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We simulate a 2-D gas using the basic assumptions of the kinetic theory of gases. The Boyle’s
law is proven and the Maxwell-Boltzmann curve is also calculated. We also use the Lennard-Jones
potential and simulate N particles interacting via the potential.

INTRODUCTION

We perform an N body simulation of an ideal gas. All
the basic assumptions and the techniques used (and not
used) are described in the article. This project was done
under the supervision of Dr. Ananda Dasgupta for the
PH4201 Advanced Experimental Physics course. The
program was written in Python and the plotting was done
in Gnuplot.

DISTRIBUTION OF RANDOM VECTOR

Our first task was to calculate the distribution of ran-
dom points in a 2-D box. It was expected that in a rect-
angular 2-D box, we would find more number of particles
along the diagonal rather than the coordinate axes. We
were expecting a distribution of the kind
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where θ is the angle (positive in the counterclockwise
direction).We expect from geometry of the system that
there will
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FIG. 1: Distribution of random points along the unit circle
(x axis - θ (in radians) y axis - normalised vector count)

direction.

The reason we wanted to calculate the distribution was
that we planned to take velocity vector for each particle
along the direction of its position vector. If there was
indeed a bias in the distribution we intended to remove it.

The method was as follows. We distributed N number
of particles (where N was of the order of 10000) in a box
by taking random x and y position components between
[-1,1]. Then we projected all the position vectors onto
its corresponding place on the unit circle (keeping the
direction fixed, but changing the magnitude to unit
magnitude). Henceforth, for each small interval dθ we
calculated the number of points lying in that interval
and plotted it. We fitted the resulting data with the
expected function and we find that there is certainly a
distribution as we expected. Figure 1 shows the data
and the fit.

COLLISION OF PARTICLES WITH THE WALLS

Since the previous approach did not work out we
proceeded to take random velocity magnitude and
random direction to produce a random velocity vector
for each particle. We were successful but at the cost
of increased computation. We had random velocity
magnitude and directions, but to make our job simpler
and for us to comprehend the problem more easily, we
split the velocity into it’s x and y components taking the
cosine and sin respectively. This increases the amount
of computation significantly. But as stated, to make
things more comprehensible we went ahead with the
component approach. At each time step the x and
y position component were updated according to the
corresponding velocity component.

We first tackled the problem of particles colliding
with the walls. The basic idea was simple. If a particle
collides with the wall , i.e., crosses the boundary of the
box, invert the velocity component corresponding to the
wall it hit. Suppose the particle hits the wall along the x-
direction. Then we switch the sign of the x component of
the velocity. Similarly for the walls along the y direction.

This approach was ideal except for the fact that
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our program did not have a continuous time parameter.
Each iteration was done for a certain time step dt.
We ran into collision detection problems. It can be
explained as follows. Suppose we have a particle that
moves a very high velocity. If the time step is not small
enough, then between the first and the next interval
the particle may cross the wall partially or completely
without getting reflected. To counter this, we could have
taken a very small dt. But unfortunately, that would
take up a lot of processor speed. So we could not help
the flaw with our approach. We relied on the fact that
when we actually do simulations we take large enough
number of particles so that these effects cancel out on
an average. The collision detection problem reoccurs in
a bigger way during collision between two particles.

COLLISION OF TWO PARTICLES

Next, we tried to incorporate the innocent looking
but quite complex phenomenon of collision between two
particles into our program. Higher order collisions (3
particles or more) were ignored for the sake of simplicity.

Collision was done as follows. Each particle was
tested against every other particle for collision. This was
an aspect where we could clearly improve. We could test
each particle against the particles only in its vicinity
and not every particle howsoever far away. This would
greatly reduce the computational complexity. There are
algorithms such as the Barnes-Hut algorithms which
look into these issues. That is a future direction we
would want to look into.

Two particles collided if the distance between their
centers was less than twice the radius (the radius of
each particle is considered the same in our analysis). If
the particles fulfilled the above condition, i.e., they were
undergoing collision, the new particle velocities were
found as follows. We know from classical mechanics
that if two particles undergo a collision, the force
that acts on both the particles is along the direction
connecting the two centers. Moreover, if the masses of
both the particles are same, then basically the velocity
components exchange along the line joining the centers
of the particles. We used this fact to calculate the final
velocity components.

We calculated the angle between the line joining
the centers of the particles and the x axis. We trans-
formed the velocity components in the original frame
to the rotated frame by multiplying with the rotation
matrix. We exchanged the velocity component along the
x direction (of the rotated frame) and then transformed
the components in the rotated frame to the original
frame using the inverse transformation. We then

advance both the particles by one or two time steps so
that they don’t appear to collide in the next iteration.

As mentioned in the previous section, here also we
run into problems involving collision detection due to
having a finite time step. The major problem here is
that if the time step is not sufficiently small enough, the
particles may actually go across each others boundaries
without colliding. Even if the program detects in the
next iteration that they have collided (or maybe gone
through) and runs the collision module, they may not
be able to go far enough so that they are not colliding
any more. If the velocity is not high enough, then the
particles may not be able to go far enough and in the
next iteration also they will be detected as collided. Due
to this, particles sometimes clump together. But again,
we expect that if we take a large number of particles,
these irregularities will be averaged out.

We could try other techniques for solving the problem
of collision detection as well. I again propose some
suggestions for pursuing in the future. We could try
to use an adaptive time step sort of technique. The
adaptive time step technique is the technique where we
keep changing our time step according to collisions. If
the distance between any two particles is less than a
certain value (say 4 times the radius), i.e., the particles
might collide, we reduce the time step. We actually
tried it but we had nominal success. This is because
any two particles might be in the vicinity quite often
which would reduce the time step for every particle.
That would mean that effectively the time step would be
reduced time step for most of the cases. That increased
computational complexity frequently.

Another technique we could try is calculating when
exactly the particles would collide and then calculate
the velocities after collision. We did not try this method
but this could have been a very effective technique for
detecting collision. Another approach could be taking
”softening parameters”, basically certain parameters
which help early collision detection. This approach also
had nominal success.

MAXWELL BOLTZMANN CURVE

With the above code written, we had the framework
laid for an ideal gas. Now we set to obtain the Maxwell-
Boltmann distribution using the ideal gas simulation.
The Maxwell-Boltmann distribution for a 2-D system is

f(v) = 2π
m

2πkT
ve−

mv2

2kT (1)

We needed to produce the speed distribution of the
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FIG. 2: 2-D Maxwell Boltzmann distribution with fit
(x axis - speed v, y axis - Number of particles with speed v)

particles. For each time step iteration, we counted
the number of particles within a certain velocity range
and plotted it. The graph shown is for time t=765.
The initial plots were discarded because the system
needs some time to reach equilibrium. We see that
the obtained curve (in red) matches well with the
theoretical prediction (in green). (The theoretical dis-
tribution needs to be multiplied by the total number of
particles, since the graph we obtained is not normalised.)

Important Note : To calculate the theoretical
distribution, we need to calculate the temperature first.
We know from kinetic theory of gases that the average
kinetic energy per particle is equal to kBT in 2 dimen-
sions. So, we calculate the total kinetic energy at the
start of the program. Then divide that by the number
of particles taken N and k(B) to get the temperature
T. The major problem here is that during calculation of
kinetic energy we set mass to 1. Due to that reason the
temperature turns out to be of the order 1020 which is
ridiculous in normal units but since we set our mass to
be 1 (which is ridiculous in itself, a small particle having
a mass of 1 kg) we do not have any inconsistency in our
result. It’s just that we failed to properly define our
units and kept doing so as per our convenience. In the
whole program, the mass is set to unity.

BOYLE’S LAW

Next, we turn our attention to calculating the pressure
on the box walls due to the particles and hence verifying
Boyle’s law by finding out the P vs. V curve. We

should note that since this is a 2-D calculation, volume
here is replaced by area and pressure as force per
unit area is replaced by force per unit length. This,
as we’ll show, will not affect our calculations or the result.

Until now, we had kept the box length fixed. But
to calculate P vs. V, we need to vary the box length
as well. If we square the box length, we get the area of
the box. For calculating the pressure, we need to keep
track of the particles hitting the wall. We apply basic
concepts of kinetic theory of gases. Whenever a particle
hits the wall, it experiences a momentum change of
2mvx or 2mvy depending on which wall it hit. We keep
track of all such momentum changes, both in the x and y
direction (ideally we should have equal contributions to
pressure from both walls, since the initial velocity vector
of any particle is random). Then, we need to calculate
the pressure using this momentum change. In principal,
what we should do is divide the momentum change by dt
and then divide by the box length to obtain the pressure.

Again, since we do not have continuous variables
for momentum change (we have δp not dp) we need
to average it over a few time steps. What we do is,
we keep averaging after every 10 time steps but over
the whole momentum change (including those in the
previous time steps). Suppose our time step is 0.1. So
we first calculate pressure at 1.0. Next time, we calculate
pressure at 2.0. But the pressure at 2.0 includes the full
contribution(from 0.0 to 2.0). We do get stabilization of
the pressure after a certain time interval.

As we see in the figure below (Figure 3), the aver-
aged pressure stabilizes after a long enough period of
time. Note that this does not happen for box length = 1.
This is due to the fact that because of such a small box
length, we lose too many particles to the outside. Even
if we correct for that, by putting the particle randomly
inside the box again, we still get a lot many particles
which stay outside (this is because of time not being
continuous in our program, as explained earlier) which
contribute to the diverging pressure. This phenomenon
is relatively insignificant in bigger box lengths, hence
the converging pressure.

Finally, we plot the pressure obtained versus area and
get the following plot (Figure 4).

INCLUDING LENNARD-JONES POTENTIAL

Till this stage, we have not included any interaction
whatsoever between the molecules (except the collision).
In the next stage, we evolve the particles under a
Lennard-Jones potential and we hope to see a phase
transition.



4

FIG. 3: Pressure vs. Time for various boxlengths

FIG. 4: P vs. V graph. Verified Boyle’s Law

The Lennard-Jones potential is given by

V (r) = ε[(
rm
r

)12 − 2(
rm
r

)6] (2)

where ε is the depth of the potential well and rm is
the equilibrium distance between two particles. The LJ
potential is a mathematically simple model that can
quite accurately represent the interaction between a pair
of neutral atoms or molecules. The r−12 term is the
repulsive term which describes Pauli repulsion at short
ranges. The r−6 term is the attractive long-range term

FIG. 5: P vs. V graph with Lennard-Jones Potential

which describes attraction at long ranges.

The force due to LJ potential is given by,

F (r) = 12ε[(
r6m
r7

)− (
r12m
r13

)] (3)

This force is incorporated into the program. We set
the parameters of the potential as ε = 0.0003 and
rm = 4radius. We are actually not using the exact LJ
potential, since beyond 2*radius, there is collision. So
basically, for r¡2*radius there is the hard wall potential
and beyond that it’s the LJ potential. We calculate (at
each time step) the force components on each particle
due to every other particle and update the velocity
components accordingly.

We expect to see a phase transition. For that, the
temperature of the gas and the energy scale of the
potential need to be comparable. If the temperature is
too high, we will again get Boyle’s law back. The plot
obtained was as follows. Even for this case, pressure and
area were calculated the same way as before.

Notice that we did get some points off the Boyle’s
law curve. But we did not see the phase transition
we were expecting to see. That may be because the
temperature of our gas is so high that the energy scale
of the potential well is negligible as compared to it,
which again emphasizes the fact that we need to scale
our calculations properly.

CONCLUDING REMARKS

I would like to make a few concluding remarks about
the project. We can explore several areas for improve-
ment. Some of them are listed below.
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• We did not ensure during the random particle cre-
ation that two particles should not overlap while
being created. A simple code could be written to
ensure that does not happen.

• We can very certainly make our code much faster
and efficient. For calculating the LJ force we could
consider the force due to particles only within a cer-
tain range of the particle itself. That would greatly
reduce the computational complexity.

• We were working in a 2-D space. We did start some
work on 3-D Ideal gas but we could not extend it.
We would like to extend all these results to their
3-D counterparts.

• As we noticed, we got into a lot of trouble because
we didn’t define our units well. We did not run
into any inconsistency because we kept our units
constant over the whole program but our lack of
defining units cost us sometimes. We need to prop-

erly maintain all the units of every variable in the
program.

We were successful in predicting the Maxwell-
Boltzmann distribution and the Boyle’s Law from
our simulations. We were close to seeing the
phase transition in Lennard-Jones potential but ul-
timately could not see it.
The final code has been attached.
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from math import * 
import random 
def arctan(m): 
        res=atan(m) 
        if(res<0): 
                return pi+res 
        return res 
 
N=300 
boxlength=1.0 
while(boxlength<20.): 
 radius=0.0001 
 x=[random.uniform(-boxlength+radius,boxlength-radius) for i in range(N)] 
 y=[random.uniform(-boxlength+radius,boxlength-radius) for i in range(N)] 
 v=[random.uniform(0,1)*0.003 for i in range(N)] 
 theta=[random.uniform(0,1)*2.0*pi for i in range(N)] 
 
 #For calculating Energy 
 sum=0.0 
 for i in range(N): 
  sum=sum+v[i]**2./2. 
 print(sum) 
 #End calculating Energy 
 
 vx=[0 for i in range(N)] 
 vy=[0 for i in range(N)] 
 #outfile=open("..\\MyCode\\DataFiles\\RandomParticleDistribution.datDistribution.dat",'w') 
 #outfile=open("./DataFiles/RandomParticleDistribution.dat",'w') 
 for i in range(N): 
  vx[i]=v[i]*cos(theta[i]) 
  vy[i]=v[i]*sin(theta[i]) 
         #print >>outfile,x[i],y[i] 
 
 t=0.0 
 tf=200.0 
 dt=0.1 
 
 steps=int(round(tf/dt,0)) 
 
 epsbox=boxlength/30.0#softening parameter 
 epsrad=radius/10.0 
 
 Fxs=0.0 
 Fys=0.0 
 kp=1 
 outfile1=open("./DataFiles/Force"+str(round(boxlength,0))+".dat",'w') 
 #outfile1=open(".\\DataFiles\\Force"+str(round(boxlength,0))+".dat",'w') 
 epsilon=0.0003 
 rm=4.*radius 
 
 
 while(t<tf): 
  s="./DataFiles/T"+str(round(t,0))+".dat" 



  #s=".\\DataFiles\\T"+str(round(t,0))+".dat" 
  f=open(s,'w') 
          
  #----For calculating Maxwell Boltmann distribution 
  sp=".\\DataFiles\\tp"+str(round(t,0))+".dat" 
         f=open(s,'w') 
         fp=open(sp,'w') 
         k=0 
         dk=0.01 
         while(k<2.0*max(v)): 
                 counter=0 
                 for kp in range(N): 
                         if(k<hypot(vx[kp],vy[kp])<k+dk): 
                                 counter=counter+1 
                   fp.write(str(k+dk)+"\t"+str(counter)+"\n") 
                k=k+dk 
         fp.close() 
  #----End calculating Maxwell Boltzmann distribution 
   
 
  for i in range(N): 
   if (abs(y[i])>1.3*boxlength or abs(x[i])>1.3*boxlength): 
    x[i]=random.uniform(-boxlength+radius,boxlength-radius) 
    y[i]=random.uniform(-boxlength+radius,boxlength-radius) 
   f.write(str(x[i])+"\t"+str(y[i])+"\t"+str(radius)+"\n") 
 
       
   if (y[i]>=(boxlength-radius) or y[i]<=-boxlength+radius): 
    #print(abs(2.*vy[i])) 
    #print(Fys) 
    Fys=Fys+abs(2.*vy[i]) 
    vy[i]=-vy[i] 
   elif(x[i]>=(boxlength-radius) or x[i]<=-boxlength+radius): 
    Fxs=Fxs+abs(2.*vx[i]) 
    vx[i]=-vx[i] 
   else: 
    Fxtemp=0.0 
    Fytemp=0.0 
    for j in range(N): 
     if(j!=i): 
      if(hypot(x[i]-x[j],y[i]-y[j])<=2.0*radius): 
       phi=arctan((y[i]-y[j])/(x[i]-x[j])) 
       vxp1=cos(phi)*vx[i]-sin(phi)*vy[i] 
       vyp1=sin(phi)*vx[i]+cos(phi)*vy[i] 
       vxp2=cos(phi)*vx[j]-sin(phi)*vy[j] 
       vyp2=sin(phi)*vx[j]+cos(phi)*vy[j] 
       vxp1,vxp2=vxp2,vxp1 
       vx[i]=cos(phi)*vxp1+sin(phi)*vyp1 
       vy[i]=-sin(phi)*vxp1+cos(phi)*vyp1 
       vx[j]=cos(phi)*vxp2+sin(phi)*vyp2 
       vy[j]=-sin(phi)*vxp2+cos(phi)*vyp2 
       x[i]=x[i]+vx[i]*dt#x=x+vt 
       y[i]=y[i]+vy[i]*dt 



       x[j]=x[j]+vx[j]*dt#x=x+vt 
       y[j]=y[j]+vy[j]*dt 
       x[i]=x[i]+vx[i]*dt#x=x+vt 
       y[i]=y[i]+vy[i]*dt 
       x[j]=x[j]+vx[j]*dt#x=x+vt 
       y[j]=y[j]+vy[j]*dt 
       break 
      else: 
       r=hypot(x[i]-x[j],y[i]-y[j]) 
       phi=arctan((y[i]-y[j])/(x[i]-x[j]))#*180./pi 
       if (x[i]>x[j] and phi<=pi/2.): 
        phi=phi+pi 
       elif (x[i]<x[j] and phi>pi/2.): 
        phi=phi+pi 
 
       Fxtemp=Fxtemp-(-12.*epsilon*(rm**6./r**7.-rm**12./r**13.))*cos(phi) 
       Fytemp=Fytemp-(-12.*epsilon*(rm**6./r**7.-rm**12./r**13.))*sin(phi) 
        
    vx[i]=vx[i]+Fxtemp*dt 
    vy[i]=vy[i]+Fytemp*dt 
   x[i]=x[i]+vx[i]*dt#x=x+vt 
   y[i]=y[i]+vy[i]*dt  
  if(kp>1 and kp%10==0): 
   outfile1.write(str(t)+"\t"+str((Fxs+Fys)/boxlength/kp/dt)+"\n") 
   print(str(kp)+"\t"+str(boxlength)) 
  f.close() 
  kp=kp+1  
  t=t+dt 
 
 outfile1.close() 
 boxlength=boxlength+1. 


