈ A}.

39
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Note that if X is any stochastic process on a parameter space T, then inf
t∈T Xt = Sup

t∈T −Xt.
Essentially, the analysis of infima and suprema are equivalent. Then, to analyse λA for
any A ∈ R we need to understand the behaviour of supremum(infimum) of a process.
Analysis of hitting times are useful in the estimation of survival times - to estimate the
lifetimes of an object or even a human patient (some of these examples may be better
modelled using non-Gaussian distributions).

A seemingly better justification to why we should be interested in the suprema of
Gaussian distributions in particular is the fact that some statistical tests and approxi-
mations rely on certain limit distributions being the supremum of a Gaussian process.

For example, consider the Kolmogorov-Smirnov Test that is commonly used in non-
parametric inference. It is used to check whether an obtained sample is drawn from
a certain probability distribution. Let {Xi}n

i=1 be an iid sample of observations. Let
Fn(x) = �(−∞,Xi

(x) be the empirical cdf. Let F be some well-defined and appropriate cdf.

• Null Hypothesis: The sample is drawn from F(x).

• Alternate Hypothesis: The sample is not drawn from F(x).

Define Dn(F ) = Sup
x
∣Fn(x)−F (x)∣. The, there is a result called Glivenko-Cantelli Lemma

which is stated below.

Result 4.0.1. Dn(F ) a.s�→ 0 as n → ∞ under the null hypothesis. (Glivenko-Cantelli
Lemma)

This result does not help much in approximation of the unknown F however. However,
there is another result, as stated below which helps approximate the cdf of a given sample
under the null hypothesis.

Result 4.0.2. Consider the Gaussian White Noise process, {Wt∣t ∈ [0, T ]} (8.1.1) defined
on ([0, T ],B[0,T ], m) where T > 0, B[0,T ] is the Borel σ-algebra on [0, T ], and m is the
Lebesgue Measure defined appropriately. Then, define the process B on [0, T ] such that
B(t) = Wt − t

T WT . Such a process B is called the Brownian Bridge on [0,T].

Then under the null hypothesis taken above,
√

nDn
d�→ sup

t
∣B(F (t))∣ as n →∞, where

{B(t)∣t ≥ 0} is the Brownian bridge on [0,1]. If the hypothesised cdf F is continuous, then√
nDn

d�→ sup
t
∣B(t)∣ as n →∞.
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Clearly then, if F is continuous,

F (x) ≈ Fn(x) ± sup
t
∣B(t)∣√

n

for each appropriate x.

Thus, the behaviour and distribution of the supremum of a Gaussian process is of
utmost interest and makes supremum of a process an important functional to analyse.

4.1 Borell’s Inequality

Consider P (λ) = P{sup
t∈T Xt ≥ λ}. As far as existing literature is concerned, the problem

of finding the distribution of sup
t∈T Xt, is an impossible one to solve. To give an idea, the

precise formula for P (λ) is known only for few specific stationary Gaussian processes
identified by specific covariance functions, defined on a finite interval subset of R.[1]

However, there are many results that shed light on the behaviour of lim
n→∞P (λ). Roughly,

this behaviour should intuitively depend on two factors:

1. Lack of Homogenity of X on T: If EX2
t is not constant across T, then the Supre-

mum(or Infimum) is likely to be near the point of maximal variance.

2. Local smoothness or lack thereof: If X is rougher near a point of maximal variance,
it is likely that the Supremum/Infimum is larger/smaller.

The rigorous characterisation of these ideas is achievable by suitably bounding P (λ).
The theorem below gives such a bound.

Theorem 4.1.1. (Borell’s Inequality)
Let X be a centred Gaussian process with sample paths bounded a.s. Let ∣∣X ∣∣ = Sup

t∈T Xt,
and σ2

T = sup
t∈T EX2

t . Then, E∣∣X ∣∣ <∞ and for all λ > 0;

P{∣ ∣∣X ∣∣ −E∣∣X ∣∣ ∣ > λ} ≤ 2e
−λ2
2σ2

T . (4.1.1)

Hence, ∀λ > E∣∣X ∣∣;
P{∣∣X ∣∣ > λ} ≤ 2e

−(λ−E∣∣X∣∣)2
2σ2

T . (4.1.2)

Note: The expectation of the supremum is no longer centred in general. Hence,
it is natural to want to prove that the expectation is atleast finite before proving the
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inequality itself. In fact, the use of Borell’s inequality itself requires information on the
expectation of supremum. In a more general version of this theorem, the theorem also
concludes that σ2

T <∞. However, here we choose to take it as an extraneous assumption
since this is sufficient for the discussion here and later in this report.

Proof of Borell’s Inequality - I

To prove Theorem 4.1.1, we will need the following lemmas. Before that, let us look at
a growth condition that allows the use fo Result 1.2.5 appropriately and prove the result
that follows.

Definition 4.1.1 (Subgaussian Growth). A function f : Rk → R is said to have sub-
gaussian growth if for each � > 0,∃ C(�) > 0 such that ∣f(x)∣ ≤ C(�)exp(−�∣∣x∣∣2Rk) ∀
x ∈ Rk.

The following result is very useful in proving many results involving Gaussian pro-
cesses.

Result 4.1.1 (Gaussian Integration by Parts). If X is a centred Gaussian random vector
in Rn, and f is a continuously differentiable real-valued function on Rn such that ∇f has
subgaussian growth; then E(Xif(X)) = n∑

i=1E(XiXj)E� ∂f
∂xj
(X)�.

Proof. • Let n = 1. Note that p’(x) = −1
EX2 xp(x) where p(x) is the pdf of X. Then,

use product rule to find that

E(Xf(X)) = (−σ2)� ∞
−∞ (f(x)p(x))′ dx + σ2E(f ′(X)).

• Claim: The first term in the above equation is zero. Now, since n = 1, ∇f is the
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same as f ′, and has subgaussian growth. Then, for a fixed � > 0, ∃ C(�2) such that;

−C(�2)exp(−�2∣x∣2) ≤ f ′(x) ≤ C(�2)exp(−�2∣x∣2)
Integrating on [-a,a] for some a > 0;

−C(�2)� a

−a
exp(−�2∣x∣2) dx ≤ f(a) − f(−a) ≤ C(�2)� a

−a
exp(−�2∣x∣2) dx

�⇒ −2C(�2)� a

0
exp(−�2∣x∣2) dx ≤ f(a) − f(−a) ≤ 2C(�2)� a

0
exp(−�2∣x∣2) dx

Note that p(a) = p(−a) since X ∼ N(0, EX2) and p(a) = 1√
2πEX2

exp( −x2

2EX2 );
�⇒ −2C(�2)� e

−x2
2EX2√

2πEX2
�� a

0
e−�2∣x∣2 dx ≤ f(a)p(a) − f(−a)p(−a)

≤ 2C(�2)� e
−x2

2EX2√
2πEX2

�� a

0
e−�2∣x∣2 dx

Applying lima→∞; we get lima→∞ ∫ a−a(f(x)p(x))′ dx = 0. Therefore when n = 1,
E(Xf(X)) = EX2E(f ′(X)).

• Now, fix i. Define Zj’s such that Xj = EXiXj

EX2
i

Xi+Zj ∀j ≠ i. Then, Z ≡ (Z1, ..., Zn) is
clearly independent of Xi by definition and f(X) can be written as some function
of Xi, Z1, ..., Zi−1, Zi+1, ..., Zn; say g(Xi, Z1, ..., Zn). Then,

E[Xif(X)] = E[Xig(Xi, Z1, ..., Zn)] = EZ�EXi∣Z[Xig(Xi, Z) ∣Z]�.
• Note that the conditional expectation EXi∣Z[Xig(Xi, Z) ∣Z] deals with a 1-variable

case, and hence we can use the result obtained for the n = 1 case above.

�⇒ E[Xif(X)] = EZ

⎡⎢⎢⎢⎢⎣(X
2
i )EXi∣Z� ∂g

∂xi

(Xi, Z)�⎤⎥⎥⎥⎥⎦
= (EX2

i )EZ

⎡⎢⎢⎢⎢⎣EXi∣Z� ∂g

∂xi

(Xi, Z)�⎤⎥⎥⎥⎥⎦
= (EX2

i )EXi
� ∂g

∂xi

(Xi, Z)�
= (EX2

i )E� ∂f

∂xi

(X1, ..., Xn)�
= (EX2

i )E⎡⎢⎢⎢⎢⎣
n�

j=1
∂f

∂xj

(X) ∂

∂xi

�EXiXj

EX2
i

Xi +Zj�⎤⎥⎥⎥⎥⎦
= E

⎡⎢⎢⎢⎢⎣
n�

j=1E(XiXj)E� ∂f

∂xj

(X)�⎤⎥⎥⎥⎥⎦.

Hence Proved.
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Corollary 4.1.2. Let X, Y be two independent k-dimensional centred Gaussian vectors,
each with covariance matrix equal to the appropriate Identity matrix. Let f, g ∈ C1(Rk)
be two bounded functions such that their partial derivatives of up-to 2nd order have
subgaussian growth. Then,

Cov(f(X), g(X)) = � 1

0
E(∇f(X).∇g(αX +√1 − α2Y ))dα.

where ∇f(x) = ⎛⎜⎜⎝
∂f
∂x1
(X)⋮

∂f
∂xk
(X)

⎞⎟⎟⎠ .

Proof. Interpolate between X and Y through θ ∈ [0, π
2 ] as Z(θ) = (cosθ)X + (sinθ)Y.

Let Ψ(θ) = E[f(X)g(Z(θ))]. Now, f,g are bounded. Then, ∃M > 0 such that for any
h > 0, x, y ∈ Rk, θ ∈ [0, π

2 ],
�f(x)1

h
(g(z(θ + h)) − g(z(θ))� ≤ M ;

where z(θ) = (cosθ)x + (sinθ)y. This means the limit as h → 0 on the above inequality
exists, and

lim
h→0

�f(x)1
h
(g(z(θ + h)) − g(z(θ))�

= lim
h→0

�f(x) ∂

∂h
(g(cos(θ + h)x + sin(θ + h)y))�

≤ lim
h→0

⎧⎪⎪⎨⎪⎪⎩�f(x)
k�

i=1(−sin(θ + h)) ∂

∂xi

(g(cos(θ + h)x + sin(θ + h)y))�
+ �f(x) k�

i=1(cos(θ + h)) ∂

∂yi

(g(cos(θ + h)x + sin(θ + h)y))�⎫⎪⎪⎬⎪⎪⎭
=M

⎧⎪⎪⎨⎪⎪⎩�f(x)
k�

i=1(−sinθ) ∂

∂xi

(g(cosθx + sinθy))�
+ �f(x) k�

i=1(cosθ) ∂

∂yi

(g(cosθx + sinθy))�⎫⎪⎪⎬⎪⎪⎭.

The last expression is clearly bounded by an integrable function owing to the subgaussian
growth conditions assumed of f, g. Hence, by Result 1.2.5,

Ψ′(θ) = E�f(X) d

dθ
(g(Z(θ)))� = k�

j=1E�f(X)� ∂g

∂zj

(Z(θ))(−sinθXj + cosθYj)��
= k�

j=1
⎧⎪⎪⎨⎪⎪⎩EY �(−sinθ)EX ∣Y �f(X) ∂g

∂zj

(cosθX + sinθY )Xj�� +E�(cosθ)Yjf(X) ∂g

∂zj

(Z(θ))�⎫⎪⎪⎬⎪⎪⎭
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Using Gaussian Integration by parts on both terms separately, and noting the indepen-
dence of Xi, Xj, Yi, Yj ∀i ≠ j and

= k�
j=1
⎧⎪⎪⎨⎪⎪⎩EY �(−sinθ)� k�

i=1(EXiXj)EX ∣Y � ∂

∂xi

(f(X)) ∂g

∂zj

(Z(θ))���
+ cosθEX�f(X)EY ∣X�Yj

∂g

∂zj

(cosθX + sinθY )��⎫⎪⎪⎬⎪⎪⎭
= k�

j=1
⎧⎪⎪⎨⎪⎪⎩(−sinθ)� k�

i=1EXiXj��E� ∂f

∂xi

(X) ∂g

∂zj

(Z(θ))� +E�(cosθ)f(X) ∂2g

∂zizj

(Z(θ))��
+ (cosθ)f(X)� k�

i=1EYiYj�E�(sinθ) ∂2g

∂zi∂zj

(Z(θ))�⎫⎪⎪⎬⎪⎪⎭
= k�

j=1
⎧⎪⎪⎨⎪⎪⎩(−sinθ)E� ∂f

∂xj

(X) ∂g

∂zj

(Z(θ))� − (sinθcosθ)E�f(X)∂2g

∂z2
j

(Z(θ))�
+ (sinθcosθ)E�f(X)∂2g

∂z2
j

(Z(θ))�⎫⎪⎪⎬⎪⎪⎭ = (−sinθ)E{∇f(X).∇g(Z(θ))}.
Now, a simple application of the Fundamental Theorem of Calculus leads to the result
as follows:

Cov(f(X), g(X)) = E[f(X)g(X)] −E[f(X)]E[g(X)]= E[f(X)g(X)] −E[f(X)]E[g(Y )] = E[f(X)g(Z(0)] −E[f(X)g(Z(π/2))]
= −(Ψ(π/2) −Ψ(0)) = −� π

2

0
Ψ′(θ)dθ = −� π

2

0
(−sinθ)E{∇f(X).∇g(Z(θ))}dθ

= � 1

0
E{∇f(X).∇g(αX +√1 − α2Y )}dα

where the last line follows from a change of variables, from cosθ to α.

Now, we prove the lemma that is key to proving Theorem 4.1.1 below:

Lemma 4.1.3. Let X be a k-dimensional random vector of centred, unit-variance, inde-
pendent Gaussian random variables. If f ∶ Rk → R is Lipschitz continuous with Lipschitz
constant σ ∈ (0,∞), then for all λ > 0,

P{f(X) −Ef(X) > λ} ≤ e
−λ2
2σ2 .

Proof. Take f with the assumptions mentioned in the Lemma. Since f is continuous, it
can be approximated by a sequence of polynomials, each defined on a compact support.
Hence, it is sufficient to prove the lemma for some function, f ∈ C1(Rk), having a compact
support, with ∇f having Euclidean norm at most σ, the Lipschitz Constant.
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Considering such a function f , by exponential Chebyshev’s Inequality, we have that
for any t ≥ 0

P (f(X) −Ef(X)) > λ) ≤ e−tλE(et(f(X)−Ef(X))).
Take g(x) ∶= etf(x) for some t ≥ 0. Then the partial derivatives of f and g upto 2nd order
have subgaussian growth since their supports are compact by assumption. Applying the
previous corollary,

Cov(f(X), g(X)) = � 1

0
tE(etf(Zα)∇f(X).∇f(Zα))dα

= � 1

0
tE(etf(Zα)max{∣∣∇f(X)∣∣, ∣∣∇f(Zα)∣∣})dα

≤ tσ2 � 1

0
E(etf(Zα))dα = tσ2 � 1

0
E(etf(X))dα = tσ2E(etf(X)).

Let h(t) = E(et(f(X)−Ef(X))). Then, by DCT,

h′(t) = E[ d

dt
(et(f(X)−Ef(X)))] = 1

etEf(X)Cov(f(X), g(X)) ≤ tσ2E(et(f(X)−Ef(X))) = tσ2h(t).
�⇒ h′(t) ≤ tσ2h(t) �⇒ � h′(t)

h(t) ≤ � tσ2 +C

Since h(0) = 1, we have

log(h(t)) ≤ 1
2t2σ2 �⇒ E(et(f(X)−Ef(X))) ≤ e

1
2 t2σ2

.

Then,
P (f(X) −Ef(X)) > λ) ≤ e−tλe

1
2 t2σ2

, t ≥ 0.

Optimizing this upper bound over t ≥ 0, we get the minimum upper bound for t = λ
σ2 .

Substituting the same, we obtain the desired result:

P{f(X) −Ef(X) > λ} ≤ e
−λ2
2σ2 .

Borell’s Inequality Proof - II

Proof of Theorem 4.1.1 for finite T. • Assume X is an a.s bounded centred Gaussian
process on a finite parameter space T. Let T = {t1, t2, ..., tk}. It is then trivial
that σ2

T = max(EX2
t1 , EX2

t2 , ..., EX2
tk
) < ∞. On the other hand, a bound on the

expectation of the maximum order statistic can be obtained as follows:

e

√
logk

σT
E∣∣X ∣∣ Jensen′s≤

inequality
Ee

√
logk

σT
∣∣X ∣∣ = E∣∣e√logk

σT
X ∣∣

P roperty≤
of max

�
i∈TE[e√logk

σT
Xi]

M.G.F= �
i∈Te

1
2 EX2

i
logk

σ2
T ≤ ke

1
2 logk

where the last equality is from the definition of σ2
T . Then, E∣∣X ∣∣ ≤ σT

3
2
√

logk <∞.
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• Now, we have to prove that (4.1.1) holds. Say Xt1 , ..., Xtk
are independent (if

they are not already independent, take copies that are independent). Let Yi =
1�

EX2
i

Xi∀i ∈ T . Now, for any x, y ∈ Rk, W.L.O.G. say max(x) = xi ≥ max(y) = yj

(for some i, j ∈ T ). Then,

∣max(x) −max(y)∣ = ∣xi − yj ∣ ≤ max(x − y) ≤
���� k�

i=1∣xi − yi∣2 = ∣∣x − y∣∣Rk .

Also for any x, y ∈ Rk,

min(x) = −max(−x) �⇒ ∣min(x)−min(y)∣ = ∣−max(−x)+max(−y)∣ ≤ ∣∣−y+x∣∣Rk = ∣∣x−y∣∣Rk

And −Yi = − 1�
EX2

i

Xi∀i ∈ T .

• For any λ > 0 then, by Lemma 4.1.3,

P{max
i∈T (Yi)−Emax

i∈T (Yi) > λ

σT

}, P{min
i∈T (−(Yi))−Emin

i∈T (−(Yi)) > λ

σT

} ≤ e
−λ2
2σ2

T (4.1.3)

. Now, note that

σT{max
i∈T ( 1�

EX2
i

Xi)−Emax
i∈T ( 1�

EX2
i

Xi)} = {max
i∈T ( σT�

EX2
i

Xi)−Emax
i∈T ( σT�

EX2
i

Xi)}
≥ {max

i∈T (Xi) −Emax
i∈T (Xi)} (4.1.4)

and

σT{min
i∈T ( −1�

EX2
i

Xi)−Emin
i∈T ( −1�

EX2
i

Xi)} = {min
i∈T ( −σT�

EX2
i

Xi)−Emin
i∈T ( −σT�

EX2
i

Xi)}
≥ {min

i∈T (−Xi) −Emin
i∈T (−Xi)} (4.1.5)

where the first equality and subsequent inequality in both (4.1.4) and (4.1.5) follow
because σT ≥ �EX2

i > 0 ∀i ∈ T by definition.

• Then by (4.1.3),(4.1.4),

P{max
i∈T (Xi) −Emax

i∈T (Xi) > λ} ≤ P{σT (max
i∈T (Yi) −Emax

i∈T (Yi)) > λ} ≤ e
−λ2
2σ2

T

and similarly by (4.1.3),(4.1.5),

P{min
i∈T (−Xi) −Emin

i∈T (−Xi) > λ} ≤ P{σT (min
i∈T (−Yi) −Emin

i∈T (−Yi)) > λ} ≤ e
−λ2
2σ2

T .

Then,

P{∣ ∣∣X ∣∣ −E∣∣X ∣∣ ∣ > λ} = P{ ∣∣X ∣∣ −E∣∣X ∣∣ > λ} + P{−∣∣X ∣∣ −E(−∣∣X ∣∣) > λ}
= P{ ∣∣X ∣∣ −E∣∣X ∣∣ > λ} + P{min

i∈T (−Xi) −Emin
i∈T (−Xi) > λ} ≤ 2e

− λ2
σ2

T
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• Hence proved (4.1.1) holds for finite T.

• For any λ > E∣∣X ∣∣,
P{∣∣X ∣∣ > λ} = P{∣∣X ∣∣ > λ−E∣∣X ∣∣+E∣∣X ∣∣} = P{∣∣X ∣∣ > λ0+E∣∣X ∣∣}+P{∣∣X ∣∣ < E∣∣X ∣∣−λ0}

= P{∣ ∣∣X ∣∣ −E∣∣X ∣∣ ∣ > λ0} ≤ 2e
− λ2

0
σ2

T = 2e
− (λ−E∣∣X∣∣)2

σ2
T

where λ0 = (λ − E∣∣X ∣∣) > 0. and the last inequality follows from (4.1.1). Hence
proved (4.1.2) holds for finite T.

Borell’s Inequality Proof - III

Proof of Theorem 4.1.1 in general. • Assume X is an a.s bounded centred Gaussian
process on a parameter space T with assumptions taken since 2.4. T is separable�⇒ ∃ countable dense subset T ′ ⊂ T . Let T ′ = {t1, t2, ...} and Tn = {t1, ..., tn} for
each n ∈ N.

• Claim 1: sup
t∈Tn

Xt
a.s�→ sup

t∈T ′Xt as n →∞.
For each � > 0; by definition of supremum, ∃ i ∈ N such that

Xti
> sup

t∈T ′Xt − � �⇒ sup
t∈Tn

Xti
> sup

t∈T ′Xt − � a.s ∀n ≥ i.

This proves Claim 1.

• Now, fix � > 0. By definition of supremum and dense property of T’, ∃ t0 ∈ T ′ such
that Xt0 > ∣∣X ∣∣ − � a.s. Then, sup

t∈T ′Xt ≥ ∣∣X ∣∣ − � a.s. �⇒ 0 ≤ ∣∣X ∣∣ − sup
t∈T ′Xt ≤ � a.s.

Taking � ↓ 0, ∣∣X ∣∣ = sup
t∈T ′Xt a.s.

Claim 1 then implies that sup
t∈Tn

Xt
a.s�→ sup

t∈T Xt = ∣∣X ∣∣ as n → ∞ and consequently

by Theorem 1.2.4 (since {sup
t∈Tn

Xt}n∈N, {sup
t∈Tn

EX2
t }n∈N are increasing sequences by

definition of Tn, T ′), Esup
t∈Tn

Xt → E∣∣X ∣∣ and sup
t∈Tn

EX2
t → σ2

T as n →∞.

• σ2
T <∞ is taken for granted as noted earlier.

• Claim 2: E∣∣X ∣∣ <∞
Assume E∣∣X ∣∣ =∞. Choose a λ0 > 0 large enough such that P{∣∣X ∣∣ < λ0} ≥ 3

4 and

e
−λ2

0
σ2

T ≤ 1
4 .

Now, Esup
t∈Tn

Xt → E∣∣X ∣∣ as n →∞ �⇒ ∃N ∈ N such that ∀n ≥ N, Esup
t∈Tn

Xt > 2λ0.
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Then, we can show that P{∣ sup
t∈Tn

Xt −Esup
t∈Tn

Xt ∣ > λ0} ≤ 2e
−λ2
2σ2

T ≤ 1
2 and;

P{∣ sup
t∈Tn

Xt −Esup
t∈Tn

Xt ∣ > λ0} ≥ P{Esup
t∈Tn

Xt − sup
t∈Tn

Xt > λ0} ≥
P (∣∣X ∣∣ < Esup

t∈Tn

Xt) − λ0) ≥ P (∣∣X ∣∣ < λ0) ≥ 3
4 , (→←)

�⇒ E∣∣X ∣∣ <∞.

• Now, we have to prove that (4.1.1) holds. Define Kn = ∣ sup
t∈Tn

Xt−Esup
t∈Tn

Xt ∣ and K = ∣
∣∣X ∣∣ −E∣∣X ∣∣ ∣. From Claim 1 and it’s consequences, Kn

a.s→ K as n →∞. By Fatou’s
Lemma, for any λ > 0;

P{ω∣K(ω) > λ} = �
Ω
�{K(ω) > λ}dP ≤ liminf

n→∞ �
Ω
�{Kn(ω) > λ}dP

≤ liminf
n→∞ P (ω∣Kn(ω) > λ) ≤ 2e

−λ2
2σ2

T

where the last inequality follows from Borell’s inequality for finite parameter space
proved earlier. Hence proved that (4.1.1) holds for T.

• For any λ > E∣∣X ∣∣,
P{∣∣X ∣∣ > λ} = P{∣∣X ∣∣ > λ−E∣∣X ∣∣+E∣∣X ∣∣} = P{∣∣X ∣∣ > λ0+E∣∣X ∣∣}+P{∣∣X ∣∣ < E∣∣X ∣∣−λ0}

= P{∣ ∣∣X ∣∣ −E∣∣X ∣∣ ∣ > λ0} ≤ 2e
− λ2

0
σ2

T = 2e
− (λ−E∣∣X∣∣)2

σ2
T

where λ0 = (λ − E∣∣X ∣∣) > 0. and the last inequality follows from (4.1.1). Hence
proved (4.1.2) holds for general separable T.

4.2 Distribution of Sup
t∈T Xt

Now that Theorem 4.1.1 has been proved, let us make a few observations and remarks.

Take (4.1.2). Apply log on both sides. Divide by λ2 and apply lim
λ→∞ both sides to get

the following result due to Landau and Shepp(1970) and Marcus and Shepp(1971):

Result 4.2.1. If X is a centred Gaussian process with sample paths bounded a.s, then

lim
λ→∞

log(P{sup
t∈T Xt > λ})
λ2 = −1

2σ2
T

where σ2
T = sup

t∈T EX2
t (4.2.1)
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Note: The original proof of this result may not have been done using Borell’s inequal-
ity/Theorem 4.1.1.

Now, for any X ∼ N(0, σ2), the following can be proven simply by a clever use
integration by parts. If X is a centered Gaussian rv with variance σ2, a clever integration
by parts yields

(1 − σ2

λ2 )( σ√
2π
)1
λ

e− λ2
2σ2 ≤ P{X > λ} ≤ ( σ√

2π
)1
λ

e− λ2
2σ2 (4.2.2)

Quick Proof.
1

σ
√

2π
� ∞

λ

1
x

xe
−x2
2σ2 dx = ( σ√

2π
)(1

λ
)e−λ2

2σ2 − σ√
2π

� ∞
λ

1
x3 xe

−x2
2σ2 dx (4.2.3)

= ( σ√
2π
)(1

λ
)e−λ2

2σ2 − ( σ√
2π
)(σ2

λ3 )e−λ2
2σ2 + 3σ3√

2π
� ∞

λ

1
x4 e

−x2
2σ2 dx

= (1 − σ2

λ2 )( σ√
2π
)(1

λ
)e−λ2

2σ2 + 3σ3√
2π

� ∞
λ

1
x4 e

−x2
2σ2 dx (4.2.4)

(4.2.3), (4.2.4) give the upper and lower bounds in (4.2.2) respectively.

Now, apply log and then lim
λ→∞ on (4.2.2). This gives

lim
λ→∞

log(P{X > λ})
λ2 = −1

2σ2 (4.2.5)

.

Remark 4.2.1. Note that a comparison of (4.2.5) and (4.2.1) shows that if X is a
centred Gaussian process on T with a.s bounded sample paths, then ∣∣X ∣∣
behaves like a centred Gaussian random variable with variance σ2

T = sup
t∈T EX2

t

asymptotically.

Borell’s inequality/Theorem 4.1.1 not only gives a bound on the tail probabilities
of the supremum of a Gaussian distribution, but also gives some information about its
(asymptotic) distribution. The remarks below end this chapter:

Remark 4.2.2. Borell’s inequality also helps find a bound on the tail probabilities of
sup
t∈T ∣Xt∣. This is because the symmetry of a centred Gaussian process implies

P{sup
t∈T ∣Xt∣ > λ} = P{sup

t∈T Xt > λ} + P{sup
t∈T Xt < −λ} = 2P{∣∣X ∣∣ > λ}

for any λ > E∣∣X ∣∣, for which Theorem 4.1.1 gives a bound.
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Remark 4.2.3. Note that E∣∣X ∣∣ is required to make use of Theorem 4.1.1’s inequalities.
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Chapter 5

Comparison of Suprema

Apart from the distribution of the supremum, another line of investigating suprema
is between processes. There are many ’comparison inequalities’ that allow comparison
between two or more processes in Gaussian process theory. An illustration of how they
work: Suppose X, Y are two centred processes defined on T with EX2

t = EY 2
t ∀t. Say X

is more correlated than Y. Then, Y is in some sense ’rougher’ than X. This makes it more
likely that ∣∣Y ∣∣ is larger than ∣∣X ∣∣ where ∣∣.∣∣ = sup

t
(.). Comparison inequalities make such

arguments rigorous.

5.1 Kahane’s Inequality

An important comparison inequality, from which many other inequalities can be derived
directly or with some tweaking, is the Kahane’s inequality which we will look at first.

Theorem 5.1.1. [Kahane’s inequality] Let X and Y be a.s bounded centred Gaussian
random vectors on Rn. Let f ∈ C2(Rn) be such that its partial derivatives up to 2nd order
have subgaussian growth and EYiYj ≶ EXiXj �⇒ ∂2f

∂xi∂xj
� 0. Then, Ef(X) ≤ Ef(Y ).

Proof. • Assume X, Y are independent (otherwise take independent copies on the
same probability space).

• Interpolate between X and Y by defining Z(θ) = cosθX + sinθY ; θ ∈ [0, π
2 ].

• Define Ψ(θ) = Ef(Z(θ)) on [0, π
2 ].

• Claim: Ψ′(θ) ≥ 0

53
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• Take any small h > 0. Then take � = h2. By Definition of subgaussian growth,

�f(Z(θ + h)) − f(Z(θ))
h

� ≤ �f(Z(θ + h))
h

� + �f(Z(θ))
h

�
≤ C(h2)

h
[e−h2∣∣Z(θ+h)∣∣2 − e−h2∣∣Z(θ)∣∣2] ≤ C(h2)

h
[e−h2∣∣Z(θ+h)∣∣2]

Note that ∣∣Z(θ+h)∣∣2 is a sum of squares of n Gaussian random variables, and thus
has a χ2

n-distribution. Then, E[e−h2∣∣Z(θ+h)∣∣2] = E[ei(ih2)∣∣Z(θ+h)∣∣2] = (1−2i(ih2))−n/2 <∞. Therefore, we can use Theorem 1.2.5 to to interchange derivative and expecta-
tion as follows:

Ψ′(θ) = d

dθ
Ef(Z(θ)) = E� d

dθ
f(Z(θ))� = E� n�

i=1�
dZi(θ)

dθ
��∂f(Z(θ))

∂zi

��
= n�

i=1E�(−sinθXi+cosθYi)∂f(Z(θ))
∂zi

� = (−sinθ) n�
i=1E�Xi

∂f(Zi(θ))
∂zi

�+(cosθ) n�
i=1E�Yi

∂f(Zi(θ))
∂zi

�

(5.1.1)

• Since the partial derivatives of f up to 2nd order also have subgaussian growth, we
can use Gaussian Integration by parts,

E�Xi
∂f(Z(θ))

∂zi

� = EY �EX ∣Y �(Xi) ∂f

∂zi

(cosθX + sinθy)�Y = y�� =
EY � n�

j=1(EX ∣Y XiXj)EX ∣Y � ∂f

∂xj∂zi

(cosθX + sinθy)�Y = y��
= EY � n�

j=1(EX ∣Y XiXj)EX ∣Y �(∂Zj

∂xj

) ∂f

∂zj∂zi

(cosθX + sinθy)�Y = y��
= n�

j=1(EXiXj)(cosθ)E� ∂f

∂zi∂zj

(Z(θ))�
Similarly,

E�Yi
∂f(Z(θ))

∂zi

� = n�
j=1(EXiXj)(sinθ)E� ∂f

∂zi∂zj

(Z(θ))�
• Substituting the above in (5.1.1), we get

Ψ′(θ) = (cosθsinθ) n�
j=1E� ∂f

∂zizj

(Z(θ))�(EYiYj −EXiXj)
• Under the assumptions of the theorem statement, it is now easy to see that Ψ′(θ) ≥

0. Hence the claim is proved.

• This means Ψ is an increasing function on [0, π
2 ].

Then, Ψ(0) ≤ Ψ(π
2 ) �⇒ Ef(X) ≤ Ef(Y ). Hence proved.
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Note that Kahane’s Inequality here is given for centred Gaussian vectors, and not
processes. We will use this to prove some other important inequalities for processes in
the sections that follow.

5.2 Slepian’s Inequality

Slepian’s Inequality gives a rigorous statement for the idea that the supremum of the
process whose covariance/correlation is smaller (rougher process) should dominate over
the supremum of the other process (smoother process), given two processes defined on
the same parameter space whose variances at each parameter are equal.

Theorem 5.2.1. [Slepian’s Inequality] If X,Y are a.s bounded centred Gaussian processes
on T such that EX2

t = EY 2
t for all t ∈ T and E(Xt − Xs)2 ≤ E(Yt − Ys)2 for all s,t ∈ T ;

then for all real λ, P{∣∣X ∣∣ > λ} ≤ P{∣∣Y ∣∣ > λ}.

See that the condition E(Xt − Xs)2 ≤ E(Yt − Ys)2 is the same as saying EXsXt ≥
EYsYt∀T because EX2

t = EY 2
t . This exactly captures what is said before the theorem

statement.

Slepian’s Inequality Proof - I

Proof. • Let the finite parameter space T have ∣T ∣ = k <∞ elements. Fix λ ∈ R.
• Consider the function h(x) = k

Π
i=1�(−∞,λ](xi). Clearly each �(−∞,λ] ∈ L1(R).

• Now, it is a well-known that the Schwartz space of R is dense in L1(R). This
implies that we can construct a sequence of smooth, bounded, non-negative, non-
increasing real-valued functions on R that converges to �(−∞,λ]. Say {f (m)i }∞m=1 is

such a sequence for each i ∈ Nk. Then, for each m ∈ N, define h(m)(x) = k

Π
i=1f

(m)
i (xi).

• By definition, h(m) is smooth. Also, since each f
(m)
i is a Schwartz function, h(m)(x)

vanishes as ∣∣x∣∣Rk goes to ∞. Then for each � > 0,∃N� > 0 such that

∣∣x∣∣Rk > N� �⇒ ∣h(m)(x)∣ < e−�∣∣x∣∣2

. Let M= sup∣∣x∣∣Rk≤N�

∣h(m)(x)∣ <∞ because h(m) is bounded. Then, define C(�) =Me�N2
� .

Clearly, h(m) has subgaussian growth with this C(�). Similarly, it can be shown
that partial derivatives up to 2nd order also have subgaussian growth.
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• Also by definition, for any 1 ≤ i, j ≤ k, i ≠ j,

∂2h(m)
∂xi∂xj

(x) = ( Π
l≠i,jf

(m)
l (xl))f (m)i

′(xi)f (m)j
′(xj).

Since f
(m)
i ’s are non-negative and non-increasing,

∂2h(m)
∂xi∂xj

(x) ≥ 0

. Further,

E(Xt −Xs)2 ≤ E(Yt − Ys)2, EX2
t = EY 2

t ∀s, t ∈ T �⇒ EXsXt ≥ EYsYt

.

• Then, we have the conditions of Kahane’s inequality satisfied with

∂2h(m)
∂xi∂xj

(x) ≥ 0

when EXiXj ≥ EYiYj. By Kahane’s inequality (Theorem 5.1.1), Eh(m)(Y ) ≤
Eh(m)(X). This is true for all m. Since each h(m) is bounded by the integrable
function h(1) by construction of these functions, Theorem 1.2.5 is applicable and
thus,

lim
m↓∞Eh(m)(Y ) ≤ lim

m↓∞Eh(m)(X) �⇒ E
k

Π
i=1�(−∞,λ](Y ) ≤ E

k

Π
i=1�(−∞,λ](X)

�⇒ P{∣∣Y ∣∣ < λ} ≤ P{∣∣X ∣∣ < λ} �⇒ P{∣∣X ∣∣ > λ} ≤ P{∣∣Y ∣∣ > λ}.
• Since λ was chosen arbitrarily, this is true for all λ ∈ R. Hence proved Slepian’s

inequality for finite parameter space case.

Slepian’s Inequality Proof - II

Proof. • Let X, Y be the centred Gaussian processes satisfying the conditions given in
the statement of the Theorem 5.2.1. As assumed since 2.4, let T be separable. This
means that ∃ countable dense subset T ′ ⊂ T . Let T ′ = {t1, t2, ...} and Tn = {t1, ..., tn}
for each n ∈ N.

• Claim 1: sup
t∈Tn

Xt
a.s�→ sup

t∈T ′Xt as n →∞.
For each � > 0; by definition of supremum, ∃ i ∈ N such that

Xti
> sup

t∈T ′Xt − � �⇒ sup
t∈Tn

Xti
> sup

t∈T ′Xt − � a.s ∀n ≥ i.

This proves Claim 1.
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• Now, fix � > 0. By definition of supremum and dense property of T’, ∃ t0 ∈ T ′ such
that Xt0 > ∣∣X ∣∣ − � a.s. Then, sup

t∈T ′Xt ≥ ∣∣X ∣∣ − � a.s. �⇒ 0 ≤ ∣∣X ∣∣ − sup
t∈T ′Xt ≤ � a.s.

Taking � ↓ 0, ∣∣X ∣∣ = sup
t∈T ′Xt a.s.

Claim 1 then implies that sup
t∈Tn

Xt
a.s�→ sup

t∈T Xt = ∣∣X ∣∣ as n →∞ (5.2.1)

.

• Fix any λ ∈ R. Define Gn(ω) = �{ω∣sup
t∈Tn

Xt(ω)>λ}(ω) and G(ω) = �{ω∣sup
t∈T Xt(ω)≥λ}(ω).

Similarly, define Hn(ω) = �{ω∣sup
t∈Tn

Yt(ω)>λ}(ω) and H(ω) = �{ω∣sup
t∈T Yt(ω)≥λ}(ω). Then,

(5.2.1) �⇒ Gn
a.s�→ G, Hn

a.s�→ H as n →∞.

• Now,

P{sup
t∈T Xt > λ} = P{sup

t∈T Xt ≥ λ} = E[G] F atou′s≤
lemma

liminf
n→∞ E[Gn] = liminf

n→∞ P{sup
t∈Tn

Xt > λ}
• Apply Slepian’s Inequality for finite parameter space to the last term. Then, the

above continues as:

�⇒ P{sup
t∈T Xt > λ} ≤ liminf

n→∞ P{sup
t∈Tn

Yt > λ} = liminf
n→∞ E[Hn] DCT= E[H] = P{sup

t∈Tn

Yt > λ}.
where we are able to apply Theorem 1.2.5 for the marked equality because the
probability measure is a finite measure.

• Hence proved.

Slepian’s Inequality - Remarks

Under the given conditions in the statement of Theorem 5.2.1, from symmetry of the
centred Gaussian processes, inf

T
Xt

d= −sup
T
(−Xt) d= −sup

T
(Xt). Therefore, we can state the

following:

Corollary 5.2.2. If X,Y are a.s bounded centred Gaussian processes on T such that
EX2

t = EY 2
t for all t ∈ T and E(Xt −Xs)2 ≤ E(Yt − Ys)2 for all s,t ∈ T ; then for all real

λ, P{inf
t∈T Xt > λ} ≥ P{inf

t∈T Yt > λ}.

Proof. Note that inf
T

Xt
d= −sup

T
(−Xt) d= −sup

T
(Xt) due to symmetry arguments. Then,

apply Slepian’s inequality.
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Corollary 5.2.3 (Gordon’s Inequality). Let (Xij)I , (Yij)I be two collections of centred
Gaussian variables defined on I = {(i, j) ∶ 1 ≤ i ≤ n, 1 ≤ j ≤ m} such that

• EX2
ij = EY 2

ij (i, j) ∈ I,

• EXijXik ≤ EYijYik (i, j), (i, k) ∈ I,

• EXijXlk ≥ EYijYlk (i, j), (l, k) ∈ I, i ≠ l.

Then, for all real λij, P� n∩
i=1

m∪
j=1[Xijλij]� ≥ P� n∩

i=1
m∪

j=1[Yijλij]�

Idea of Proof. Just like Slepian’s inequality (Theorem 5.2.1), this is also a consequence of
Kahane’s Inequality (Theorem 5.1.1). An appropriate function is taken, and the method
that follows is similar to the proof of Slepian’s.

Remark 5.2.1. 1. Gordon’s inequality is a more general version. Take I = {(i, j)∣i =
1, 1 ≤ j ≤ m} and the specific case that corresponds to Slepian’s inequality 5.2.1 is
obtained.

2. Gordon’s inequality sheds light on the min-max of a rectangular array of Gaussian
variables. For all λ > 0, P{min

1≤i≤nmax
1≤j≤mXij ≥ λ} ≥ P{min

1≤i≤nmax
1≤j≤mYij ≥ λ}.

3. For an increasing function g on R, Gordon’s inequality implies that
E{min

1≤i≤nmax
1≤j≤mg(Xij)} ≥ E{min

1≤i≤nmax
1≤j≤mg(Yij)}. This means a similar result is true from

Slepian’s Inequality Theorem 5.2.1 as well.

Remark 5.2.2. Borell’s inequality upon a little tweaking does give something for sup
T
∣Xt∣.

Slepian’s inequality upon a little tweaking also does give a result for the infimum of a
process. However, Slepian’s inequality does not give any comparison related information
for sup

T
∣Xt∣.
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Example 5.2.1. Take T={1,2}. Let X1, X2 ∼ N(0, 1). Define Pρ(λ) = Pρ(max(X1, X2) >
λ) and P̂ρ(λ) = Pρ(max(∣X1∣, ∣X2∣) > λ) where ρ is the correlation coefficient between X1
and X2. Let Φ(x) = P (Y > x) where Y ∼ N(0, 1). Now,
P−1(λ) = P (∣X1∣ > λ) = P (X1 > λ) + P (−X1 > λ) = 2Φ(λ).
P0(λ) = 1 − P (X1, X2 ≤ λ) = 1 − (1 −Φ(λ)2) = 2Φ(λ) −Φ(λ)2
P1(λ) = Φ(λ)
P̂−1(λ) = P (∣X1∣ > λ) = 2Φ(λ)
P̂0(λ) = 1 − P 2(∣X1∣ < λ) = 1 − [(1

2 −Φ(λ))2]2 = 4(Φ(λ) −Φ2(λ))
P̂1(λ) = P (∣X1∣ > λ) = 2Φ(λ)
Define process X ′ on T with X ′i =Xi∀i ∈ T The two variables are correlated by 1

Define process Y ′ on T with Y ′i =Xi∀i ∈ T The two variables are correlated by 0

Define process Z ′ on T with Z ′i = Xi∀i ∈ T The two variables are correlated by -1
EX ′i 2 = EY ′i 2 = EZ ′i2∀i ∈ T . And E(X ′1 − X ′2)2 = 0, E(Y ′1 − Y ′2)2 = 2, E(Z ′1 − Z ′2)2 = 4. So
we have three Gaussian processes satisfying all requirements of Theorem 5.2.1. Now,

E(X ′i −X ′j)2 ≤ E(Y ′i − Y ′j )2 ≤ E(Z ′i −Z ′j)2∀i, j ∈ T and
P1(λ) = P (∣∣X ′∣∣ > λ) ≤ P0(λ) = P (∣∣Y ′∣∣ > λ) ≤ P−1(λ) = P (∣∣Z ′∣∣ > λ). This verifies
Slepian’s Inequality.

But, P̂−1(λ) < P̂0(λ) and P̂1(λ) < P̂0(λ) which is clearly not following Slepian’s inequality.
Clearly, the conditions of Theorem 5.2.1 do not provide an inequality for comparing
sup

T
∣Xt∣ along the lines of the inequality that the theorem does give for sup

T
Xt.

Now we move on to a corollary of Slepian’s inequality and open a new discussion
building on this corollary, in the next section.

5.3 Sudakov-Fernique Inequality

Let us begin with a corollary of Slepian’s Inequality.

Corollary 5.3.1. If X,Y are a.s bounded centred Gaussian processes on T such that
EX2

t = EY 2
t for all t ∈ T and E(Xt−Xs)2 ≤ E(Yt−Ys)2 for all s,t ∈ T ; then E∣∣X ∣∣ ≤ E∣∣Y ∣∣.
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Proof.

E∣∣X ∣∣ = � ∞
0

P{∣∣X ∣∣ > λ}dλ − � 0

−∞P{∣∣X ∣∣ < λ}dλ

≤ � ∞
0

P{∣∣Y ∣∣ > λ}dλ − � 0

−∞P{∣∣Y ∣∣ < λ}dλ = E∣∣Y ∣∣
where the inequality follows from Slepian’s Inequality in Theorem 5.2.1.

Now, Slepian’s Inequality and its corollary require that EX2
t = EY 2

t ∀t ∈ T . The natu-
ral question then is whether we can do away with this requirement and find a comparison
inequality without it.

Intuitively, a comparison between tail probabilities does not make much sense without
assuming constant variances across the parameter space. Suppose that we have two
centred Gaussian processes and the covariance is smoother for one process. Let us not
assume the condition of identical variances. For the sake of visualisation, consider one
process to have very high variances. Now, it becomes possible that this be the smoother
process. The rougher process then although rougher, has very low variances relatively.
An inequality along the lines of Theorem 5.2.1 would predict that the probability of
the supremum of the latter process being larger is greater than the probability of the
supremum of the former being larger. However, this need not be true. The smoother
process with higher process would actually have the better chance of having a dominating
supremum among the two. This makes the condition of identical variances important for
a comparison between tail probabilities of suprema.

However, in spite of variances being identical or not, both the processes are centred.
The expectations of suprema is likely to depend only on the relation between different
random variables which are part of the same process, ie, the correlations/covariances.
It does seem possible then, that a comparison of expectations may do away with the
dependence on constant variances. Indeed, this happens to be true.

Theorem 5.3.2 (Sudakov-Fernique Inequality). If X, Y are a.s bounded, centred Gaus-
sian processes on T such that E(Xs −Xt)2 ≤ E(Ys − Yt)2; then E∣∣X ∣∣ ≤ E∣∣Y ∣∣.

Sudakov-Fernique Inequality - Remarks

Remark 5.3.1. According to [12], there are many extensions and variations of the
Sudakov-Fernique inequality that have implications themselves.
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Remark 5.3.2. Like Slepian’s Inequality, Sudakov-Fernique Inequality also does not hold
for sup

T
∣Xt∣. Note the following counter example.

Example 5.3.1. Let Z ∼ N(0, σ2), ξ > 0. Let X be a centred Gaussian process with
sample paths bounded a.s. Let Y ξ

t = ξZ +Xt∀t ∈ T .
Then, E(Y ξ

s − Y ξ
t )2 = E(Xs − Xt)2∀s, t ∈ T . Y also has a.s bounded sample paths, by

definition. Then,
Esup

T
∣Y ξ

t ∣ ≥ Esup
T
∣∣ξZ ∣ − ∣Xt∣∣.

Now lim
ξ→∞E∣∣Y ξ

t ∣∣ =∞. But, Esup
T

Xt <∞. This means ∃ξ0 such that for all ξ > ξ0, E∣∣Y ξ
t 0∣∣ >

E∣∣X ∣∣. This clearly contradicts 5.3.2.

Now we move to the proof of Sudakov-Fernique Inequality staring with the finite param-
eter space case, as usual by now.

Sudakov-Fernique Inequality Proof - I

Proof of Theorem 5.3.2 for finite T. Assume T is finite.

• Let the finite parameter space T have ∣T ∣ = k <∞ elements.

• Idea: We can take max function, Theorem 5.1.1, and apply Kahane’s inequality to
be done. This is similar to the approach in the proof of Theorem 4.1.1. However,
we cannot use max function directly here as it does not satisfy the requirements for
Theorem 5.1.1. Hence, we resort to a smooth approximation of the same and use
the methods in the proof of Theorem 5.1.1 to arrive at the conclusion.

• Define fβ ∶ Rk → R such that fβ(x) = 1
β log( k∑

i=1e
βxi) for some β > 0. Clearly fβ ∈

C2(R).
• Define

pi(x) = eβxi

k∑
i=1e

βxi

. Note that :

∂fβ

∂xi

(x) = pi(x) & ∂fβ

∂xi∂xj

(x) = βδijpi(x) − βpi(x)pj(x)
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• Now, take X and Y. Since T is finite, X, Y can be considered as two Gaussian
k-dimensional random vectors. Assume X and Y are independent (if they actually
aren’t, take independent copies on the same probability space). Interpolate through
θ ∈ [0, π

2 ] by defining Z(θ) = cosθX + sinθY.

• Define Ψ(θ) = E[fβ(Z(θ))].
d

dθ
E[fβ(Z(θ))] = lim

h→0
�1

h
E[fβ(Z(θ + h)) − fβ(Z(θ))]�

Now, max
i

Zi(α) = 1
β log(eβmax

i
Zi(α)) ≤ fβ(Zi(α)) ≤ 1

β logk +max
i

Zi(α) for any α ∈[0, π
2 ]. Take h << 1. Since X, Y are given to have a.s bounded sample paths, any

particular Gaussian vector obtained by interpolation between them is also bounded
a.s. Also, there is no point in going forward if we are not prepared to accept that
Emax

i
Zi(α) <∞∀α because then there will be no useful meaning to the Theorem.

Hence, we accept that Emax
i

Zi(α) <∞∀α. Then,

1
h
�fβ(Z(θ + h)) − fβ(Z(θ))� ≤ 1

h
�fβ(Z(θ + h))∣ + 1

h
�fβ(Z(θ))∣

Each term after the last inequality can be bounded by 1
h
� 1
β logk + max

i
Zi(α)� or

1
h
�max

i
Zi(α)� for appropriate α which are integrable since Emax

i
Zi(α) < ∞∀α.

( 1
β logk +max

i
Zi(α) is just Z(α) shifted).

• Claim: Gaussian Integration by Parts is applicable for the first partial derivatives
of fβ. It is not trivial to check for subgaussian growth for fβ. Hence, we will have
to directly prove Result ?? holds. However, we only need to prove again the part
where subgaussian growth property of the function was required for Result ?? to
hold. The rest of the steps follow exactly as they do in the proof of Result ??.

Given X(0, EX2), to prove: E[Xf ′β(X)] = EX2E[f ′′β (X)] Starting from the left
hand side, and applying two facts, namely: p′(x) = −1

EX2 xp(x) where p(x) is the pdf
of X and f ∈ C2(R),

E(Xf(X)) = (−σ2)� ∞
−∞ (f(x)p(x))′dx + σ2E[f ′(X)].

obtained by product rule of differentiation,
E�Xp1(x)� = −EX2� lim

n→∞�p1(n)p(n)−p1(−n)p(−n)��+EX2E[p′1(x)] = EX2E[f ′′β (x)]
where p1(x) is as per the definition of pi’s above (here there is only one component).
Thus, we are done proving this claim.

• This implies we can use Theorem 1.2.5 to take the derivative inside expectation.
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Then,

Ψ′(θ) = E[ d

dθ
fβ(Z(θ))] = E� k�

i=1
d

dθ
(Zj(θ))∂fβ

∂zj

(Z(θ))�
= (−sinθ) k�

j=1E�Xj

∂fβ

∂zj

(Z(θ))� + (cosθ) k�
j=1E�Yj

∂fβ

∂zj

(Z(θ))�
= (cosθ)(sinθ) k�

i,j=1E� ∂2fβ

∂zizj

(Z(θ))�(EYiYj −EXiXj)
= (cosθ)(sinθ) k�

i,j=1(EYiYj −EXiXj)(E[βpi(Z(θ))δij] −E[pi(Z(θ))pj(Z(θ))])
= (cosθ)(sinθ){ k�

i=1(EY 2
i −EX2

i )E[pi(Z(θ))]− n�
i,j=1(EYiYj−EXiXj)E[pi(Z(θ)pj(Z(θ))]}

= (cosθ)(sinθ)� k�
i,j=1(EX2

i −EY 2
i )E[pi(Z(θ))pj(Z(θ))]

− k�
i,j=1(EYiYj −EXiXj)E[pi(Z(θ))pj(Z(θ))]�

= (cosθ)(sinθ)12[
k�

i,j=1[(E(Yi − Yj)2) −E(Xi −Xj)2]E[pi(Z(θ))pj(Z(θ))]]
where the 4th equality comes from Gaussian integration by parts. Now, it is given
that E(Yi − Yj)2 ≥ E(Xi −Xj)2∀i, j ∈ T and E[pi(Z(θ)pj(Zθ)] ≥ 0 �⇒ Ψ′(θ) > 0.

• �⇒ Efβ(X) ≤ Efβ(Y ) We chose an arbitrary β > 0 to define fβ. Therefore this
result is true for all β > 0. With the assumptions taken above that made DCT
applicable for E[fβ(X)] for any centred Gaussian random vector X representing a
process that has a.s bounded sample paths, we can take lim

β→∞ both sides and use
DCT to get

E∣∣X ∣∣ ≤ E∣∣Y ∣∣
. Hence proved.

Sudakov-Fernique Inequality Proof - II

Proof of Theorem 5.3.2 for general T. • Let X, Y be the centred Gaussian processes
satisfying the conditions given in the statement of the Theorem 5.3.2. As assumed
since 2.4, let T be separable. This means that ∃ countable dense subset T ′ ⊂ T .
Let T ′ = {t1, t2, ...} and Tn = {t1, ..., tn} for each n ∈ N.

• Claim 1: sup
t∈Tn

Xt
a.s�→ sup

t∈T ′Xt as n →∞.
For each � > 0; by definition of supremum, ∃ i ∈ N such that

Xti
> sup

t∈T ′Xt − � �⇒ sup
t∈Tn

Xti
> sup

t∈T ′Xt − � a.s ∀n ≥ i.
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This proves Claim 1.

• Now, fix � > 0. By definition of supremum and dense property of T’, ∃ t0 ∈ T ′ such
that Xt0 > ∣∣X ∣∣ − � a.s. Then, sup

t∈T ′Xt ≥ ∣∣X ∣∣ − � a.s �⇒ 0 ≤ ∣∣X ∣∣ − sup
t∈T ′Xt ≤ � a.s

Taking � ↓ 0, ∣∣X ∣∣ = sup
t∈T ′Xt a.s

Claim 1 then implies that sup
t∈Tn

Xt
a.s�→ sup

t∈T Xt = ∣∣X ∣∣ as n →∞ (7.3.1)

.

• Now, for each n, n + 1 ∈ N, E[sup
t∈Tn

Xt] ≤ E[ sup
t∈Tn+1

Xt] ≤ E[sup
t∈T Xt].

• For each n ∈ N, E[sup
t∈T Xt] ≤ E[sup

t∈T Yt]. Applying lim
n→∞ both sides, 1.2.4, and 7.3.1;

E∣∣X ∣∣ ≤ E∣∣Y ∣∣.



Chapter 6

Boundedness and Continuity

In real analysis, it is well-established how a continuous function defined on a compact
space is always bounded. The same is of course reflected in sample path properties of
Gaussian Processes. If X is a centred Gaussian process defined on a compact parameter
space T, and X has a.s sample path continuity; then X has bounded sample paths a.s.

If at all possible, under what conditions would the converse be true? This is the
question discussed in this chapter.

Lemma 6.0.1. Let X be a centred Gaussian on parameter space T, and t0 ∈ T , then;

Esup
t∈T Xt ≤ Esup

t∈T ∣Xt∣ ≤ E∣Xt0 ∣ + 2Esup
t∈T Xt

Proof. First Inequality:

Esup
t∈T Xt = E[max( sup

t∣Xt≥0Xt − inf
t∣Xt<0Xt)] ≥ Esup

t∈T Xt.

Second Inequality:

Esup
t∈T ∣Xt∣ = Esup

t∈T ∣Xt −Xt0 +Xt0 ∣ ≤ Esup
t∈T ∣Xt −Xt0 ∣ +E∣Xt0 ∣

Now, ∣Xt −Xt0 ∣ =max(Xt −Xt0 , Xt0 −Xt) ≤ max(sup
t∈T (Xt −Xt0),−inf

t∈T (Xt −Xt0)).
Note that at t = t0, (Xt −Xt0) = 0 �⇒ −inf

t∈T (Xt −Xt0), sup
t∈T (Xt −Xt0) ≥ 0.

Then, applying the property that max(a,b)≤a+b if a,b ≥ 0;

∣Xt −Xt0 ∣ ≤ max(sup
t∈T (Xt −Xt0),−inf

t∈T (Xt −Xt0)) ≤ ∣Xt0 ∣ + sup
t∈T (Xt −Xt0) − inf

t∈T (Xt −Xt0)
�⇒ Esup

t∈T ∣Xt∣ ≤ E∣Xt0 ∣ +Esup
t∈T (Xt −Xt0) −Einf

t∈T (Xt −Xt0)
65
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= Esup
t∈T ∣Xt∣ ≤ E∣Xt0 ∣ +Esup

t∈T Xt −Einf
t∈T Xt = E∣Xt0 ∣ + 2Esup

t∈T Xt

where the last equality follows because Xt
d= −Xt �⇒ Esup

t∈T Xt = Esup
t∈T (−Xt) = −Einf

t∈T .

Theorem 6.0.2. If X is a centred Gaussian process defined on parameter space T, 1)
P{Supt∈T Xt <∞} = 1 ⇐⇒ 2) Esupt∈T Xt <∞ ⇐⇒ 3) Eeα∣∣X ∣∣2 <∞ for small α > 0.

Proof.

1�⇒ 2: P{Supt∈T Xt <∞} = 1 �⇒ Esupt∈T Xt <∞ by Theorem 4.1.1.

2�⇒ 1: Esupt∈T Xt <∞ �⇒ P{Supt∈T Xt <∞} = 1 trivially.

2�⇒ 3:

Eeα∣∣X ∣∣2 = � ∞
0

P (eα∣∣X ∣∣2 > λ)dλ ≤ � E∣∣X ∣∣
0

P (eα∣∣X ∣∣2 > λ)dλ +� ∞
E∣∣X ∣∣P (eα∣∣X ∣∣2 > λ)dλ

≤ � E∣∣X ∣∣
0

dλ+� ∞
E∣∣X ∣∣P�∣∣X ∣∣ >

�
log(λ)

α
�dλ

T heorem≤
4.1.1

E∣∣X ∣∣+� ∞
E∣∣X ∣∣ 2exp�− 1

2σ2
T

(�log(λ)α−1−E∣∣X ∣∣)2�dλ

= E∣∣X ∣∣ + 4α � ∞
�

logE∣∣X ∣∣α−1

ue
− 1

2σ2
T

(u−E∣∣X ∣∣)2
e(αu2)du ≤ E∣∣X ∣∣ + 4α� ∞

0
ue

αu2− (u−E∣∣X∣∣)2
2σ2

T du.

where Theorem 4.1.1 is applicable because 2 ⇐⇒ 1 is assumed to be true. Note that

∫ ∞0 ue
αu2− (u−E∣∣X∣∣)2

2σ2
T du < ∞ �⇒ Eeα∣∣X ∣∣2 < ∞. The last integral indeed is finite for α > 0

sufficiently small such that α− 1
2σ2

T
<< 0 so that the last integral obtained can be restated

as the expectation of an appropriate Gaussian variable. Hence, proved.

3�⇒ 2: Check that as x goes to ∞, eαx2 ≥ x for any α > 0. This is trivially true for x < 0
as well. Let f be the pdf of ||X||. Then,

E[∣∣X ∣∣] ≤ � 0

−∞ xf(x)dx+� N

0
xf(x)dx+� ∞

N
xf(x)dx ≤ � 0

−∞ eαx2
f(x)dx+� N

0
xf(x)dx+� ∞

N
eαx2

f(x)dx

This 1st and 3rd terms are bounded because of 3 holding, and the 2nd term is trivially
finite. Hence, proved.

Remark 6.0.1. From Lemma 6.0.1 and Theorem 6.0.2, note that:
sup
t∈T ∣Xt∣ <∞ a.s �⇒ Esup

t∈T ∣Xt∣ ⇐⇒ E∣∣X ∣∣ <∞ ⇐⇒ sup
t∈T Xt <∞ a.s. Hence, bounded-

ness of the mod process is equivalent to boundedness of the process itself.
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Before moving to the next section, recall the canonical metric defined earlier in Defi-
nition 3.1.1.

6.1 Relationship between Boundedness and Continu-
ity

The following result describes not only answers the question of ’what conditions can imply
continuity given boundedness, of sample paths a.s. ?’ but also provides more specific
information which will be discussed after the result is stated.

Theorem 6.1.1. If X is a.s bounded on T and τ is a metric on T such that the canonical
metric d is τ -uniformly continuous. Then, X is τ -uniformly continuous a.s iff lim

η→0
φτ(η) =

0 where φτ(η) = E sup
τ(s,t)<η(Xs −Xt).

Proof. �⇒ )
Say X is τ -uniformly continuous a.s.

�⇒ P{ω∣lim
η→0

sup
τ(s,t)<η∣Xs(ω) −Xt(ω)∣ = 0} = 1.

∴ For each ω ∈ Ω′ ⊂ Ω such that Ω′ = {ω∣lim
η→0

sup
τ(s,t)<η∣Xs(ω) −Xt(ω)∣ = 0},

lim
η→0

sup
τ(s,t)<η(Xs(ω) −Xt(ω)) = 0 (6.1.1)

Now, X is a.s bounded. By Theorem 6.1.1, E∣∣X ∣∣ <∞. And for any η > 0,

E sup
τ(s,t)<η(Xs −Xt) ≤ Esup

s,t∈T(Xs −Xt) ≤ 2E∣∣X ∣∣ <∞ (6.1.2)

Then,
lim
η→0

φτ(η) = lim
η→0

E sup
τ(s,t)<η(Xs −Xt) = E�lim

η→0
[ sup

τ(s,t)<η(Xs −Xt)]� = 0

since (6.1.2) allows the use of DCT to take limit inside expectation, and (6.1.2) implies
the last equality to zero.

⇐� )
Now say, d is τ -uniformly continuous and lim

η→0
φτ(η) = 0. Then, for each n ∈ N, ∃ ηn > 0,

such that {ηn}n∈N is a decreasing sequence,

τ(s, t) < ηn �⇒ d(s, t) < 2−n for any s, t ∈ T and for each n ∈ N, (6.1.3)

and ∣φτ(ηn)∣ < 2−n and for each n ∈ N. (6.1.4)
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Now, consider An = {ω∣ sup
τ(s,t)<ηn

∣Xs(ω)−Xt(ω)∣ > 2−n
2 } for each n ∈ N. X is a.s bounded on

T. Then, by Theorem 4.1.1, for any n ≥ 3;

P{An} ≤ 2exp� −1
2σ2

T

( 1
2n

2
− φτ(ηn))2�

where

σ2
T = sup

τ(s,t)<ηn

E(Xs −Xt)2 ≤ sup
d(s,t)<2−n

E(Xs −Xt)2 = sup
d(s,t)<2−n

d2(s, t) < 4−n. (6.1.5)

(by using (6.1.3)). Then, continuing on the same, for n ≥ 3,

P{An} ≤ 2exp� −1
2σ2

T

(2−n
2 −φτ(ηn))2� (6.1.5)≤ 2exp�−4n

2 (2−n
2 −φτ(ηn))2� (6.1.4)≤ 2exp�−4n

2 (2−n−2n
2 )2�

= 2e−2n−1−2−1+2
−3n

2 ≤ 2e−2n−1−2−1+1 = 2e−2n−1+2−1
.

Then, ∞�
n=3P (An) ≤ 2e0.5

∞�
n=3e

−2n−1 ≤ 2e0.5
∞�

n=3
1

2n−1 <∞ Result�⇒
1.2.4

P (limsup
n→∞ An) = 0

Now, as n →∞, ηn → 0.

∴, P (limsup
n→∞ An) = 0 �⇒ P ({ω∣lim

η→0
sup

τ(s,t)<η∣Xs(ω) −Xt(ω)∣ > 0}) = 0

�⇒ X is τ -uniformly continuous a.s.

6.2 Implications on Continuity

Theorem 6.1.1 gives an ’if and only if’ condition for continuity. Note that it does not
only tell about d-metric but also about any metric with respect to which d is uniformly
continuous. Further, it tells us about ’uniform continuity’ and not just continuity.

Corollary 6.2.1. Let X be a.s bounded on T and τ is a metric on T such that the
canonical metric d is τ -uniformly continuous, and limη→0φτ(η) = 0. Then, for all � > 0,∃
an a.s finite random variable δ = δ(ω) such that, for almost all ω,

Wτ(η) = sup
τ(s,t)<η∣Xs −Xt∣ ≤ φτ(η)∣log φτ(η)∣�,

for all η ≤ δ(ω). That is, φτ(.)∣log φτ(.)∣� is a uniform sample modulus for X in the metric
τ .
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The proof of this corollary is similar to the proof of the Theorem 6.1.1 and is not
required to appreciate the result. This essentially gives a bound on the τ -modulus of
continuity of X. The theorem is thus not only giving a relationship between boundedness
and continuity but also providing finer details about the modulus of uniform continuity.

Gaussian process theory is also very rich in ’zero-one’ laws. Though the proofs are
highly involved, here are some interesting results stated without proof that give a lot of
information about the continuity question for any general Gaussian process.

Theorem 6.2.2. For a Gaussian process X on T, P{lim
s→t

Xs =Xt for all t ∈ T} = 1 ⇐⇒
P{lim

s→t
Xs =Xt} = 1, for each t ∈ T .

This theorem is analogous to saying a function in real analysis is uniformly continuous
iff it is continuous at each point in the domain. Uniform continuity implying continuity at
each point is trivial. However, the converse implication is what is remarkably interesting.

Theorem 6.2.3. For a Gaussian process X on T, P{X is continuous for all t ∈ T} = 0
or 1.

Coupled with the previously stated theorem, this result says that a Gaussian process
has either uniformly continuous sample paths a.s or is discontinuous a.s. There is no
other possibility.

While the analysis of continuity might be the most routine and mundane, it still
appears interesting in the context of Gaussian processes. Part II concludes on this note.
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Part III

Attacking the Sample Path
Continuity Question

71





Part II began with an introduction to the modern theory, especially the concept of ’En-
tropy’ and Theorem 3.2.1. So far, this report has emphasised on several results useful
in analysing the distribution of suprema,and boundedness of Gaussian processes. Part II
also shed light on the apparent relationship between a.s boundedness and a.s continuity
of sample paths of Gaussian processes. All of this makes us ready for a detailed discussion
on 3.2.1. However, before that, the other half of the backbone of the ’General Theory’ is
required.

Part III introduces ’Majorising Measures’, which along with entropy forms the basis
of the modern approach to analysing continuity and suprema of Gaussian processes.
Majorising measures, much stronger than entropy in the way they measure size, give very
strong results and implications for continuity and boundedness. Some of these are also
stated in Part II. The major highlight with majorising measures here is a result that
validates our background setup in this report. However, the focus of this report is still
the Main Entropy Result and this introduction to majorising measures is made only in
the context of proving Theorem 3.2.1. Since majorising measures are harder to visualise,
construct and handle, the entropy result makes up for not being as strong as majorising
measures.

The relative convenience of the entropy argument to establish almost sure continuity
whilst providing several direct/indirect applications and implications is best felt by noting
some actual examples. For this very reason, Part III then covers specific examples of the
consequence(s) of applying the Main Entropy Result to analyse Brownian Sheet Processes
on different parameter spaces, the Gaussian process on R, the set-indexed processes,
random fields, and function-indexed processes. The focus in these examples is on the
development of suitable bounds, the simplicity of the entropy integral argument, the
applicability on processes with very different geometry, the mathematical implications,
and the power of a modern attitude.

This part shows that several complicated processes defined on complicated parameter
spaces can be treated with the same tools without any discrimination. This proves the
might of the modern theory.
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Chapter 7

Revisiting the Main Result

Coming back to the introduction of the Modern Approach, and the Main Result of this
report (Theorem 3.2.1), there is another tool apart from ’entropy’ that is a huge deal for
the ’General Theory’. In fact, it is this tool that is far more powerful. This tool is called
’Majorising Measure’. Like entropy, it also is a way to measure the ’size’ of the parameter
space. Here, majorising measures will only be used to prove the Main Result featuring
Entropy.

7.1 Majorising Measures, the Mighty

What are they?

Consider a centred Gaussian process on parameter space T in line with the assumptions
in 2.4, and 3.2 which refers to the assumption taken that T is totally bounded in the
canonical metric, d.

Define a probability measure m ∶ BT → [0, 1] where BT denotes the Borel σ-algebra of
T.

Define a function g ∶ (0, 1]→ R+ ∪ {0} such that

g(t) =
�

log(1
t
), 0 < t ≤ 1.

For any s ∈ T, � > 0;

Bd(t, �) = {s ∈ T ∣d(s, t) < �} (Open d-ball of radius � around t).
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Definition 7.1.1. Majorising Measure
If

sup
t∈T � ∞

0
g(m(Bd(s, �)))d� <∞, (7.1.1)

then m is called a majorising measure for (T, d).

Remark 7.1.1. For the entire discussion on majorising measures, assume that the
diam(T) in the d-metric is strictly positive. This is because, if diam(T)=0, then for
any � > 0;

T ⊂ Bd(t, �) �⇒ m(Bd(t, �)) = 0
and the integral in (7.1.1) vanishes, thus making every probability measure a valid ma-
jorising measure trivially anyways.

Remark 7.1.2. Note that for any � > diam(T ), t ∈ T ; T ⊂ Bd(t, �) �⇒ m(Bd(t, �)) = 0.
∴ it suffices to check that

sup
t∈T � diam(T )

0
g(m(Bd(s, �)))d� <∞

holds to conclude that m is a majorising measure. This boils down every problem of
verifying whether a measure is a majorising measure to just having to check the finiteness
sup
t∈T ∫ δ

0 g(m(Bd(s, �)))d� for any δ > 0 close to 0.

Majorising measures are not as intuitive as entropy. Even their construction is very
difficult. In fact, there has been no generally applicable method found to construct a
majorising measure.[1]

However, majorising measures have been found to be an important and strong tool to
study boundedness and especially continuity of general Gaussian processes. To appreciate
this fact, note that majorising measure-based arguments give necessary and sufficient
conditions for a.s sample path continuity of any general Gaussian process defined on a
totally bounded(in d) metric space.

How do they work?

To get a rough idea of how they work, focus on the integral in (7.1.1). If m is a majorising
measure, then every such integral defined for any t ∈ T must be finite.
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As � ↓ 0, g(m(Bd(t, �))) ↑ ∞ and m(Bd(t, �)) ↓ 0. For the integral to be finite, this
means that the rate of decrease in the measure of d-balls must be more than the rate
of divergence of g(x) as x goes to 0, so as to control the integral. And since (7.1.1)
has a supremum involved, the integral must be controlled at all points of T for a valid
majorising measure.

Roughly, this implies that a majorising measure puts as much ’mass’ as possible
wherever d-balls are small. Then m can vaguely be thought to assign ’point’-masses to
each point in the parameter space, to an extent that a larger set in the σ-algebra only
has a slight increase in its measure when compared to the measure of a much smaller
ball. This will control the growth of g(m(Bd(t, �))) as � ↓ 0.

Now, if we have a process with the covariance function having some rough patches
here and there, the small d-balls in those regions are going to show more irregularities
than larger d-balls. This is because roughness is observed locally and hence, the larger the
d-ball, the lesser the effect of roughness. This idea gives a greater meaning to majorising
measures. Since majorising measures give as much weight as possible to small d-balls
to such an extent that they ensure (7.1.1) holds; this also means that they are able to
control the effect of irregularities in the smallest d-balls across the entire parameter space.
This includes regions where the covariance function is rough(er). To clarify again, if (T,d)
admits a majorising measure, the finiteness in (7.1.1) implies controlled irregularities even
at the roughest regions of the parameter space. And this should go on to imply that X
is a.s bounded over T.

This rough attempt at understanding majorising measures leads us to an important
result which more strongly and rigorously establishes the idea discussed here.

Boundedness

Theorem 7.1.1. Let m be a probability measure on (T,d). Then,

E∣∣X ∣∣ ≤ Ksup
t∈T � ∞

0
g(m(Bd(t, �)))d�

for some universal constant K ∈ (1,∞).

Proof. The proof of this Theorem is too involved and is irrelevant to the goal of this
Report. Hence, only the idea of the proof is stated here.

Instead of directly working with X, a process Y is defined on the same parameter
space such that E(Xs − Xt)2 ≤ E(Ys − Yt)2 and Y has a simpler structure. A suitable
bound that lets us prove the result is obtained on E∣∣Y ∣∣. Sudakov-Fernique Inequality
(Theorem 5.3.2) is applied to argue that the same bound works for E∣∣X ∣∣.
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Remark 7.1.3. Again, the upper limit of the integral in the bound of Theorem 7.1.1
can be taken as diam(T) for the same reason given in Remark 7.1.2.

Remark 7.1.4. Note that if (T,d) admits a majorising measure, then E∣∣X ∣∣ <∞. Theo-
rem 6.0.2 further implies that X is a.s bounded on T. This is in line with the idea discussed
earlier that the existence of a majorising measure must somehow imply boundedness.

Remark 7.1.5. A converse result of Theorem 7.1.1 also exists. If X is bounded with
probability one, then ∃ a probability measure m on (T,d) satisfying

K−1sup
t∈T � ∞

0
g(m(Bd(t, �)))d� ≤ E∣∣X ∣∣.

for an appropriately chosen K.

Remark 7.1.6. With Theorem 7.1.1 and the previous remark, we can conclude that X
is a.s bounded on T if and only if (T,d) admits a majorising measure.

Remark 7.1.7. Yes, the goal is to prove a sufficient condition for continuity of general
Gaussian processes and Theorem 7.1.1 seems to be more centred around ’boundedness’
rather than continuity. However, the intricate relationship between boundedness and
continuity of a Gaussian process has been established already. We will see how Theorem
7.1.1 helps with continuity next.

Continuity

The following result provides a nice sufficient condition for a.s boundedness and continuity
of X on T. It requires use of the Theorems 7.1.1 and 6.1.1.

This theorem is going to be used directly in the proof of the Main Entropy Result
3.2.1.
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Theorem 7.1.2. Let where γm(η) = sup
t∈T ∫ η

0 g(m(Bd(t, �)))d�.

Let X be a centred Gaussian process on T. If there exists a probability measure m on
(T,d) such that lim

η→0
γm(η) = 0, then X is a.s bounded and uniformly continuous.

Remark 7.1.8. The converse also holds, giving rise to an ’if and only if’ result. So, the
following holds.

A centred Gaussian process X on T is a.s bounded and uniformly continuous if and
only if there exists a probability measure m on (T,d) such that

lim
η→0

γm(η) = 0.

Since the other direction is not required for the goal of this report, it shall not be
proved.

Remark 7.1.9. There is a stronger version of the ’if and only if’ result mentioned in
Remark 7.1.8 which states that X will be almost surely bounded and uniformly continuous
on an arbitrary metric space (T,d) if and only if T is totally bounded in the d-metric and
lim
η→0

γm(η) = 0.

This is interesting because this implies that the assumption we took in Section 3.2
that T is totally bounded in the d-metric does not deny us of any Gaussian processes
that we may seek to analyse sample path continuity or boundedness of. And any totally
bounded metric space is separable. Hence, this stronger version validates the ’generality’
of whatever is covered in this report, in spite of taking the assumptions we took in 2.4
and 3.2.

Here, it is clear that majorising measures strongly and efficiently characterise the a.s
sample path continuity of Gaussian processes.

When Theorem 3.2.1 was introduced, a remark also introduced a function based on
the entropy result that serves as a modulus of continuity. Then, for a tool as strong as
majorising measures, one should expect it to provide a modulus of continuity too. This
is indeed the case.
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Proof of Theorem 7.1.2

Proof. Given a centred Gaussian process X on T under the assumptions in 2.4 and 3.2.
Given there exists a probability measure m on (T,d) such that lim

η→0
γm(η) = 0.

• To Prove: X is a.s bounded.
Given lim

η→0
γm(η) = 0. �⇒ ∃η > 0 such that γm(η) <∞.

Then, by Theorem 7.1.1, ∃K > 1 such that

E∣∣X ∣∣ ≤ Ksup
t∈T � ∞

0
g(m(Bd(t, �)))d�

=Kγm(η) +Ksup
t∈T � diam(T )

η
g(m(Bd(t, �)))d� +Ksup

t∈T � ∞
diam(T ) g(m(Bd(t, �)))d�

where the second term is trivially finite and the third term vanishes. Hence, E∣∣X ∣∣ <∞. By Theorem 6.0.2, X is a.s bounded.

• To Prove: X is a.s uniformly continuous. Define φd(η) = E sup
d(s,t)<ηE(Xs −Xt).

By Theorem 6.1.1, since X is proven to be a.s bounded and d is trivially d-uniformly
continuous, it suffices to prove that lim

η→0
φd(η) = 0.

Define U = {(s, t) ∈ T × T ∣d(s, t) < η}.
Define a two-parameter process on T × T , Y as Y(s, t) = Xs − Xt. Then, Y is a
centred Gaussian process.
Define a metric d′ on T × T → R+ ∪ {0} as

d′((s, t), (s′, t′)) =�E[(Xs −Xt) − (Xs′ −Xt′)]2 =�E[Y (s, t) − Y (s′, t′)]2
which is essentially the canonical metric on T × T .
Observation 1: Now, note that for (s, t) ∈ T ×T, the open ball in d′-metric is defined
as

Bd′((s, t), �) = {(s′, t′)∣d′((s, t), (s′, t′)) < �}
If s′ ∈ Bd(s, �

2) and t′ ∈ Bd(t, �
2), then by the triangle inequality property of d′,

d′((s, t), (s′, t′)) ≤ d′((s, t), (s, s)) + d′((s, s), (s′, t′))
=�E[(Xs −Xt) − 0]2 +�E[(Xs′ −Xt′) − 0]2 = d(s, t) + d(s′, t′) < �

2 + �

2 = �.

�⇒ Bd(s, �
2) ×Bd(t, �

2) ⊂ Bd′((s, t), �)
Observation 2: Let

d′((s, t), U) = inf(s′,t′)∈Ud′((s, t), (s′, t′))∀(s, t) ∈ T × T.

Since U is closed, the infimum in the definition of d′((s, t), U) is achieved. That is,
for every (s, t) ∈ T ×T,∃(s′, t′) ∈ U such that d′((s, t), (s′, t′)) = d′((s, t), U). Define
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φ on T ×T such that φ((s, t)) = (s′, t′) ∈ U such that d′((s, t), (s′, t′)) = d′((s, t), U).
Now note that for any (s, t) ∈ U, (s′, t′) ∈ T × T ;

d′((s, t), φ(s′, t′)) ≤ d′((s, t), (s′, t′))+d′((s′, t′), φ(s′, t′)) = d′((s, t), (s′, t′))+d′((s′, t′), U)
Since (s, t) ∈ U, d′((s′, t′), U) ≤ d′((s′, t′), (s, t)) �⇒ d′((s, t), φ(s′, t′)) ≤ d′((s, t), (s′, t′)).
Then, for any (s, t) ∈ U , if (s′, t′) = φ((s′′, t′′)) for some (s′′, t′′) ∈ T × T , then;

d′((s, t), (s′t′)) = d′((s, t), (s′′, t′′)) ≤ 2d′((s, t), (s′′, t′′)) < 2�

∴,∀(s, t) ∈ U, φ(Bd′((s, t), �)) ⊆ U ∩Bd′((s, t), 2�).
Observation 3: Consider g as defined for the definition of a majorising measure.
Then, g(xy) =√−logx − logy
Case 1: If x, y ≤ 1, then −logx,−logy ≥ 0 �⇒ g(xy) ≤ g(x) + g(y). Case 2: If
x ≤ 1, y > 1, then −logy < 0 �⇒ g(xy) ≤ g(x) < 2g(x).
Now, define set-function µ on the Borel σ-algebra of U taken as a subspace of T×T,
by µ(A) = (m ⊗ m) ○ φ−1(A) where m ⊗ m is the product measure based on the
probability measure, m on T.
µ(U) = (m⊗m) ○ φ−1(U) = (m⊗m)(T × T ) = 1
µ(∞∪

j=1Ej) = (m⊗m)(∞∪
j=1φ−1(Ej)) = ∞∑

j=1(m⊗m)(φ−1(Ej)) = ∞∑
j=1µ(Ej) for any countable

disjoint collection of subsets {Ei}∞i=1 of U. The second-last equality follows because{φ−1(Ej)}∞j=1 is a countable disjoint collection of subsets in T × T . Hence, µ is a
valid probability measure on the subsets of U.
And, for all (s, t) ∈ U ;

m(Bd(s,
�

2))m(Bd(t, �

2)) = (m⊗m)(B(s,
�

2) ×B(t, �

2)) ≤ (m⊗m)(Bd′((s, t), �))
≤ (m⊗m)(φ−1(U ∩Bd′((s, t), 2�)) = µ(U ∩Bd′((s, t), 2�)).

where the two inequalities follow from the Observations 1 and 2.
Then, by Theorem 7.1.1, noting that by definition of U, diam(U) ≤ 2η;∃K > 1 such
that

φd(η) ≤ K sup(s,t)∈U �
2η

0
g(µ(Bd′((s, t), �)))d�

≤ K sup(s,t)∈U �
2η

0
g(m(Bd(s,

�

4))m(Bd(t, �

4)))d�

≤ 4 sup(s,t)∈T×T
� η

2

0
g(m(Bd(s, �))m(Bd(t, �)))d�

≤ 8sup
t∈T � η

2

0
g(m(Bd(t, �)))d� = 8Kγm(η2).

where the inequalities follow from Observations 1,2, and 3.
Then, as η → 0, γm(η) → 0 �⇒ φd(η) = 0. Hence, by Theorem 6.1.1, X is a.s
uniformly continuous.
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7.2 Proof of The Main Entropy Result

It is finally time to discuss the Main Result of this Report and it’s proof.

In the last section, enough information has been provided to justify that majorising
measures are an efficient tool to characterise a.s sample path continuity of general Gaus-
sian processes. At the same time, majorising measures are also difficult to work with.
It is not a trivial task to construct a majorising measure on a general metric space, and
there is no known method to do so.

However, the concept of entropy- though not as efficient as majorising measures-
can be used to characterise a.s continuity of sample paths. Entropy is a much simpler
concept compared to majorising measures and is thus, easier to deal with. In the following
chapters of Part III, some applications of the entropy arguments-based Theorem 3.2.1 are
discussed. These applications will show how the entropy tool can be used to attack the
continuity problem in very differently indexed Gaussian processes. The simplicity of the
specific results that can be derived for a specific family of processes from the ’General’
Main Result prove the ’ease’ of using the entropy-based argument.

Before moving on to the Proof of the Result, a Lemma that is required to prove the
Result is stated and proved.

The Theorem 3.2.1 is restated below for convenience.

Theorem 3.2.1 Statement

Let X be a centred Gaussian process on an arbitrary metric space T. Recall the assump-
tions taken in 2.4 and 3.2.
Define N(�) be the smallest number of closed d-balls of radius � required to cover T.
Define H(�) = log(N(�)), this is called the metric entropy function for T. Then,

� ∞
0
(H(�)) 1

2 d� = � ∞
0
(log(N(�))) 1

2 d� <∞ �⇒ X has a.s sample path continuity.

To prove, we need Theorem 7.1.2 and a Lemma that is stated below.

Lemma 7.2.1. If ∫ ∞0 (H(�)) 1
2 d� < ∞, then ∃ a majorising measure m and a universal

constant K ∈ (1,∞) such that
sup
t∈T � η

0
g(m(Bd(t, �)))d� <K�η∣log η∣ + � η

0
(H(�)) 1

2 d��,
for all η > 0.
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Idea of Proof of Lemma 7.2.1: Let diam(T) = 1. For each n ≥ 0, let {A
(n)
1 , A

(n)
2 , ..., A

(n)
N(2−n)}

be a minimal family of d-balls of radius 2−n that covers T .

Let
B
(n)
k = A

(n)
k � ∪

j<k A
(n)
j for each n ∈ N, k ∈ NN(2−n).

Note that for each k, B
(n)
k ≠ φ by the ’minimality’ in the construction of {A(n)k }2−n

k=1.
Then, for each n, we have a partition, {B(n)k }2−n

k=1 of T . For each n, k; choose a sequence
of points, {tn,k} ⊂ T such that each tn,k ∈ B

(n)
k .

Define a set-function on the power set of T as

m(E) = 1
2
∞�

n=0
1

2nN( 1
2n )

N( 1
2n )�

k=1 χE(tn,k),
where for any set A ⊂ T , for any t ∈ T ; χA(t) = 1 if t ∈ A and χA(t) = 0 otherwise. Then,

1. m(φ) = 0 trivially

2. m(T ) = 1
2

∞∑
n=0

1
2nN( 1

2n )
N( 1

2n )∑
k=1 χT (tn,k) = 1

2

∞∑
n=0

1
2nN( 1

2n )(N( 1
2n )) = 1

2

∞∑
n=0

1
2n = 1.

3. Let {Ei}∞i=1 be any countable collection of disjoint subsets of T . Then,

m(∞∪
i=1Ei) = 1

2
∞�

n=0
1

2nN( 1
2n )

N( 1
2n )�

k=1 χ∞∪
i=1

Ei
(tn,k)

= 1
2
∞�

n=0
1

2nN( 1
2n )

N( 1
2n )�

k=1
∞�
i=1χEi

(tn,k)
= 1

2
∞�

n=0
1

2nN( 1
2n )

∞�
i=1

N( 1
2n )�

k=1 χEi
(tn,k)

= 1
2
∞�

n=0
∞�
i=1

1
2nN( 1

2n )
N( 1

2n )�
k=1 χEi

(tn,k)
= ∞�

i=1�
1
2
∞�

n=0
1

2nN( 1
2n )

N( 1
2n )�

k=1 χEi
(tn,k)� = ∞�

i=1m(Ei)
where the third and fourth equalities follows from the Fubini’s Theorem for Infinite
Series which is applicable twice because for each n ∈ N,

�(k,i)∈{1,2,...,N( 1
2n )}×N

χEi
(tn,k) ≤ N( 1

2n
) <∞

and,

�(n,i)∈(N∪0)×N
1

2nN( 1
2n )

N( 1
2n )�

k=1 χEi
(tn,k) ≤ �(n,i)∈(N∪0)×N

1
2nN( 1

2n )N( 1
2n
) = 2 <∞.
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. Hence, the set-function m is a valid probability measure on (T , d).

Now, note that for each t ∈ T , if � ∈ (2−(n+1), 2−n], then
m(Bd(t, �)) ≥ (2n+1N(2−(n+1))−1.

This implies that ∀t ∈ T, n ≥ 0;

� 2−n

0

�(log(1/m(B(t, �))))d� ≤ ∞�
k=n+1

2−k
�

log(2kN(2−k))
≤ ∞�

k=n+1
2−k

�
klog(2) + 2� 2−n

0

�
log(N(�))d�

≤ (n + 2)2−n
�

log2 + 2� 2−n

0

�
log(N(�))d�.

We know that for any non-dyadic number, we can find a dyadic sequence that converges
to it. This fact can be used to conclude the proof.

Remark 7.2.1. The above Lemma is very important because it relates entropy to ma-
jorising measures. Using this lemma, not only Theorem 3.2.1, but many other entropy
arguments-based results can be implied by results involving majorising measures.

Proof of Theorem 3.2.1:

Now we have everything required to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Let m be a probability measure on (T,d). Let γm(η) =
sup
t∈T ∫ η

0 g(m(Bd(t, �)))d�.

By Theorem 7.1.2, it is sufficient to prove that γm(η)→ 0 as η → 0.

Now, by Lemma 7.2.1, ∃ a majorising measure µ and a universal constant K such that

γµ(η) <K�η∣log η∣ + � η

0
(H(�)) 1

2 d��, (7.2.1)

for all η > 0.

Given, ∫ ∞0 (H(�)) 1
2 d� <∞.

Then, applying lim
η→∞ to both sides of the inequality (7.2.1) causes the right hand side to

converge to 0. Hence, lim
η→∞γm(η) = 0.

Hence, proved.
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Remark 7.2.2. There is more that can be said from the entropy condition,∫ ∞0 (log(H(�))) 1
2 d� <∞: that ∃ a universal constant K such that

E∣∣X ∣∣ ≤ K � ∞
0
(log(H(�))) 1

2 d�.

Note that if we take η = diam(T ) in lemma 7.2.1, we get that

sup
t∈T � diam(T )

0
g(m(Bd(t, �)))d� <K�diam(T ) ∣log(diam(T ))∣ + � diam(T )

0
(H(�)) 1

2 d��
≤ M � diam(T )

0
(H(�)) 1

2 d�

for some M such that

M

2 >max�diam(T) log( diam(T))
� ∫ diam(T )

0 (H(�)) 1
2 d�� , K�

.

Remark 7.2.3. While Remark 7.2.2 gives an upper bound for E∣∣X ∣∣ using an entropy
condition, there is also a result due to Sudakov (1971) which gives a lower bound for
E∣∣X ∣∣ that involves entropy conditions,

Ksup
�

� (log(N(�))) 1
2

. The proof of this result involves a clever application of Theorem 5.3.2.

Theorem 3.2.1 gives only one direction. Is the converse true? The result below tells
that it is true for stationary Gaussian processes.

Result 7.2.1. Let X be a stationary Gaussian process on a compact subset of an infinite
group or a compact group. Then,

X is a.s bounded on T ⇐⇒ X is. a.s continuous on T ⇐⇒ � ∞
0

�
log(H(�)) <∞.

So, for stationary processes we have a strong result using an easier tool entropy,
whereas in general, we still have to depend on majorising measures for the most strongest
results.
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This concludes the discussion on the Main Result. It is now time to check out the
modern theory in play. The first applications we see are on Gaussian White Noise pro-
cesses, in the next chapter.



Chapter 8

The Brownian Family of Processes

The Brownian Family is of great interest in several disciplines. From modelling the
random motion of particles, to statistical tests in inference, Brownian processes find
importance in several investigations of science. Let us see how the Entropy Result deals
with Brownian Processes.

8.1 Gaussian White Noise Processes

Definition 8.1.1. Let (E, ε, ν) be a σ-finite measure space. A Gaussian White Noise
based on ν is a random set function W on the sets A ∈ ε of finite ν-measure such that:
i) W(A) is a centred Gaussian random variable and EW 2(A) = ν(A) <∞
ii) A ∩ B = φ �⇒ W(A ∩ B) = W(A)+W(B) a.s.
iii) If A ∩ B = φ, then W(A) and W(B) are independent.

Note that here, we are focusing on a set-indexed process, {W (A)∣A ∈ ε}. To be convinced
of whether such a process exists, let us look at the covariance function.

Remark 8.1.1. Define Rν ∶ ε × ε → R+ ∪ {0} as
Rν(AxB) = EW (A)W (B) = ν(A ∩B)

For any Ai’s ∈ ε and αi’s ∈ R;
�
i,j

αiRν(Ai, Aj)αj =�
i,j

αiαjν(Ai∩Aj) =�
i,j

αiαj �
E

χAi
χAj

dν = �
E
(�

i

αiχAi
)(�

i

αjχAj
)dν

= �
E
(�

i

αiχAi
)2dν ≥ 0

87
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where χA(x) = 1 if x ∈ A and 0 otherwise. Clearly Rν is positive definite and is hence a
well-defined covariance function. Therefore, it determines a well-defined centred Gaussian
process, W on ε.

Remark 8.1.2. From (ii) in Definition 8.1.1, it seems like the Gaussian White Noise, W
behaves as a random signed measure.

Remark 8.1.3. Because of the property (iii) in Definition 8.1.1, W is said to have
’independent increments’.

The Canonical Metric: Now that the Gaussian White Noise Process has been
defined, the canonical metric in ε here,

d(A, B) =�E{W (A) −W (B)}2 =�ν(A) + ν(B) − 2ν(A ∩B) =�ν(AΔB)
Now, we see some specific examples of Gaussian White Noise Processes.

The Brownian Sheet

What is it?

Take E = Rk+ = {t ≡ (t1, t2, ..., tk)∣ t′is ≥ 0}, ε =BRk+ , ν = λ where λ is the Lebesgue measure
associated with Rk+. Consider the Gaussian White Noise on (Rk+,BRk+ , λ).

Convention: Define an analogue of ’intervals’ in Rk+ in the following manner:
-(a,b] = k

Π
i=1(ai, bi] where for each i, (ai, bi] is an interval in R.

-[a,b] = k

Π
i=1[ai, bi] where for each i, [ai, bi] is an interval in R.

-(a,b) = k

Π
i=1[ai, bi) where for each i, [ai, bi) is an interval in R.

-(a,b) = k

Π
i=1(ai, bi) where for each i, (ai, bi) is an interval in R.

for a, b ∈ R+k , ai’s, bi’s ∈ R+.
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Definition 8.1.2 (Brownian Sheet Process). The Process {Wt = W ((0, t])∣t′is ≥ 0} is
called the Brownian Sheet Process.
Covariance function R(s, t) = EWsWt = λ((0, s] ∩ (0, t]) = k

Π
i=1min{si, ti}

Definition 8.1.3 (Pinned Brownian Sheet Process). Further, the process defined by
W̊t =Wt − ∣t∣W1, where ∣t∣ = Πi=k

i=1ti), is called the pinned Brownian sheet process.

Observations and Remarks

1. Now, take k = 1. Then,
- EW 2

0 = λ({0}) = 0 �⇒ W0 = 0.
- W has independent increments by definition 8.1.1 and 8.1.2.
- Wt ∼ N(0, ct) where c = 1. Thus, the following remark is made.

Remark 8.1.4. When k = 1,{Wt ∶ t ≥ 0} is the standard Brownian Process.

2. For any k > 1, if we think of W as a signed random measure (as remarked in 8.1.2),
then we can visualise Wt as a distribution function,

Wt =W ((0, t]) = � t

0
W (dx).

Note that W (dx) and integration of a random variable do not make sense without
studying of stochastic calculus. This is just an interesting way to look at the
Brownian Sheet since a distribution function essentially ’covers’ the domain, and
is not exactly accurate. This visualisation does justice to calling these processes
’Sheets’.

3. When k > 1, if we fix the indices so that we consider the Brownian Sheet process
only on one axis, say (t, 0, 0, ..., 0); then

EW 2
t = k

Π
i=1ti = 0 �⇒ Wt = 0

since t2, ..., tk = 0. Again, W here is behaving like a measure.

4. For any k>1, if we fix k-1 indices, then the process reduces to a 1-D Brownian
Motion. To verify this, say we fix t2, ..., tk. Then, the process is defined on the first
coordinate as {Wt =W ((0, t2, .., tk), (t, t2, ..., tk))∣t ≥ 0}.
Then, EW 2

t = t x
k

Π
i=2(ti). Therefore, Wt ∼ N(0, ct) where c = k

Π
i=2ti, thereby giving a

scaled 1-D Brownian motion (standard if c =1).
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5. Consider a 1-D pinned Brownian Sheet process, W̊t = Wt − tW1. Notice that W̊1 =
W1 −W1 = 0. And W̊0 = 0. This means that the process fluctuates across (0,1) but
is pinned to 0 at 0 and 1. This is why the process is called a pinned Brownian
Motion. Extending to k > 1, the process is pinned along the boundary of [0, 1]k.
(Easy to check)

Motivation

Brownian Processes appear in multivariate statistics, non-parametric inference, empirical
process theory and so on. This makes their analysis, especially of sample path continuity,
important. Some interesting results where they appear and are useful are described below.

Result 8.1.1. Let Zk+ be the k-dimensional integer lattice in Rk+, and {Xi}i∈Zk+ be an
iid sequence of random variables with EX2

i = 1. Let n(t) = {i ∈ Zk+ ∶ 1 ≤ ij ≤ [ntj]; j =
1, 2, 3, ..., k} for each t ∈ [0, 1]k where [x] refers to the integer part of x. Then,

1
n

k
2
�

i∈n(t)Xi
d�→ Wt; t ∈ [0, 1]k

where Wt is the Brownian Motion.

Proof. Now, for any k, fix t ∈ [0, 1]k. Then, applying Theorems 2.1.4 and 1.2.1, we get

1
n

k
2

[nt1]�
i1=1

[nt2]�
i2=1

[nt3]�
i3=1 ...

[ntk]�
ik=1

Xi

=
�[nt1][nt2]...[ntk]

nk

1�[nt1][nt2]...[ntk]
[nt1]�
i1=1

[nt2]�
i2=1

[nt3]�
i3=1 ...

[ntk]�
ik=1

Xi
d�→ N(0, ∣t∣) d=Wt

where Wt is the k-dimesnional Brownian Sheet process at t ∈ [0, 1]k.
Hence, proved.

This shows that the Brownian sheet is fundamental to the k-dimensional functional
Central Limit Theorem.

Result 8.1.2. Let {Xi}i∈N be a sequence of iid random variables with standard uniform
distribution on [0, 1]k. Then the empirical cdf Fn(t) = 1

n

k∑
i=1�{Xi≤t},

√
n{Fn(t) − F (t)} d→ W̊t;

where W̊t is the k-dimensional pinned Brownian Sheet process at t ∈ [0, 1]k.
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Proof. Use Theorem 2.1.4 on the iid sequence {Zi = �{Xi∈[0,t]}}i, and evaluate that
EZi = F (t) = ∣t∣, VarZi = ∣t∣ − ∣t∣2 to get√

n{Fn(t) − F (t)} d→ N(0, ∣t∣ − ∣t∣2) d= W̊t.

The weak convergence of empirical processes requires limit processes to be continuous.
Hence, analysing the continuity of processes like the pinned Brownian sheet is important.

A similar result can also be obtained with the empirical measure νn defined on B[0,1]k
as νn(A) = 1

n

k∑
i=1�{Xi∈A} instead of empirical cdf, and the Lebesgue measure λ instead of

the actual cdf. We then have the following relationship:√
n{νn(A) − λ(A)} d→ N(0, λ(A) − λ2(A)) d= W̊ (A)

where W̊ (A) is the ’set-indexed’ pinned Brownian Sheet process at A ∈B[0,1]k . The proof
for this is similar to the proof above.

Some test statistics can be made better when used on a wider and richer class of sets.
Hence, studying processes extended to a more general class of sets is of interest too.

8.2 Continuity of Brownian Sheet Processes

The Brownian Sheet on [0, 1]k
With enough motivation to analyse Brownian sheets, let us now see the use of Theorem
3.2.1 on Brownian Sheet Processes. A partition of [0, 1]k is defined such that for each
� > 0, the function inside the integral of Theorem 3.2.1 is bounded by a function which
has a finite integral over [0, ∞).

Proposition 8.2.1. The Brownian Sheet, Wt, and hence, the pinned Brownian Sheet,
W̊t are continuous on [0, 1]k.

Proof. Step 1: Define S(t,δ) = {s ∈ [0, 1]k ∶ ti ≤ si ≤ ti + δ; i = 1, 2, ..., k}.
Step 2: Note that sup

s∈S(t,δ)
E(Ws −Wt)2 = sup

s∈S(t,δ)
(∣s∣ − ∣t∣) = Πi=k

i=1(ti + δ) −Πi=k
i=1(ti).

Step 3: Prove using induction that Πi=k
i=1(ti + δ) - Πi=k

i=1(ti) ≤ kδ: This is trivial for k=1,
assume it holds for k ≥ 1. Then, since t ∈ [0, 1]k;

k+1
Π
i=1(ti + δ) − k

Π
i=1(ti) = tk+1( k

Π
i=1(ti + δ) − k

Π
i=1(ti)) + δ(Πi=k

i=1(ti + δ)) ≤ (k + 1)δ
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Step 4: Fix � > 0. Then, choosing δ ≤ �2

k , it can be shown using result of Step 3 that
S(t, �2

k ) ⊂ Bd(t, �).
Step 5: Define lattice A= {( i1�2

k , i2�2

k , ..., ik�2

k )∣i1, i2, ..., ik ∈ N⌊ k
�2 ⌋}. It is easy to check that

[0, 1]k ⊂ ∪
t∈AS(t, �2

k ) ⊂ ∪
t∈ABd(t, �).

This implies N(�) ≤ (⌊ k
�2 ⌋ + 1)k.

Step 6: We can then bound the integral, (log(N(�))) 1
2 over [0,1] by taking a Riemann

Upper sum with partition [ 1(n+1)2 , 1
n2 ] so that the bound is a convergent series. The

integral is trvially finite over [1,∞).
Hence, from Theorem 3.2.1 (Main Result), Wt is continuous on [0, 1]k. Since Wt is
continuous, W̊t =Wt − ∣t∣W1 is also continuous on [0, 1]k.

We proved that the Brownian sheet process is continuous on [0, 1]k. Is this also true
for Gaussian White Noise processes indexed by more general sets? The answer happens
to be no, unfortunately. This is clear from the next proposition.

The Brownian Sheet on Lower Layers in [0, 1]k
Definition 8.2.1. Lower Layers
Define a partial order on Rk+ such that s < t ⇐⇒ si < ti∀i ∈ Nk (Similarly extended for
’≤’). Considering Rk+ fitted with this partial order, a set A ⊂ Rk+ is said to be a lower
layer, if for any two points s and t in Rk+; s ≤ t and t ∈ A �⇒ s ∈ A.

Proposition 8.2.2. The Brownian Sheet defined on the lower layers in [0, 1]2 is discon-
tinuous and unbounded with probability 1.

Proof. Step 1: Construction of Lower Layers:
Construct a sequence of disjoint triangles and squares in the following manner.

-We create a sequence of squares and a sequence of triangles first. To do this, start
by dividing [0, 1]k into 4 quadrants. In the same numbering as is standard for the 2-
D plane, take the first quadrant as the first member of the sequence of squares. Now,
begin the sequence of triangles with the triangle bordered by the x-axis, y-axis and the
diagonal of [0, 1]k opposite to the origin. Then, follow the patterns shown in 8.1 to build
the sequences. For each n ∈ N, for each j ∈ {1, 2, ..., 2n}; the formal specifications of the
triangles and squares taken in the manner shown in 8.1 are described below the figure
itself.
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Figure 8.1:
a) C01 - square bounded by 1

2 ≤ x ≤ 1; 1
2 ≤ t ≤ 1.

Cnj - square bounded by −(2j−1)
2n+1 ≤ s < j

2n ; 1 − (2j−1)
2n+1 ≤ t < 1 − j−1

2n .
b) T01 - triangle bounded by x + y ≥ 1; x ≤ 1; y ≤ 1.;
Tnj - triangle bounded by s + t ≥ 1; j−1

2n ≤ s < j
2n ; 1 − j

2n < t ≤ 1 − j−1
2n

-Using those specifications we have a sequence of squares, {Cnj} and a sequence of
triangles, {Tnj}. Note the following:

• For each n, there are 2n triangles and 2n squares.

• Cnj ⊂ Tnj for each n,j

• The construction is such that ∞∩
n=1

2n∩
j=1 Cnj = φ.

• The construction is such that for each n, 2n∩
j=1Tnj = φ.

- Define {W (Cnj) ∶ n ∈ N, j ∈ N2n} are independent random variables and
EW 2(Cnj) = λ(Cnj) = 4−(n+1). Define D as the diagonal x + y = 1 and let Lnj = D ∩ Tnj

for each n,j. Note that for each n ∈ N, if p ∈ D�{(1, 0)}; then ∃ unique j(n, p) ∈ N2n such
that p ∈ Lnj.

-Let M <∞. Define En,p = {W (Cnj(n,p) > M
2−(n+1)} for each n ∈ N, pinD.

Now, 2n+1W (Cnj(n,p)) d= N(0, 1).
Then, P (En,p) = P (2n+1W (Cnj(n,p)) >M) = P (X >M) for some X ∼ N(0, 1).
∴ for each p,

∞∑
n=1P (En,p) =∞ Result�⇒

1.2.4
P (En,p inf. often) = 1.

-Note that for fixed p, En,p is the pre-image of a trivially Borel set in R through a
measurable function (random variable), WCnj(n,p) and is therefore measurable with respect
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to ω. Also, En,p(ω) = D when ω ∈ W −1
Cnj
( M

2−(n+1) ,∞) and φ otherwise. Therefore En,p is
jointly measurable with p and ω. This implies that by Fubini-Tonelli, for each p, En,p

occurs with probability 1 for some n and the same is true for fixed ω too. Therefore,
for all ω, p, En,p(ω) occurs with probability 1 for some n. Therefore, ∃k(p) ∈ N such that
P(Ek(p),p(ω))) = 1

-For each ω where En,p(ω) occurs with probability 1, define

Vω = ∪
p∈D̊Tk(p)j(k(p),p); Aω = Vω ∪ {(s, t) ∶ s + t ≤ 1}; Bω = Aω� ∪

p∈D̊ Ck(p)j(k(p),p)

where D̊ is the subset of D where En,p(ω) occurs with probability 1. Then, check that
Aω, Bω are lower layers in [0, 1]2.

Step 2: Define Q = Note that for any Q, W (Bω ∪Q) =W (Bω) +W (Q)a.s;�⇒ W (Aω) −W (Bω) =W (Q) a.s.
Take Q to be the set of points on D̊ that have rational coordinates. Then, there are
countable points in Q, so
W (Aω) −W (Bω) =W (Q) ≥ ∑

q∈Q
M

2k(q)+1 = ∑
n∈N

M
2n+1 = M

2 a.s.

Then, ∣W (A)∣, ∣W (B)∣ ≥ M
4 a.s.

Step 3: The above is true for any M <∞. Take M ↑ ∞ on ∣W (A)∣, ∣W (B)∣ ≥ M
4 a.s;

to conclude that W is unbounded, and hence discontinuous, on the lower layers of [0,1]2
with probability 1.

The Brownian Sheet on other index-sets

• A similar proof as done for lower layers above also shows that W is unbounded over
the convex subsets of [0, 1]3.

• Entropy arguments show that W is also unbounded over convex subsets of the[0, 1]k∀k ≥ 4. How can entropy arguments be used to see if a process is discontinu-
ous? Refer to the following example.

Example 8.2.1. 1) Consider the construction of Aγ = {Anj} below.
Let γ > 0. Let A01 = [0, 1]2, and A′ns be the closed rectangles whose left side is the
right side of An−1, so that it has height 1 and width 2n(1−γ). Further divide each
An into 2n equal horizontal slices, An1, ..., An2n . Consider this class of sets, Aγ =
{Anj} and the Gaussian White Noise Process indexed by this class of sets.
2) γ > 1 Case: Check that the diam(Aγ) = 2 sup

A,B∈Aγ

λ( ∪
n,k

Ank) = 2(Sγ)0.5 for γ > 1.

There is a result that shows ∀γ > 1, a1exp(b1�
−2

γ−1 ) ≤ N(�) ≤ a2exp(b2�
−2

γ−1 ) which we
will take for granted. Use this result to bound the entropy integral from Theorem
3.2.1 on both sides. Check using the upper bound and lower bound thus obtained
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to conclude that the entropy integral converges if and only if 1
γ−1 < 1 ⇐⇒ γ > 2.

Thus, using entropy arguments we not only obtain information about continuity
but also about discontinuity since we can definitively say that W is discontinuous
on Aγ for 1 < γ ≤ 2. Note: we assume a1 > 1 in the result taken for granted here
since a1 < 1 gives a trivial bound. This assumption is required to prove that the
entropy integral diverges for all 1 < γ ≤ 2 using the lower bound in the result.
3) The γ ≤ 1 case gives diam(Aγ) = ∞. Hence, it is not totally bounded, and as
discussed in 7.1.9, there is no need to analyse this.

• Surprisingly, W is continuous over convex subsets of [0, 1]2. This shows there is no
relationship between the topological properties of the parameter space and sample
path continuity since sets topologically similar show different results.

Conclusion

In the examples above, it is noted that similarly defined Gaussian processes are continuous
and discontinuous when indexed by different parameter spaces. They also vary in terms
of boundedness. This proves that as far as continuity and boundedness are concerned, the
relationship between the process and its parameter space is indeed important. However,
the above examples were still handled with a common analysis involving the canonical
metric and hence, the covariance function. This already depicts the power of the General
Theory and the modern attitudes.

Let us see some more examples of different Gaussian process families being analysed
by the same tools.
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Chapter 9

Gaussian Processes on Rk

9.1 Real-indexed Gaussian Processes, k=1

Let X be a centred Gaussian process defined on a finite interval [0, T ], and define 2(u) =
sup∣s−t∣≤uE∣Xs−Xt∣2. This is the same as ρ2(u) which was defined when the Canonical metric

was introduced first.

Proposition 9.1.1. Let X be a centred Gaussian Process on a finite interval [0, T]. If
for any δ > 0, ∫ δ

0 (−log(u)) 1
2 dp(u) <∞, then X is continuous on [0, T].

This theorem is a well-established result in the theory of real-indexed Gaussian pro-
cesses. It has been derived and proven without the notion of entropy. However, avoiding
the notion of entropy actually makes a proof of this theorem difficult. This is because
relying only on the geometry of R shifts focus from the relationship between the process
and the ’size’ of the parameter space.

Let us now prove the above theorem using Theorem 3.2.1.

Proof of Proposition 9.1.1. 1. Define p(u) = [Sup∣s−t∣≤uE(Xs − Xt)2] 1
2 . Note that it is a

monotone non-decreasing function of u. This means that an inverse p−1 exists and it is
easy to check that p−1(u) = u.

2. Note that diam(T) = p(T). Claim: N� = 1 ∀� > 2p(T
2 ).

Take any s ∈ [0, T ] �⇒ ∣s − T
2 ∣ ≤ T

2 �⇒ d(s, T
2 ) ≤ p(T

2 ) �⇒ Bd(T
2 , �).

∴ [0, T ] ⊂ Bd(T
2 , �) �⇒ N(�) = 1.

3. Partition [0,T] into ⌊ T
2p−1(�)⌋ + 1 intervals of length 2p−1(�) in the Euclidean met-

ric. Then, for any such interval I,
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x ∈ I ≡ [a, b] �⇒ d(x, a + p−1(�)) = �E(Xs −Xa+p−1(�))2 ≤ p−1(p(�)) = �. Therefore,
N(�) ≤ ⌊ T

2p−1(�)⌋ + 1.

3. Bound the entropy integral in Theorem 3.2.1 using the above information and ob-
tain an integral of the form in the sufficient condition given, after a appropriate change
of variables.

� ∞
0

��log(N(�))d� = � p(T )
2

0

�
log(N(�))�d�

≤ � p(T )
2

0
��log(⌊ T

2p−1(�)⌋ + 1)�d�

= � T
2

0
�
�

log(1 + T

2u
)�dp(u)

≤ � T
2

0
�
�

log(k + 1) + log(T2 ) − logu�dp(u)
The last expression is bounded if ∫ δ

0 (−log(u)) 1
2 dp(u) < ∞ and since this holds, the

Entropy integral is bounded and X is continuous on [0,T] by Theorem 3.2.1.

Comments: Processes on R

• Avoiding the notion of entropy leads to a more complicated analysis than the above.

• On the real line, it can be shown that if for some 0 < c <∞ and α, η > 0;

E∣Xs −Xt∣2 ≤ c∣log∣s − t∣∣1+α
∀s, t such that ∣s − t∣ < η

; then X is continuous on [0,T]. This condition actually implies the finiteness of the
integral in Proposition 9.1.1 and hence follows. Note that this shows continuity as
a consequence of the smoothness of the covariance function at the origin, which is
a nice perspective to visualise continuity.

• Taking a look at the last few steps of the proof of Proposition 9.1.1, it is clear
that the proposition is a specialisation of the Theorem 3.2.1 and loses the ability
to determine continuity of some continuous processes.
To make it more clear, consider a process X on a suitable compact set T ⊂ R that
satisfies the integral condition of Proposition 9.1.1 and thereby is continuous. Let
f be a homeomorphism from T to f(T).
Then, the process defined by f(Xt) may not satisfy the integral argument of Propo-
sition 9.1.1. However, as can be expected from the action of a homeomorphism,
the process f(Xt) is indeed continuous. In fact the Theorem 3.2.1 would be able to
prove this.
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9.2 Processes on Rk, k ∈ N
Definition 9.2.1. Random Fields A stochastic process whose parameter space is either
a k-dimensional Euclidean space or a k-dimensional lattice is called a Random Field.

This section is simply a short discussion on Gaussian Random Fields.

Now, many problems related to properties of sample paths of a Gaussian random field
that depend on geometrical structure of the parameter space are very different and more
difficult than the k=1 case. However, this is not the case for sample path continuity.

Problems related to sample path continuity are generally independent of dimension,
which is fortunate.

The Proposition 9.1.1 done for the k=1 case holds true for any k with appropriate
modifications as stated below.

Proposition 9.2.1. Let X be a centred Gaussian Process on a compact subset K ⊂ Rk.
Let p(u) be defined as

p2(u) = sup∣∣s−t∣∣Rk≤√ku

E∣Xs −Xt∣2
on K.
Then, ∫K(−log u)dp(u) <∞ �⇒ X is continuous on K.

Similar to what was remarked in Section 9.1 for R-indexed processes, it can be shown
that if for some 0 < c <∞ and α, η > 0;

E∣Xs −Xt∣2 ≤ c

�log∣∣s − t∣∣Rk �1+α∀s, t ∈ K with ∣∣s − t∣∣Rk < η

; then ∫K(−log u)dp(u) <∞ �⇒ X is continuous on K.

Again, the proof of the proposition here is similar to the one for k=1 case, using
Theorem 3.2.1, with appropriate modifications of the Euclidean norm everywhere.
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Chapter 10

Function-indexed, Set-Indexed and
Other Processes

10.1 Generalised Random Fields

Now, consider a centred Gaussian Random Field, X’ on Rk with covariance function
R’(s,t).

Let F be a family of functions on Rk, and for φ ∈ F , define
X(φ) = �

Rk
φ(t)X ′(t)dt.

Note that each X(φ) is a valid Gaussian random variable.

Then, we obtain a centred Gaussian process indexed by functions in F , whose covari-
ance functional is given by:

R(φ, ψ) = EX(φ)X(ψ) = �
Rk
�
Rk

φ(s)R′(s, t)ψ(t)dsdt

for each φ, ψ ∈ F .

Definition 10.1.1. The real-valued Gaussian Process X defined on a family of functionsF with covariance functional R(φ, ψ) is called a Generalised Random Field.

Though we first assumed that R is a well-defined covariance function of a process
X’ that exists, this definition of allows us to define function-indexed processes with a
covariance functional like the above, even when a point-indexed process X’ with covariance
R’(s,t) does not exist.
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A centred Gaussian function indexed process can be defined on a family of functions,

FR = {φ∣ �
Rk
�
Rk

φ(s)R′(s, t)ψ(t)dsdt <∞}
, for any positive semi-definite function R’.

What we are interested in is when are these processes continuous? On what family
of functions?

Continuity of Generalised Random Fields

The below result describes a family of functions on which a well-defined Generalised
Random Field happens to have a.s sample path continuity.

Result 10.1.1. Define F q(T, C0, .., Cq) where T is a bounded subset of Rk, q > 0 and
p = ⌊q⌋ as the class of functions on T whose partial derivatives of orders 0,1,...,p are
bounded by finite positive constants C0, ..Cp and the partial derivatives of order p satisfy
Holder conditions of order q-p with constant Cq.

A centred Gaussian process with covariance function(al),

R(φ, ψ) = EX(φ)X(ψ) = �
Rk
�
Rk

φ(s)R(s, t)ψ(t)dsdt

where R is a well-defined positive semi-definite function on Rk ×Rk; and

R(s, t) ≤ c∣∣s − t∣∣αRk

∀∣∣s − t∣∣Rk ≤ δ,

for some c <∞ and δ > 0 is continuous on Fq(T, C0, .., Cq) if k > α and q > 1+α−k
2 .

The proof is along the same lines: trying to bound the entropy integral of Theorem
3.2.1 by an integrable function. It is however tedious while not being necessary to appre-
ciate the power of the Main Entropy Result, which is our ultimate goal here. Hence, the
Result is stated here without proof. Note that using Theorem 3.2.1 is still simpler than
attempting to prove this directly using the geometry of the complicated parameter space
of functions here.

Hence, Theorem 3.2.1 is able to characterise continuity of processes defined on spaces
as complicated as the collection of functions in the above result to give a relatively simpler
test for continuity of some processes. How this has further implications in other places
can be appreciated from the remark below.
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Remark 10.1.1. • The function space taken in the above Result is useful in the
study of infinite dimensional diffusion, stochastic PDEs, etc. Hence, a result deter-
mining continuity of processes defined as in the Result has several implications in
these fields.

• The class of generalised fields considered here is also the ’Free Field’ used in Eu-
clidean Quantum Field Theory. Quantum Field Theory is a part of theoretical
physics that is of great interest currently in theoretical physics.

10.2 Dudley-Class-indexed Processes

The Brownian Family of Processes that were seen earlier are set-indexed processes. There,
the sets were Borel sets. What happens if we consider a parameter space of more general
sets and general measures? And why should we bother?

The motivation behind analysing Gaussian processes on general sets is to develop
better statistical tests. As discussed earlier in this report, the Kolmogorov-Smirnov test
for example requires analysis of Brownian Sheets. Extending to a richer class of sets
apparently makes such tests better. Hence, general set-indexed processes are of interest.

The focus in this section and the next is more on the interesting properties and results
rather than specific details as we only seek to appreciate the power of the Main Entropy
Result.

Let’s start with the Dudley Class.

Definition 10.2.1. Construction of the Dudley Class of Sets:

1. Consider the standard smooth atlas {(V +j , Fj)} ∪ {(V −j , Fj)} on Sk, the k-
dimensional sphere.
V +j = {(x1, ....xk+1)∣xj > 0}
V −j = {(x1, ....xk+1)∣xj < 0}
Fj ∶ Sk(⊂ R�+�)→ Bk is a diffeomorphism defined as

Fj((x1, ..., xk+1)) = (x1

xj

, ...,
xj−1

xj

,
xj+1

xj

, ...,
xk

xj

)
, where Bk refers to the open unit ball in Rk.
2. Just as F (q)(T, C0, C1, ...., Cp, Cq) was defined in the Generalised Random Fields Dis-
cussion above, we define here a family of functions for each coordinate chart, say V

+/−
j

(denoting generally, any of the V +j ′s and V −j ′s both) as:
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Define F (q)(V +/−j , M) as the set of all R-valued functions φ on V
+/−

j such that

φ∣
V
+/−

j
○ F −1

j ∈ F (q)(Bk, M, ..., M)
. 3. Then, define F (q)(Sk, M) as the set of all real-valued functions φ on Sk such that

φ∣
V
+/−

j
○ F −1

j ∈ F (q)(V +/−j , M)
for some coordinate chart of Sk. Consider D(k + 1, q, M) = Πk+1

i=1 F (q)(Sk, M).
4. From this construction, each φ ∈ D(k + 1, q, M) represents a k-1 dimensional surface
in Rk+1. An application of algebraic geometry (which is not required for the goals of this
report) on these surfaces yields a class of sets called the Dudley family of sets in Rk+1.

Result 10.2.1. The Brownian Sheet is continuous on a bounded collection of Dudley
sets in Rk+1 with q times differentiable boundaries if q > k ≥ 1. If k > 1 ≥ q > 0 or if
k > q ≥ 1, then the Brownian Sheet is unbounded with probability one.

The proof requires algebraic geometry and is thus beyond the scope of this report.
However, it is interesting to know that the proof for this result also follows from the
doing the same thing that was done for the processes considered previously - bound the
Entropy integral and use the Main Result. Doing so gives a nice relationship between k
and q that imply continuity/unboundedness with probability 1.

10.3 The Vapnik-Chervonenkis (VC) Class

What happens when we move to a Gaussian White Noise process defined with more
general σ-finite measure spaces rather than the usual Lebesgue measure?

Definition 10.3.1. Construction of the VC Class of Sets

Let E ⊂ Rk and ν be a probability measure on E. Given a class C of subsets of E and
a finite set F⊂E, let △C(F) be the number of different sets C ∩ F for C ∈ C.
For n=1,2,..., let mC(n) ∶=max{△C(F ) ∶F has n elements}.

Set V (C) = ⎧⎪⎪⎨⎪⎪⎩
inf{n ∶ mC(n) < 2n} mC(n) < 2n for some n∞ mC(n) = 2n for all n
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The class C is called a VC class if mC(n) < 2n for some n, ie, if V(C) <∞. The value of
V(C) is called the VC-index of C.

This VC class of sets is interesting because it allows the consideration a very large
class of sets across different general measure spaces. The following result makes such sets
special and worth mentioning here.

Result 10.3.1. Let W be a Gaussian White Noise process based on probability measure
ν on some measure space (E, ε, ν). If A is a VC class of sets in ε with V (A) = v. Then
there exists a constant K = K(v) independent of ν such that 0 < � ≤ 1

2 , the entropy
function for W on A satisfies

NA(�) ≤ Ke−2v∣log �∣v.

The implication of this, given the Main Entropy Result 3.2.1 is stated below:

Corollary 10.3.1. Let W be a Gaussian White Noise process based on probability measure
ν on some measure space (E, ε, ν). Then, W is a.s continuous over any VC class of sets,
A in ε.

Note how this corollary establishes sample path continuity of Gaussian White Noise
processes defined on sets in any arbitrary space using the Entropy Result.
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Chapter 11

A Little More to See

11.1 Gaussian Fourier Series

Definition 11.1.1. Gaussian Fourier Series
The sum represented by ∞�

0
anYneint, t ∈ [0, 2π]

; where {an} ⊂ R such that ∞�
0

a2
n = 1

and {Yn} is an iid sequence of standard Gaussian random variables; is called a Gaussian
Fourier Series.

• The uniform convergence or divergence of Gaussian Fourier series hold a number of
consequences in non-random harmonic analysis. Let us look at a result that depicts
this.

Result 11.1.1. Let {Yn} and {Y ′n} be two independent, infinite sequences of independent,
standard normal random variables. Let {an} be a non-increasing real sequence. Then,
the process X defined as

Xt ∶= ∞�
0

an(Yncos(nt) + Y ′nsin(nt)), t ∈ [0, 2π], (11.1.1)

converges uniformly on [0, 2π] if and only if the sum :
∞�

j=2�
(∑∞n=j a2

n) 1
2

j(logj) 1
2
� (11.1.2)

converges.
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Since we are interested in seeing the use of the Entropy result, let us look at the proof
of the sufficiency part of the theorem, ie, (11.1.2) �⇒ uniform convergence of (11.1.1).

Note that if X as in (11.1.1) is a process, then the continuity of X is equivalent to the
convergence of X.

Proof. Claim 1: ∑an is convergent.
Assume

∞∑
n=1an =∞. Then for any n ∈ N, a1 + ... + an + ∞∑

i=n+1
=∞

�⇒ �(∑∞n=2 a2
n) 1

2

2(log2) 1
2
� + �(∑∞n=3 a2

n) 1
2

3(log3) 1
2
� + .... =∞ �⇒ ∞�

j=2�
(∑∞n=j a2

n) 1
2

j(logj) 1
2
� =∞(→←)

Claim 2: The series ∑∞0 an(Yncos(nt) + Y ′nsin(nt)) is pointwise convergent at each
t ∈ [0, 2π].
Let Kn = an(Yncos(nt) + Y ′nsin(nt)). Clearly EKn = 0, EK2

n = a2
n.

Then using Chebyshev’s Inequality (take 1 = (an)(an)−1),
∞∑

n=0P{∣Kn∣ ≥ 1) ≤ ∞∑
n=0a

2
n <∞.

Define Zn =Kn�{∣Kn∣≤1}.
Check that

∞∑
n=0EKn <∞ and

∞∑
n=0V arZn <∞.

This means that Result 2.1.7 is applicable and
∞∑

n=0Kn <∞ a.s.
∴ Xt in (11.1.1) is well defined almost surely for each t ∈ [0, 2π], ie, Xt is defined on Ω�Nt

where P(Nt) = 0.

Let T be a countable dense subset of [0, 2π]. Then, Xt is defined for each t in T,
on Ω� ∩

t∈TNt where P( ∩
t∈TNt) ≤ ∑

t∈TP (Nt) = 0. Therefore, we can define a centred Gaussian

process X on T, with X(t) = Xt which is well-defined a.s.

Claim 3: X is continuous at each t in T.
Since T is a compact set in R, we can use Proposition 9.1.1. Check that the covariance
function of this process R(s,t) =

∞∑
n=1a

2
ncos(n(t − s)).

Then,

p2(u) = 2 sup
0≤t≤u∣R(0) −R(t)∣ = 4 sup

0≤t≤u
∞�

n=1a
2
n(sin2(nt

2 ))
.

Claim 3.1:
∞∑

n=0
p(2−n)√

n
<∞

1) First prove the bound p2(2−n) ≤ a2
1

22n + 4∑n
j=0 22j

22n A(2j, 2j+1) + B(2n) where A(m, n) =∑n
j=m+1 a2

j , and B(n)=A(n,∞). This bound follows by splitting the series appropriately
and the facts that sin2x ≤ min{1, x2} ≤ 1 ∀ x. Note that (∣x∣ + ∣y∣)0.5 ≤ ∣x∣0.5 + ∣y∣0.5.
Then,

∞�
n=0

p(2−n)√
n

≤ ∞�
n=0

a1

2n
√

n
+ ∞�

n=0

�
4∑n

j=0 22j

22n A(2j, 2j+1)√
n

+ ∞�
n=0

�
B(2n)√

n
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2) The first term on the right side of the inequality is trivially finite. To prove the
finiteness of the second term and third term, we need to use the convergence of (11.1.2).
For the second term, we also need another inequality additionally. Let us assume that
the second term’s finiteness is proven and move ahead. For the third term’s finiteness,
use Cauchy Condensation Test.

∞�
j=2�
(∑∞n=j a2

n) 1
2

j(logj) 1
2
� <∞ ⇐⇒ ∞�

j=2 2j� (∑∞n=2j a2
n) 1

2

2j(log(2j)) 1
2
� = 1(log2) 1

2

∞�
j=2�
(B(2j)) 1

2

j
1
2

� <∞
Then, we are done with Claim 3.1.

Claim 3.2:
∞∑

n=0
p(2−n)√

n
<∞ �⇒ ∫ δ

0 (−logu) 1
2 dp(u) <∞

Let

I = � δ

0
p(e−x2)dx = lim

N→∞� N

0
p(e−x2)dx = lim

N→∞� N

0

p(e−t)
2
√

t
dt ≤ lim

N→∞� N

0

p(e−t)√
t

.

As t increases, 1√
t
e−t decreases �⇒ 1√

t
p(e−t) decreases.

Then,

I ≤ lim
N→∞

N−1�
0

p(e−n)√
n

≤ lim
N→∞

N−1�
0

p(2−n)√
n
= ∞�

n=0
p(2−n)√

n

. The Claim 3.2 then follows.

Now, from Claim 3.2, Claim 3.1, and Proposition 9.1.1, Claim 3 follows.

From Theorem 6.2.3, since X is a.s continuous at each t in T, X is uniformly continuous
over T a.s. This implies X uniformly converges over T. Since T is a dense set in [0, 2π],
the process X as in (11.1.1) converges uniformly over [0, 2π] a.s. Hence proved.

• Notice how the entropy arguments that we used in proving Proposition 9.1.1 helps
in determining the convergence of such a complicated looking random series in the
above proof, which also has implications in other fields.

Before ending this section, an interesting topic, the ’Talagrand Exapnsion’ is briefly
introduced below. However, it does not directly depict a use of the entropy-based results
and hence does not find a place in this Part as a chapter/section. After the below remark,
the report describes some other kinds of processes that has not been given much thought
so far in this report, and shows how the Main Entropy result comes handy there too.
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Remark 11.1.1. The Talagrand Expansion

Just as a Fourier Series can be visualised as a basis representation of a function in
the appropriate space, a Gaussian Fourier Series may also be viewed as an orthonormal
decomposition of a Gaussian process over a finite interval.

The question that arises then is, does any general Gaussian process have such a
decomposition? If no, under what conditions can a process be expected to have such
a decomposition. The answer to these questions are: a Gaussian process X has such a
decomposition if it is continuous over T.

In fact, the below result (due to Talagrand) makes use of these expansions to arrive at
a conclusion that characterises continuous Gaussian processes, and also provides a way
to construct continuous Gaussian processes. This result enables one to no longer need
to find an orthonormal basis representation, which makes it easier in cases where finding
such representations explicitly might be time consuming and/or extremely difficult.

Result 11.1.2. Let X be a centred Gaussian process on a compact metric space T. Then
X is continuous ⇐⇒ X has a continuous covariance function and there exists a centred
Gaussian sequence {Yn} with variances σ2(Yn) such that ∀t, Xt ∶= ∑∞n=0 αn(t)Yn with the
following conditions satisfied:
- limn�→∞(log(n)) 1

2 σ(Yn) = 0
- For each t ∈ T, αn(t) ≥ 0 and ∑∞n=0 αn(t) ≤ 1. (14.2.1)

Notice that there are not many assumptions on {Yn} and {αn}. Even basic assump-
tions seen in other places like independence of {Yn}, or continuity of the functions {αn}
are not required here. Then, any centred Gaussian sequence and functions satisfying the
two conditions given in (11.1.2) can be used to construct a continuous process.

The only if condition makes the result more stronger because it implies that ALL
continuous processes can be built in the manner above.

11.2 Vector Valued Processes

In this entire report, we have only considered real-valued Gaussian processes. What
happens when it comes to a vector-valued processes.

Let Xt=< X1
t , X2

t , ..., Xn
t > be an Rn-valued Gaussian process on a totally bounded

separable metric space (T, τ). Then, each X i
t is a real-valued Gaussian process and there

is a covariance ’matrix’ function R(s, t) whose elements Rij(s, t) = EX i
sX

j
t .
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Calculus of several variables establishes without doubt that a vector valued function
is continuous if and only if it’s component functions are continuous. Using this, we can
reduce the analysis of sample path continuity of processes of the above kind to analysing
continuity of the real-valued component processes.

Then, the Main Entropy Result 3.2.1 again helps here because we can use it to deter-
mine continuity in each component process similar to the arguments covered in the last
few chapters and hence determine continuity or something else about the vector-valued
process.

11.3 Non-Gaussian Processes

Going a step ahead, can we use any of the tools introduced in this report to analyse
non-Gaussian processes?

Suppose Y is a centred Gaussian process on T, and X is a stochastic process defined
as Xt = f(Yt) where f is a continuous function defined appropriately. In general, X may
then be a non-Gaussian process. However, since we have the tools to analyse continuity
of Y, and f is continuous; we can essentially analyse the continuity of X with the same
tools.

Basically the continuity of X comes down to the continuity of Y, which we are more
familiar with.

What about processes that have no relationship to any Gaussian process whatsoever?

Interestingly, a result has been proved which gives a sufficient condition for any Banach
space-valued stochastic process defined on a metric space. This result also requires a
bound on the ’metric-entropy function’ apart from other conditions. Though this metric
entropy function is not defined using any canonical metric similar to what was defined
here, the arguments used in proving the finiteness of the integral in Theorem 3.2.1 for
Gaussian processes do come handy there. This also adds importance to the development
of the General Theory for Gaussian processes.
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Summary and Conclusion

The most fundamental tool of the modern approach towards a general theory to study all
Gaussian processes at once, is the canonical metric, d. It is a custom-tailored tool that
enables navigation around the geometry of the parameter space and focuses only on the
’size’. To measure this ’size’ that it sees, we require two concepts, entropy and majorising
measures.

When it comes to sample path continuity, the entropy arguments seem simplest.
It is more easily applicable to several processes with very different properties at once.
It also makes the analysis of some specific cases simpler than methods relying on the
geometry of the parameter space. This is especially recognisable in the case of generalised
random fields and set-indexed processes. Despite providing only a sufficient condition,
the Entropy result establishes stronger results and even gives some information about
boundedness in certain specific cases. However, majorising measures are more powerful
in their analysis of both sample path continuity and boundedness. This is not a non-trivial
observation, considering that a majorising measure-based result is what helps prove the
Main Entropy Result. One of its results validates that we can disregard a whole bunch
of processes when looking for continuity or boundedness (those that don’t have totally
bounded parameter spaces) which appears most interesting.

To think about the distribution of suprema, the Borell’s inequality is powerful be-
cause it rigorously proves the asymptotic equivalence of the supremum of a process to a
normal distribution with the variance equal to the highest variance across the process,
which is something very intuitive and readily appreciable. When it comes to compari-
son inequalities, Kahane’s inequality to is most important comparison inequality because
it effectively implies Sudakov-Fernique, Slepian’s, other similar inequalities, and hence
whatever they imply.

Given everything, the general theory is indeed promising. Construction of majorising
measures in a general sense is not known yet. Better understanding majorising measures
could prove more stronger results in specific cases and provide more intuition behind its
working. Analysing continuity of real-valued Gaussian processes also allows analysis of
many non-Gaussian processes. A similar attempt to connect boundedness may also be
possible. Hence, the study of general Gaussian processes is has far-reaching implications
in different areas of science, mathematics and statistics.
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