
Introduction Results and Numerical Implementation.

Nodal Discontinuous Galerkin Method to Model
Gravitational Waves from Extreme-Mass-Ratio

Black Hole Binaries

Manas Vishal1 Gaurav Khanna2 Scott Field3

1Department of Physical Science
Indian Institute of Science Education and Research Kolkata

2,3Department of Physics
University of Massachusetts Dartmouth

UMassD Physics Colloquium, 2020



Introduction Results and Numerical Implementation.

Outline

1 Introduction
Black Holes and LISA
Previous Works

2 Results and Numerical Implementation.
Implementation in discontinuous Galerkin method.
The dG Method and delta function
Our Problem



Introduction Results and Numerical Implementation.

Outline

1 Introduction
Black Holes and LISA
Previous Works

2 Results and Numerical Implementation.
Implementation in discontinuous Galerkin method.
The dG Method and delta function
Our Problem



Introduction Results and Numerical Implementation.

Black Holes and Laser Interferometer Space Antenna
Various methods can be used to model sources for
Gravitational Waves.

The band at which LISA (0.1 mHz to 1Hz) will be sensitive,
lies in the domain of perturbation theory.
We use 𝑠 = 0 and 𝑇 = 0 Teukolsky formalism for modeling.

Teukolsky Equation

− [ (𝑟2+𝑎2)2

Δ − 𝑎2𝑠𝑖𝑛2𝜃] 𝜕𝑡𝑡Ψ − 4𝑀𝑎𝑟
Δ 𝜕𝑡𝜙Ψ + 𝜕𝑟 (Δ𝜕𝑟Ψ) + 1

𝑠𝑖𝑛 𝜕𝜃 (𝑠𝑖𝑛𝜃𝜕𝜃Ψ) +

[ 1
𝑠𝑖𝑛2𝜃 − 𝑎2

Δ ] 𝜕𝜙𝜙Ψ = 0



Introduction Results and Numerical Implementation.

Black Holes and Laser Interferometer Space Antenna
Various methods can be used to model sources for
Gravitational Waves.

The band at which LISA (0.1 mHz to 1Hz) will be sensitive,
lies in the domain of perturbation theory.
We use 𝑠 = 0 and 𝑇 = 0 Teukolsky formalism for modeling.

Teukolsky Equation

− [ (𝑟2+𝑎2)2

Δ − 𝑎2𝑠𝑖𝑛2𝜃] 𝜕𝑡𝑡Ψ − 4𝑀𝑎𝑟
Δ 𝜕𝑡𝜙Ψ + 𝜕𝑟 (Δ𝜕𝑟Ψ) + 1

𝑠𝑖𝑛 𝜕𝜃 (𝑠𝑖𝑛𝜃𝜕𝜃Ψ) +

[ 1
𝑠𝑖𝑛2𝜃 − 𝑎2

Δ ] 𝜕𝜙𝜙Ψ = 0



Introduction Results and Numerical Implementation.

Black Holes and Laser Interferometer Space Antenna
Various methods can be used to model sources for
Gravitational Waves.

The band at which LISA (0.1 mHz to 1Hz) will be sensitive,
lies in the domain of perturbation theory.
We use 𝑠 = 0 and 𝑇 = 0 Teukolsky formalism for modeling.

Teukolsky Equation

− [ (𝑟2+𝑎2)2

Δ − 𝑎2𝑠𝑖𝑛2𝜃] 𝜕𝑡𝑡Ψ − 4𝑀𝑎𝑟
Δ 𝜕𝑡𝜙Ψ + 𝜕𝑟 (Δ𝜕𝑟Ψ) + 1

𝑠𝑖𝑛 𝜕𝜃 (𝑠𝑖𝑛𝜃𝜕𝜃Ψ) +

[ 1
𝑠𝑖𝑛2𝜃 − 𝑎2

Δ ] 𝜕𝜙𝜙Ψ = 0



Introduction Results and Numerical Implementation.

Outline

1 Introduction
Black Holes and LISA
Previous Works

2 Results and Numerical Implementation.
Implementation in discontinuous Galerkin method.
The dG Method and delta function
Our Problem



Introduction Results and Numerical Implementation.

Previous Works and Our Contribution

We decompose the Teukolsky equation into a 1+1D system of
equations. Dr. Burko and Dr. Khanna have also done a
similar work before 1.
We follow the same process but without the expansion of
wave function.
We end up with the following differential equation for Kerr
space-time with mass M and spin parameter a:

Master Equation
−Ψ̈𝐿 + Ψ′′

𝐿 + Δ
(𝑟2+𝑎2)2 [ 3𝑟2Δ

(𝑟2+𝑎2)2 − 𝐿(𝐿 + 1) − 𝑟(2𝑟−2𝑀)
(𝑟2+𝑎2) − Δ

(𝑎2+𝑟2) ] Ψ𝐿 =

− Δ𝑎2
(𝑟2+𝑎2)2 ∑∞

𝑙=0 𝐶𝑙𝐿Ψ̈𝑙

1Burko, L. M., & Khanna, G. (2014). Mode coupling mechanism for
late-time Kerr tails. Physical Review D, 89(4), 044037
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Introduction Results and Numerical Implementation.

What is this dG method?
The grid is unstructured. We choose lines, triangles, and
tetrahedrons for 1D, 2D, and 3D respectively.

The local solution is given as the sum of polynomials of
degree at most N.

𝑥 ∈ 𝐷𝑘 ∶ Ψ𝑘(𝑥, 𝑡) =
𝑁

∑
𝑖=0

Ψ𝑘 (𝑥𝑖, 𝑡) 𝑙𝑘𝑖 (𝑥)

The global solution is direct sum of local solutions:

Ψ(𝑥, 𝑡) =
𝐾

⨁
𝑘=1

Ψ𝑘(𝑥, 𝑡)
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Introduction Results and Numerical Implementation.

Fluxes

For a equation of form 𝐿Ψ = 𝜕𝑡Ψ + 𝜕𝑥𝑓(Ψ) + 𝑉 Ψ = 0 where
Ψ and 𝑓 are vectors, and 𝑉 a matrix, the residual 𝐿Ψℎ is
integrated across all basis functions.
IBPs are performed prior to coupling the subdomains to one.
An example of flux could be central flux, 𝑓∗ = 𝑓(Ψ+)+𝑓(Ψ−)

2 . It
should be a function of Ψ+ and Ψ−.
The flux is responsible for passing information between
elements, implementing boundary conditions, and ensuring
stability of scheme.
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Introduction Results and Numerical Implementation.

dG method + 𝛿

The secondary black hole is represented on the grid as a
singularity or a 𝛿 function.
Let us consider a simple hyperbolic PDE with a 𝛿 source term:

1
𝑐 𝜕𝑡Ψ + 𝜕𝑥Ψ = 𝐺(𝑡)𝛿(𝑥)

The 𝛿 term only shows up as an extra term in the flux. We
add the required amount to the flux at the boundary.

.
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Introduction Results and Numerical Implementation.

Why do we need dG method?

Compared to previous methods like FD which uses narrow
Gaussian, we effectively remove the particle hence no accuracy
loss.
The fields are smooth to the left and right of the particle
Most importantly, long time evolution is needed to observe
late time tails hence our high order method.
Exact outgoing BCs and waveform extraction techniques.
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Introduction Results and Numerical Implementation.

How everything relates together

We introduce two auxiliary variables Π = −𝜕Ψ
𝜕𝑡 and Φ = 𝜕Ψ

𝜕𝑟∗

and after successful transformations and diagonalization
(𝑊 = −Π − Φ and 𝑋 = −Π + Φ) the wave equations reduces
to two copies of Advection equation.

𝜕𝑡Ψ = 1
2(𝑊 + 𝑋)

𝜕𝑡𝑊 = −𝜕𝑥𝑊 − 𝑉 Ψ − (𝐽𝜙 + 𝐽Π) 𝛿 (𝑥 − 𝑥𝑝)
𝜕𝑡𝑋 = 𝜕𝑥𝑋 − 𝑉 Ψ + (𝐽Π − 𝐽Φ) 𝛿 (𝑥 − 𝑥𝑝)

We have used this method to solve the wave equation and
some...
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Introduction Results and Numerical Implementation.

Numerical Results

We now have a useful numerical scheme. For sufficiently
smooth solutions the error decays like

∥Ψ − Ψ𝑘
ℎ∥D𝑘 ≤ 𝐶(𝑡) (∣D𝑘∣)𝑁+1

Figure: Error plot for N=5
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For Further Reading I

Hesthaven, Jan S., Warburton, Tim.
Nodal Discontinuous Galerkin Methods.
Springer, 2008.
Burko, L. M., & Khanna, G. (2014).
Mode coupling mechanism for late-time Kerr tails.
Physical Review D, 89(4), 044037.



Appendix Summary and Contact

Summary
We showed how Teukolsky equation can be used to get to the
master coupled differential equation.
We are applying this methodology to solve the Teukolsky
equation.

Based on recent techniques developed by UMassD PhD
student Ed McLain.

Possible future works
Inclusion of other parameters like spin in the secondary BH,
moving 𝛿 functions.
This will help in modeling the gravitational waves surrogately
(without being computationally expensive)

Contact Me: @manas_vishal
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