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1 Introduction to General Relativity

It is a theory that Albert Einstein developed starting from
1907 in order to incorporate the graviational �eld within
the framework of special relativity, and that his author
presented in its �nal version to the Prussian Academy of
Science on 25th November 1915 in the paper The Field
Equations of Gravitation. In much the same way as the
theory of special relativity was grounded on two postulates
- the one of relativity and the one of invariant light speed
in vacuum, Einstein based his theory of general relativity
on two fundamental postulates:

1. The Equivalence Principle which, by posing the equivalence of

gravity and acceleration, a well known principle which was �rst

tested by Galileo by comparing the periods of pendula with weights

made out of di�erent materials, allows to locally 'turn o�' the

e�ect of gravity.

2. The Principle of Covariance, which extends the principle of

relativity to say that the form of the laws of physics should be

the same in all - inertial and accelerating - frames

2 Mathematical Tools Needed

For this project and to learn General Relativity, follow-
ing mathematical tools are needed apart from secondary
school mathematics:

2.1 Tensors and Manifolds

2.1.1 Tensors

In three dimensions, a vector ~A has three components, which we refer to as Ai

taking the values 1,2, or 3. The dot product of two vectors is then

~A. ~B =

3∑
i=1

AiBi ≡ AiBi
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where I have introduced the Einstein summation convention of not explicitly
writing the

∑
sign when an index (in this case i) appears twice. Similarly,

matrices can be written in component notation. For example, the product of
two matrices M and N is

(MN)ij = MikNkj

again with implicit summation over k.
In relativity, two generalizations must be made. First, in relativity a vector

has a fourth component, the time component. Since the spatial indices run from
1 to 3, it is conventional to use 0 for the time component. Greek letters are
used to represent all four components, so Aµ = (A0, Ai). The second, more
subtle, feature of relativity is the distinction between upper and lower indices,
the former associated with vectors and the latter with 1-forms. One goes back
and forth with the metric tensor, so

Aµ = gµνA
µ

Aµ = gµνAν

A vector and a 1-form can be contracted to produce an invariant, a scalar. For
example, the statement that the four-momentum squared of a massless particle
must vanish is

P 2 ≡ PµPµ = gµνP
µP ν = 0

Just as the metric can turn an upper index on a vector into a lower index,
the metric can be used to raise and lower indices on tensors with an arbitrary
number of indices. For example, raising the indices on the metric tensor itself
leads to

gµν = gµαgνβgαβ

If the index α = ν, then the �rst term on the right is equal to the term on the
left, so if the combination of the last two terms on the right force α to be equal
to ν, then the equation is satis�ed.Therefore,

gνβgαβ = δνα

where δνα is the Kronecker delta equal to zero unless ν = α in which case it is 1.
If a tensor transform according to

Di =
∂Xi

∂x1
d1+

∂Xi

∂x2
d2 + . . .+

∂Xi

∂xn
dn

then the tensor is called contravariant tensor. And if it transforms ac-
cording to

Gi =
∂xi

∂X1
g1+

∂xi

∂X2
g2 + . . .+

∂xi

∂Xn
gn

then the tensor is called covariant tensors.
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2.1.2 Manifolds

A manifold in a three dimensional space can be imagined as a surface. More
generally, a manifold embedded in n-dimensional euclidean space locally looks
like a (n-1) dimensional vector space. For example Earth (a big sphere) is a big
manifold embedded in 3-dimensional space. But, we as tiny entities living on
its surface can only see �at 2-dimensional land. So locally at every point on a
sphere, it looks like a 2-dimensional plane. Curves in 3-dimensional space are
also manifolds. But, they locally look like 1-dimensional vector space(a line).
To be a little more precise, a manifold embedded in n-dimensional euclidean
space locally looks like k-dimensional vector space (k<n) at every point on it.

A�ne connection is a geometric object on a smooth manifold which connects
nearby tangent spaces, so it permits tangent vector �elds to be di�erentiated as
if they were functions on the manifold with values in a �xed vector space.

Riemann Manifold is a real, smooth manifold M equipped with an inner
product gp on the tangent space TpM at each point p that varies smoothly from
point to point in the sense that if X and Y are di�erentiable vector �elds on
M, then p 7→gp(X|p, Y |p) is a smooth function. The family gp of inner products
is called a Riemannian metric (or Riemannian metric tensor). These terms
are named after the German mathematician Bernhard Riemann. The study of
Riemannian manifolds constitutes the subject called Riemannian geometry.

2.2 Covariant and Contravariant derivates / Parallel Trans-
port

2.2.1 Derivatives

In curved space the derivatives can be represented by covariant and con-
travariant derivatives for tensors.

The covariant derivative of a contravariant tensor Aa (also called the "semi-
colon derivative" since its symbol is a semicolon) is given by

Aa
;b =

∂Aa

∂xb
+ Γ abkA

k

= Aa
b + Γ abkA

k

where Γ ijk is a Christo�el symbol, Einstein summation has been used in

the last term, and Ak
,k is a comma derivative. The notation ∇.A, which is a

generalization of the symbol commonly used to denote the divergence of a vector
function in three dimensions, is sometimes also used.
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The covariant derivative of a covariant tensor Aa is

Aa;b =
∂Aa

∂xb
− ΓkabAk

2.2.2 Parallel Transport

In geometry, parallel transport is a way of transporting geometrical data
along smooth curves in a manifold. If the manifold is equipped with an a�ne
connection (a covariant derivative or connection on the tangent bundle), then
this connection allows one to transport vectors of the manifold along curves so
that they stay parallel with respect to the connection.

The parallel transport for a connection thus supplies a way of, in some sense,
moving the local geometry of a manifold along a curve: that is, of connecting the
geometries of nearby points. There may be many notions of parallel transport
available, but a speci�cation of one � one way of connecting up the geometries
of points on a curve � is tantamount to providing a connection. In fact, the
usual notion of connection is the in�nitesimal analog of parallel transport. Or,
vice versa, parallel transport is the local realization of a connection.

3 General Relativity

Geodesic equation derivation:

In di�erential geometry, a geodesic can be simply de�ned as a line on a

curved space. In general relativity, any body falling under the in�uence of

gravity follows a geodesic. We can express the proper time along a time-like

worldline (while ignoring the limits) as:

τ =

∫
w

ds =

∫
w

ds

dλ
dλ

with λ being the a�ne paramter parametrizing the path.

7



For a given proper spacetime interval ds2 = gµνdx
µdxν , we get

τ =

∫
w

√
gµνdxµdxν

dλdλ
dλ

A�ne Geodesics

Absolute derivative DAµ

Dλ = (∇νAµ)dxν

dλ

∂Aµ

∂xν = Aµ,ν and ∇νAµ = Aµ;ν

DAµ

Dλ
= (

∂Aµ

∂xν
+ ΓµνσA

σ)
dxν

dλ

A vector is said to be parallely transported if

DAµ

Dλ
= 0

.

In general, Tµν is parallel transported along C, if

DTµν

Dλ
= 0

C is x = xµ(λ).

A�ne geodesics is a self parallel curve. The tangent vector to a curve C

Xµ = Xµ(λ)

is dXµ

dλ

The vector along C is just

D(dxµ

dλ )

Dλ
= 0

. This equation describe an a�ne geodesic.

(
dxµ

dλ
);ν(

dxν

dλ
) = 0

[(
dxµ

dλ
),ν + Γµνσ

dxσ

dλ
](
dxν

dλ
) =0

(
dxµ

dλ
),ν(

dxν

dλ
) + Γµνσ

dxσ

dλ

dxν

dλ
= 0

d2xµ

dλ2
+ Γµνσ

dxσ

dλ

dxν

dλ
= 0

dxσ

dλ
dxν

dλ is symmetric in (ν, σ)
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Riemann and Ricci Tensors

Consider
∇µAσ = ∂µAν + ΓνµαAα

so

∇σ∇µAν = [∂σ∂µAν + ∂σΓνµγA
γ + Γνµγ∂σAγ ]

+[Γνσβ∂µA
β + ΓνσβΓβµγA

γ ]

−[Γβσµ∂βA
ν + ΓβσµΓνβγA

γ ]

similarily,

∇µ∇σAν = [∂µ∂σAν + ∂µΓνσβAβ + Γνσβ∂µAβ ]

+[Γνµα∂σA
α + ΓνµαΓασβA

β ]

−[Γαµσ∂αA
ν + ΓαµσΓναγA

γ ]

and riemann Tensor is de�ned as

Rν
αµσ = ∇σ∇µAν−∇µ∇σAν

Hence subtracting eq 13 from 12 , we get riemann Tensor

#It is also noted that for a �at space time Reimann tensor must be zero.

Ricci Tensor is the contraction of Rµανβ on the �rst and third indices.Other
contractions would in principle also be possible: on the �rst and second, the �rst
and fourth, etc. But because Rαβµν is antisymmetric on α and β and on µ and
ν, all these contractions either vanish identically or reduce to ±Rαβ . Therefore
the Ricci tensor is essentially the only contraction of the Riemann tensor. Ricci
scalar is contraction of Ricci tensor

R := gµνRµν = gµνgαβRαµβν

Einstein's equation

My argument begins with the realization that I would like to �nd an equation
that supersedes the Poisson equation for the Newtonian potential(φ):

∇2φ = 4πGρ
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where ∇2 is laplacian in space and ρ is mass density. The analogy for mass
density in tensorial form is energy momentum tensor Tµν and it should be
directly proportioanl to laplacian of a metric tensor.

[∇2g]µν ∝ Tµν

But it should also be noted that the left hand side tensor gµν is not a sensible
tensor and the equation is needed to be completely tensorial. So our best choice
is to use Riemann tensor which we de�ned earlier and it also represents space
time curvature. Hence it must be related to energy momentum tensor in a linear
fashion.

Rµν = kTµν

But we know that ∇µTµν = 0 from conservation of energy but we know that
∇µRµν 6= 0 as from Bianchi identity we have ∇µRµν = 1

2∇νR.

So if we take the term as a whole then we get ,

∇µT = 0

Hence we de�ne a new tensor , Einstein Tensor de�ned as

Gµν = Rµν −
1

2
Rgµν

Now we are left to propose,

Gµν = kTµν

By contractiong both sides we get

R = −kT

10



from navier stoke's equation we get k = 8πG . so �nally we get

Rµν −
1

2
Rgµν = 8πGTµν

Scharzschild Metric and Radius

By performing tansformation from`spherical co-ordiantes to polar co-ordinates
i.e.,

dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2sin2θdφ2

we get the scharzschild metric from einstein's �eld equation as

ds2 = −(1 + 2φ)dt2 +
1

1 + 2φ
(dr2 + r2dθ2 + r2sin2θdφ2)

Then in order to get rid of the coe�cients on r2dθ2 + r2sin2θdφ2, we must
replace r with R, where r2(1+φ) = R2. By a handy coincidence then if φ = −Cr
then it turns out that dr = dR(1 + 1

2φ −
1
2φ + O(φ2)) = dR(1 + O(φ2)) so to

linear order we arrive at this metric.

ds2 ≈ −(1− 2GM

c2R
)c2dt2 +

dr2

1− 2GM/c2R
+ r2dθ2 + r2sin2θdφ2

where φ is gravitational potenital in weak �eld limit which is φ = −GMR

From equation we can easily see that there will be co-ordinate singularity
when the coe�cients are set to zero.

1− 2GM

c2R
= 0

R =
2GM

c2

which is the scharzschild radius Rs
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4 Cosmology

4.1 What is Cosmology?

Cosmology is a branch of astronomy that involves the origin and evolution of
the universe, from the Big Bang to today and on into the future. It is the study
of the universe, or cosmos, regarded as a whole. The universe is richly textured
with structures on a vast range of scales. It deals with topics as Dark Matter,
Origin of The Universe, String Theory and so on.

4.1.1 How did universe come into being?

To answer this question , we must de�ne some parameters and e�ects, some
of which I have already discussed in the mathematical tools and prerequisites
needed section. The left overs are Doppler e�ect(Red Shift), Hubble Constant,
Critical density, Hubble rate etc.

1. Doppler E�ect: In simple language doppler e�ect is when wave energy like
sound or radio waves travels from two objects, the wavelength can seem
to be changed if one or both of them are moving. This is Red shifted
when the object(stars) is moving away from the observer(us). The red
shift relation is given as

z ≡ λobs − λem
λem

where z is redshift paramter, if z < 0, this quantity is called a blueshift.
Present observations tells us that a vast majority of galaxies have z > 0,
which means galaxies are receding away from us.

2. Hubble Rate: This quantity is de�ned as

H(t) ≡ da/dt

a

where a is scale factor and da/dt is the rate by which scale factor changes
over time. For example we know that for �at and matter dominated
universe a varies as a ∝ t2/3 , so H = 2

3t . Hence H.t = 2
3 and now H0

is kept reserved for the Hubble rate in the present(now), and is called as
Hubble Constant.

3. Friedmann Equation: The equation is given as

H2(t) =
8πG

3

[
ρ(t) +

ρcr − ρ0
a2(t)

]
here G is gravitational constant, ρ is where ρ(t) is the energy density in
the universe as a function of time with ρ0 the present value. The critical
density

ρcr =
3H2

0

8πG
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4. Fluid and Acceleration Equations: From the �rst law of thermodynamics,

dQ = dE + PdV

where dQ is the heat �ow into or out of a region, dE is the change in
internal energy, P is the pressure, and dV is the change in volume of
the region. This equation was applied to a comoving volume �lled with
photons, but it applies equally well to a comoving volume �lled with any
sort of �uid. If the universe is perfectly homogeneous, then for any volume
dQ = 0 that is, there is no bulk �ow of heat. The equation reduces to the
form

Ė + PV̇ = 0

The internal energy of the sphere is

E(t) = V (t)ε(t)

and the volume of the sphere is:

V (t) =
4π

3
r3sa(t)3

Calculating the rate of change of the sphere's volume and the rate of
change of the sphere's internal energy, we can write the �uid equation
which goes by:

ε̇+ 3
ȧ

a
(ε+ P ) = 0

Combining the Friedmann equation and the Fluid equation, we obtain the
acceleration equation which is:

ä

a
= −4πG

3c2
(ε+ 3P )

4.2 Cosmological Constant

The cosmological constant (Λ) is the value of the energy density of the
vacuum of space. It was originally introduced by Albert Einstein in 1917 to
achieve a static universe, which was the accepted view at the time. In fact, it
was by no means settled that galaxies besides our own actually existed. After all,
the sky is full of faint fuzzy patches of light. It took some time to sort out that
some of the faint fuzzy patches are glowing clouds of gas within our Galaxy and
that some of them are galaxies in their own right, far beyond our own Galaxy.
Thus, when Einstein questioned the expansion or contraction of the universe,
he looked not at the motions of galaxies, but at the motions of stars within
our Galaxy, some of which are moving toward us and the others away from us,
with no evidence that the Galaxy is expanding or contracting. The incomplete
evidence available to Einstein led him to the belief that the universe is static.
The question on the possibility of a static universe �lled with non-relativistic
matter and nothing else was then posed, to which it was reasoned that such
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a universe could not exist. If the mass density of the universe is ρ, then the
gravitational potentialϕ is given by Poisson's equation:

∇2ϕ = 4πGρ

The gravitational acceleration a at any point in space is then found by taking
the gradient of the potential:

−→a = −
−→
∇ϕ

Since the universe is static, −→a must be zero everywhere in space. Thus, the
potential f must be constant in space. Then we get ρ = 0, which indicates the
universe is totally empty. A matter-�lled universe which is initially static will
contract under gravity. A matter-�lled universe which is initially expanding,
then it will either expand forever or reach a maximum radius and then collapse.
To surmount this problem, Einstein introduced the new term Λ and rewrote the
Poisson's equation in the form:

∇2ϕ+ Λ = 4πGρ

Λ has dimensionality (time)−2 . Thus, this equation allows the universe to be
static if Λ = 4πGρ. If the Friedmann equation is rederived from Einstein's �eld
equation, with the Λ term added, it becomes:

(
ȧ

a
)2 =

8πG

3c3
ε− κc2

R2
0a(t)2

+
Λ

3

The �uid equation is una�ected by the presence of Λ, but the acceleration
equation becomes:

ä

a
= =

4πG

3c2
(ε+ 3P ) +

Λ

3

For the universe to remain static, both a and a must be equal to zero. If
a = 0, the Friedmann equation reduces to

0 = =

4πG

3
+

Λ

3

Einstein's static model therefore had to be positively curved (κ = +1) Al-
though Einstein published the details of his static, positively curved, matter-
�lled model, it was an unstable equilibrium. The energy density of Λ remains
unchanged, but the energy density of matter drops. Thus, the repulsive force is
greater than the attractive force, and the universe expands further, in turn caus-
ing the matter density to drop further, which causes the expansion to accelerate
and so forth.
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After Hubble's 1929 discovery that all galaxies outside the Local Group (the
group that contains the Milky Way Galaxy) are moving away from each other,
implying an overall expanding universe, Einstein abandoned the cosmological
constant. However, the same paper that caused Einstein to abandonthe cosmo-
logical constant caused other scientists to embrace it. To make up for the age
of the universe, which was badly estimated by Hubble due to his underestima-
tion of the distance to galaxies,cosmologists introduced Λ again. This term has
henceforth been in and out of the equations. In order to give Λ a real physical
meaning, we need to identify some component of the universe whose energy
density Λ remains constant as the universe expands or contracts. Currently,
the leading candidate for this component is the vacuum energy. In classical
physics, the idea of a vacuum having energy is wrong. In quantum physics,
however, a vacuum is not a sterile void. The Heisenberg uncertainty principle
permits particle-antiparticle pairs to spontaneously appear and then annihilate
in an otherwise empty vacuum. There is an energy density εvac associated with
the virtual particle-antiparticle pairs. Unfortunately, computing the numerical
value of εvac is an exercise in quantum �eld theory which has not yet been
successfully completed.

5 Discussion

In this project I learnt a lot about General Relativity, Cosmology and Dark
Matter. I came across various questions and topics for further researches. Some
of them need rigorous mathematical tools and concepts. Questions like �What
happens to an entangled pair when one of them falls into a black hole?� has
risen curiosity in me and I look forward to answer all of those questions in future
by learning various concepts.
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