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INTRODUCTION 

 
 
" A hundred years ago, Auguste Comte, a great philosopher, said that humans 
will never be able to visit the stars, that we will never know what stars are 
made out of, that that's the one thing that science will never ever understand, 
because they're so far away. And then, just a few years later, scientists took 
starlight, ran it through a prism, looked at the rainbow coming from the 
starlight, and said: ―Hydrogen!‖ Just a few years after this very rational, very 
reasonable, very scientific prediction was made, that we'll never know what 
stars are made of. " 
Michio Kaku 
 
Stellar spectrum gives us a wealth of information about the star. Astronomers 
have discovered that the stars are made up of everyday elements found on 
the Earth. We can also deduce the stellar temperatures, radii, surface gravity, 
photospheric velocity fields, rotation rates, etc. just by using the 
electromagnetic spectrum obtained from the star.  
 
In 1802, the English chemist William Wollaston noted that the spectrum of 
sunlight did not appear to be a continuous band of colors, but rather had a 
series of dark lines superimposed on it. Wollaston attributed the lines to 
natural boundaries between colours. Joseph Fraunhofer made a more careful 
set of observations of the solar spectrum in 1814 and found some 600 dark 
lines, and he specifically measured the wavelength of 324 of them. In 1864, 
Sir William Huggins matched some of these dark lines in spectra from other 
stars with terrestrial substances, demonstrating that stars are made of the 
same materials of everyday material rather than exotic substances. This 
paved the way for modern spectroscopy. But hold on. All this brouhaha about 
spectroscopy, spectrum. But what exactly is a spectrum? Stellar spectrum? 
 
When light passes through a prism, it separates into the colors that make it up. 
White light changes to a swath of colors. This rainbow is called a spectrum. 
We can make spectra in many ways: with a prism, with drops of water (as in a 
real rainbow), or with gratings. Scientists build special instruments to separate 
light, usually with gratings. These instruments are called spectrographs. 
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When astronomers pass the light of a star through a spectrograph, they get a 
spectrum of the star. The spectrum looks like a regular rainbow of colors—
except that there are dark lines in it. The position, the number and the size of 
the lines, give a lot of information about a star‘s atmosphere including its 
gaseous chemical content, its density and temperature. These lines are called 
spectral lines. Here is a spectrum of our sun: 
 
 

 
 

 

The deep violet side on the left corresponds to a wavelength of about 3500 
Angstroms and it ranges to the deep red on the right at about 7500 A, or 
roughly a span of 4000 A.  There are dark vertical lines in the spectrum 
above.  They are very narrow color bands in which there is less light, so they 
look dark.  The light in the lines has been absorbed by the gases of the star‘s 
atmosphere, so they are called ‗absorption‘ lines. Each element absorbs light 
of a particular frequency—a particular color. If that element is in the cool 
atmosphere of the star, those atoms will absorb the light at that color and 
produce the line. There are lots of lines in stellar spectra and they have 
different amounts of light missing or darkness. 
 
Now that we are acquainted with the basic knowledge about a spectrum, let's 
dive into the details in the next few chapters. We'll explore the basic 
observational, computational and theoretical tools for measuring and 
interpreting stellar spectra and also study how spectral lines get modified due 
to photospheric velocity fields and stellar rotation. 
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BASIC PHYSICS 

 

 

SPECTRAL CLASSIFICATION 
 
Since even before the discovery of spectra, scientists had tried to find ways to 
categorize stars. By observing spectra, astronomers realized that large 
numbers of stars exhibit a small number of distinct patterns in their spectral 
lines. Classification by spectral features quickly proved to be a powerful tool 
for understanding stars. 
 
The modern classification system is known as the Morgan–Keenan (MK) 
classification. Each star is assigned a spectral class from the older Harvard 
spectral classification and a luminosity class using Roman numerals, forming 
the star's spectral type. The classification is explained below. 
 
Harvard classification system – The differences in spectra reflects different 
surface temperatures. Material on the surface of stars is "primitive". There is 
no significant chemical or nuclear processing of the gaseous outer envelope of 
a star once it has formed. Fusion at the core of the star results in fundamental 
compositional changes, but material does not generally mix between the 
visible surface of the star and its core. 
 
Ordered from highest temperature to lowest, the seven main stellar types are 
O, B, A, F, G, K and M. O, B, and A type stars are often referred to 
as early spectral types, while cool stars (G, K, and M) are known as late type 
stars. The spectral characteristics of these types are summarized below: 
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Within each of these seven broad categories, there are subclasses numbered 
0 to 9. A star midway through the range between F0 and G0 would be an F5 
type star. The Sun is a G2 type star. 
 
Luminosity Classes – The Harvard scheme specifies only the surface 
temperature of the star. A more precise classification would also include the 
luminosity of the star. The standard scheme used for this is called the Yerkes 
classification (or MMK, based on the initials of the authors William W. Morgan, 
Philip C. Keenan, and Edith Kellman). This scheme measures the shape and 
nature of certain spectral lines to measure surface gravities of stars. The 
gravitational acceleration on the surface of a giant star is much lower than for 
a dwarf star (since g = GM/R2 and the radius of a giant star is much larger 
than a dwarf). Given the lower gravity, gas pressures and densities are much 
lower in giant stars than in dwarfs. These differences manifest themselves in 
different spectral line shapes which can be measured. 
The Yerkes scheme uses six luminosity classes: 
 

Ia Most luminous supergiants 

Ib Less luminous supergiants 

II Luminous giants 

III Normal giants 

IV Subgiants 

V Main sequence stars (dwarfs) 

 
Thus the Sun would be more fully specified as a G2V type star. 
 

MAGNITUDES AND COLOR INDICES 
 

A basic observable quantity for a star is its brightness. Because stars can 
have a very broad range of brightness, astronomers commonly introduce a 
logarithmic scale called a magnitude scale to classify the brightness. 
Magnitude is given as –  

.)(log5.2
0

constdWFm  
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Where Fv  is the flux of the star recorded in spectral interval specified by W(v). 
The constant is set according to the magnitude scale used (it is 0 for Vega). 
 
One important distinction is between whether we are talking about the 
apparent brightness of an object, or its true brightness. The former is a 
convolution of the true brightness and the effect of distance on the observed 
brightness, because the intensity of light from a source decreases as the 
square of the distance (the inverse square law). Following that reasoning, 
there are two types of magnitudes : apparent magnitude and absolute 
magnitude. 
 
Apparent Magnitude – The apparent magnitude of an object is the 
WYSIWYG magnitude. It is determined using the apparent brightness as 
observed, with no consideration given to how distance is influencing the 
observation. The apparent magnitude is easy to determine because we only 
need to measure the apparent brightness and convert it to a magnitude with 
no further thought given to the matter. However, the apparent magnitude is not 
so useful because it mixes up the intrinsic brightness of the star (which is 
related to its internal energy production) and the effect of distance (which has 
nothing to do with the intrinsic structure of the star). 
 
Absolute Magnitude – Astronomers define the absolute magnitude to be the 
apparent magnitude that a star would have if it were hypothetically placed at a 
distance of 10 parsecs (which is 32.6 light years) from the Earth. We can do 
this if  the true distance to the star is known because the inverse square 
law can be used to determine how its apparent brightness would change if it 
were moved from its true position to a standard distance of 10 parsecs. 10 
parsecs is the distance astronomers have chosen for this standard. An upper-
case "M" is used to denote an absolute magnitude. 
 
A color index is defined by taking the difference in magnitudes at two different 
wavelengths. Using the U, B, and V color filters, there are three independent 
possible such differences. For example, the B-V color index is defined by 
taking the difference between the magnitudes in the blue and visual regions of 
the spectrum (technically it is a relative measure of the temperature of the star 
through the slope of Paschen continuum) and the U-B color index is the 
analogous difference between the UV and blue regions of the spectrum. 
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VELOCITY DISTRIBUTIONS 
 
The velocities of the particles in a hot gas (such as in a star) follow the 
Maxwell-Boltzmann distribution. The fraction of particles in velocity interval 
(v,v+dv)  is (in rectangular coordinates), 
 

dvev
kT

m

N

vdN
kT

mv

total
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where 
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zyx vvvv   This is the Maxwellian speed distribution. 
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FOURIER TRANSFORMS 
 
 
 
Fourier transforms are an indispensable tool for analyzing stellar spectra. 
Many calculations can be done with relative ease by switching over to the 
Fourier domain. The basic Fourier transform of a function F(x) is defined as  






 dxexFf ix 2)()(
 

 
where x and ζ are known as a Fourier pair. The inverse Fourier transform is 






   defxF ix2)()(
 

 

COMMON FOURIER TRANSFORMS 
 
A box function transforms to a sinc function and vice versa. 
 

 
 

A Gaussian transforms to another Gaussian.  
Transform of a dispersion profile (known as Lorentzian function) – 
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A delta function transforms to a constant and vice versa. 
 
A Dirac comb ( an infinite array of equally spaced δ-functions, also known as 
Shah function) transforms to another Dirac comb. 
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SAMPLING 
 
The data we acquire is discrete and not continuous. Our data doesn't 
represent the true function. It can be written as a product of the "true" function 
x(t) and the Dirac comb III(t). 

 
Also, we record data in an interval (finite time or finite bandwidth). t1 -> t2  
An interval/window is expressed as multiplication with a box function, B(t) 
having a width equal to window limits of our observation. 

D(t) = B(t)III(t)x(t) 
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CONVOLUTION 
 
A convolution is an integral that gives as output the amount of overlap of one 
function as it is shifted over another function. It is useful because convolutions 
in one Fourier domain become simple multiplications in the other domain. 

 
 

)(*)()()()()()()( 111  fggfkdgfk  




 

 
Convolution with a δ-function gives the same function translated to the center 
of the δ-function.  

)()(*)( 11 xxFxxxF   

 

Convolution of two Gaussians gives a third Gaussian, convolution of two 
Lorentzian functions gives a third Lorentzian function, convolution of a 
Gaussian and a Lorentzian function gives a Voigt function. 
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USEFUL THEOREMS 
 

 

 
 

ALIASING AND NYQUIST SAMPLING THEOREM 
 

 In many applications we need to create to a bridge between continuous-time 
signals ("analog") and discrete-time signals ("digital"). The Nyquist-Shannon 
sampling theorem establishes a sufficient condition for a sample rate that 
permits a discrete sequence of samples to capture all the information from a 
continuous time signal of finite bandwidth. Reconstruction of analog from 
digital signals is done via the Whittaker-Shannon interpolation formula. The 
theorem states that "If a function x(t) contains no frequencies higher than B 
hertz, it is completely determined by giving its ordinates at a series of points 
spaced (1/2B) seconds apart." 
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The sampling rate of 2B is called the Nyquist frequency. If the Nyquist theorem 
is not satisfied during sampling then aliasing results, i.e., the transform has 
overlapping regions. 
 
Say,  

D(x) = B(x) III(x) F(x) 
Its Fourier transform, 

D(ζ)=b(ζ)*III(ζ)*f(ζ) 
 

Assume that B(x) is so wide, that b(ζ) is essentially an impulse. 
 

=>  d(ζ) = III(ζ) * f(ζ) 
(since convolution with δ(ζ), the impulse, gives the same function back) 
 
If the data spacing in D(x) is Δx, then the data spacing in d(ζ) is 1/Δx 
If f(ζ) reduces to zero for ζ<0.5/ Δx then there will be no aliasing. Otherwise 
there will be some overlapping.  
 
ζN = 0.5/Δx  is known as the Nyquist frequency. 
 

NUMERICAL CALCULATION OF TRANFORMS (FFT) 
 

The Fast Fourier Transform method is discussed. Assumptions/Requirements 
are  
1) Number of points in the function to be transformed should be integral 
powers of 2 (if its not the case, then it can be done by extension of the data 
array by adding zeros.)   
2) All data points must be equally spaced along the abscissa (x-axis) 
 

)()()( jDxjDxD   

where j is an integer index from 0 to N-1 (N is the number of points). Δx is the 
step. 
 
Now the transform is, 
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Where d(ζ) is written in the Fourier series form. 

Also ζ = kΔζ where Δζ is the spacing of points in d(ζ) and k is an integer. 
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The highest frequency at which we can obtain information about the transform 
is the Nyquist frequency ζN = 1/(2Δx) 

If there are N points for D(x), then there are N values for d(ζ). Also, d(ζ) 
extends equally far in negative as in positive ζ, i.e., ζN would be N/2 points 
away from zero. 
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This summation is evaluated for FFT assuming Δx=1. 
 
The inverse transform would be, 
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GRATINGS 
 
 
 

The basic setup used in any spectrograph uses a diffraction grating. Diffraction 
grating is the element which disperses light into its constituents wavelengths. 
The incidence of a wave on the grating and the resultant spectrum formation is 
discussed below. 
 

DIFFRACTION GRATING 
 
An incident plane scalar wave 

)
sin2

exp()(),( 0


ix
tFtxF 

 

 
 

The grating transmission is described by the function G(x) 
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The wave that emerges from the rear side of the grating is the product of F(x,t) 
and G(x). The resultant wave in arbitrary directions (say, β) will be sum of the 
contributions, with proper phase shift from along x-coordinate (basically 
Huygens' principle). 






 dxexGtxFg ix  /sin2)(),()(
 

 

Where 2π(x sinβ)/λ is the required phase difference along the grating. 
 






 dxexGFg xxi  /)sinsin(2

0 )()(
 

where we substituted the original F(x,t). 
 
 
We choose to measure x in units of λ. Also sinα+sinβ=θ 






 dxexGFg ix 2

0 )()(
 

This tells us a profound thing. The resultant waves behind the grating can be 
written as a Fourier transform of grating transmission function G(x). 
 

G(x) = B1(x)*III(x)B2(x) 
 
G(x) is taken to be purely real, i.e., an amplitude function. A more general G(x) 
would be complex. A purely imaginary G(x) will be a phase grating. The box 
B1(x) represents transmission through a single slit, and so has a width 'b'. Box 
B2(x) matches total width of the grating, 'W'. The spacing between the δ-
function in III(x) is 'd'. 
 
Different orders of maxima 'n', arise from multiple slits and 'b' (single slit width) 
sets the diffraction envelope, 'W' sets the width of individual interference 
maxima. 
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Square of this wave amplitude function is proportional to the light intensity. 
The distribution of light in diffraction pattern of grating is proportional to g2(θ). 
There is maxima in g(θ) when θ-n/d=0. Condition for maxima is, 




sinsin 
d

n
 

('d' was measured in terms of wavelength, now it is measured in the standard 
units). This equation is also known as the grating equation. 

 

 

BLAZED REFLECTION GRATINGS 
 

In normal gratings, the maxima at θ=0 is the brightest, the most amount of 
light is lost there. Sometimes, we may need better intensity for higher orders. 
For doing this, we shift the diffraction envelope relative to the interference 
pattern to those θ values in which we wish to work. Fourier shift theorem tells 
us we can accomplish this by introducing a phase term in B1(x). Such a grating 
is known as a blazed grating.  
 
We can achieve a phase shift by introducing prisms in the slits. But that results 
in intensity loss. So we use a reflection grating. The slit width and slit spacing 
are the same in this case, i.e., there is no slit. The light incident on the grating 
reflects and forms the resultant spectrum. 
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Now, b=d and the facet angle (angle between grating normal and groove 
normal) is θ. The equation for transmission grating holds for reflection gratings 
as well. 
 
The diffraction envelope of g(θ) is given by, 
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Tilting the reflection facet through θ changes phase of reflected wave, i.e., 
α→α – θ and β→β – θ . Then the envelope light distribution is proportional to, 
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DETECTORS 
 

 

The spectrum is obtained via the detectors. There are many kinds of 
detectors: Photographic plates, Photomultiplier tubes (PMT), Charge-coupled 
devices (CCD). These days mostly CCDs are used. 
 
Photographic plates are basically crystals of silver halides (AgCl, AgI, usually 
AgBr). It is suspended in thin gelatin layer (15-30μm thick) called emulsion. 
The gelatin layer is supported by a substrate of glass or celluloid. 
Photomultiplier tubes (PMT) are based on the principle of photoelectric 
effect. These detectors multiply the current produced by incident light on the 
photocathode which gets multiplied through the dynodes, reaches the anode 
and produces a signal. 
 

QUANTUM EFFICIENCY AND SPECTRAL RESPONSE 
 

Quantum efficiency is the ratio of the number of photons collected by the 
device to the number of photons incident on the device.  

incidentphotonsofNo

ectedphotonsofNo
q

.

det.
)( 

 

Spectral response is the relative efficiency of a detector with wavelength, e.g., 
q(λ), for photographic plate, exposure (product of level of illumination(watts per 
square meter) times the exposure time). It is proportional to total number of 
photons impressed upon a unit area of the plate. Spectral response of the 
photographic plate is reciprocal of exposure needed to give a specified level of 
darkening on the plate. 
For photomultiplier tubes, we list q(λ) or photocathode current per watt of 
incident illumination. Suppose incident radiation has strength of P watts and 
consists of N photons/sec. => P = Nhc/λ 
 

If current generated by cathode is Neqi )( , then, 

)()(10*07.8)( 5 angstromsinforq
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DETECTOR DARK OUTPUT 
 

Detector dark output refers to the dark current, the current when illumination is 
zero. Photographic plates show background 'fog' due to cosmic rays and 
radioactive trace elements in vicinity of the plate, most of it due to thermal 
excitation of silver halides in emulsion. Hence, we should refrigerate 
spectroscopic plates until used. Generally they are kept in liquid nitrogen. A 
discriminator can be used to cut out small noise pulses. 
 

LINEARITY OF PMT 
 

When output of detector is proportional to amount of incident radiation, then 
the detector is linear. PMTs are generally linear. There are a number of ways it 
can be destroyed –  
1)Photomultiplier fatigue (usage of PMT for a long duration) 
2) Rate of pulses greater than counting speed of electronic circuitry 
3) Effect of Earth's magnetic field 
4) Gain stability (the gain may not be stable) 
 
The spatial resolution of the detector is also important. The instrumental 
profile (or δ-function response) of the detector should be measured and 
removed from the observations. The Fourier transform of the instrumental 
profile is known as the Modulation Transfer Function (MTF). 
 

 

NOISE 
 

We need to remove the noise from the signal. There is photon noise from 
starlight, in sky background, also there is equipment noise. The fluctuations in 
photon rate are described by Bose-Einstein statistics, for a thermal source of 
characteristic temperature T, mean square fluctuation Δn photons/sec, is 
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Since hν>>kT generally   Δn=n1/2   (Poisson statistics). Equipment noise also 
follows Poisson statistics. 
 
We can combine main sources of noise as follows. Define the rate of photon 
counts for the light source to be L per second and rate of counts 
corresponding to equipment noise and other background to be B. Number of 
recorded counts in an integration time t is n = (L+B)t 
Our signal is comprised of number of light counts  N = Lt 
It is found by subtracting background from total 
 

N = n – Bt = n – b where b = Bt 
 

ΔN = [Δn2 + Δb2]1/2  
 
If deviations are sufficiently well represented by a Gaussian distribution, 
 

Δn = n1/2 and Δb = b1/2  
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if  B/L << 1 => ε = (Lt)-1/2 = N-1/2  => pure signal photon noise. 
 
if  B/L >> 1 => ε = [(2B/L)/Lt]1/2   Since B/L>>1 hence ε is large unless t is made 
very long. 
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BASIC RADIATION TERMINOLOGY 
 

 

 

SPECIFIC INTENSITY 
 

 
 

Suppose we have radiation from a spherical star.  Take ΔA, a small area of 
the spherical surface. Then the specific intensity Iν  is defined as, 





ddtddA

dE

tA

E
I

coscos
lim 






 

 

where θ is the angle from the normal to the line of sight and dω is denoted as 
dΩ in the figure (differential solid angle). 
 
Mean intensity is defined as directional average of specific intensity. 
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FLUX 
 

Flux is a measure of net energy flow across an area ΔA, in time Δt, in a 
spectral range Δv, 
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If we look at a point on the physical boundary of a radiating sphere, 
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i.e., flux leaving surface plus flux entering surface. In case at hand (star) 
second term is zero. If there is no azimuthal dependence for Iv , 



2/

0

cossin2



  dIF
 

 

if Iv  is independent of direction ( no θ dependence), 

  IF   

 

Iv  is independent of distance from source whereas Fv  obeys standard inverse 
square law. Iv  can only be measured directly if we can resolve the radiating 
surface, otherwise we necessarily measure Fv . 
 

THE K-INTEGRAL AND RADIATION PRESSURE 
 

 

Mean intensity is  


 dII
4

1
       and flux    dIF cos  

Also,  


 dIK 2cos
4

1
 which is related to radiation pressure. 

Say we have photons in a box. Calculate the pressure applied by the photons 
on the box walls. Photons have momentum. They transfer momentum to the 
solid wall in a manner analogous to kinetic gas theory. The component of 
momentum normal to the wall taken per unit time and area is the pressure, 
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dAdt
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where θ is the angle the photon trajectory forms with the normal to the wall. In 
terms of specific intensity, 

 
 dd
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Integrated over solid angle, 
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"Monochromatic" pressure refers to pressure exerted by photons with 
frequency in range dv. 
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Special case – assume Iv  is independent of direction, i.e., factor Iv  out of the  
integral, 
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and total radiation pressure is, 
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where T is the kinetic gas temperature. 
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THE ABSORPTION COEFFICIENT & OPTICAL DEPTH 
 
Consider radiation in specified direction shining on a small thickness of 
material which itself is so cool that it doesn't radiate measurably. Intensity of 
light is found experimentally to be diminished upon passage through the layer 
by an amount dIv where 

dxIdI  
 

where κν  is the absorption coefficient (cm2/g) or mass absorption coefficient,  
ρ is density in g/cc and dx is in cm. 
 
Two processes contribute to κν – 

1) True absorption – photon is destroyed and energy thermalized. 
2) Scattering – photon is deviated in direction and removed from solid 

angle being considered. 
 
κν  is really an extinction coefficient. 
 


L

dx
0

   

where ην is optical depth and x is the geometrical depth. 
 

 dIdI 
 






 eII 0

 

This is the usual simple extinction law. 
 
 

THE EMISSION COEFFICIENT & SOURCE FUNCTION 
 
Increment of radiation emitted in a specific direction is 

dxjdI  
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where jv is the emission coefficient (ergs per second per rad2 per c per second 
per gram) 
 
Physical processes contributing to jv – 

1) Real emission – creation of a photon 
2) Scattering of photon into the direction being considered. Not diffraction 

but absorption followed immediately by a reemission of photon from 
same atomic transition. 

 
Ratio of emission to absorption has the same units as Iv  

Source function 
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PURE ISOTROPIC SCATTERING 
 

Pure isotropic scattering – All emitted energy is due to photons being 
scattered into direction under consideration. Contribution djv  to emission from 
solid angle dω is proportional to dω and to absorbed energy κv Iv . It is 
isotropically reradiated so the fraction per unit solid angle is 1/4π. 
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But κv  is generally ω independent, 
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i.e., source function for pure isotropic scattering is mean intensity. 
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PURE ABSORPTION 
 

When all absorbed photons are destroyed and all emitted photons are created 
with a distribution governed by physical state of material => that is pure 
absorption. Common usage of term has narrowed its meaning to that physical 
state of material called thermodynamic equilibrium. 
 
Emission from gas in thermodynamic equilibrium is given by laws of black 
body radiator. Source function given by Planck's Radiation Law, 
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Combine scattering with pure absorption. Add photons contributed from two 
mechanisms. 

=> emission coefficient is )(TBIj AS

    

Similarly add absorption coefficients to obtain total absorption coefficient. 
Source function for this combination is then ratio of total emission coefficient to 
total absorption coefficient, 
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EINSTEIN COEFFICIENTS 
 

When dealing with spectral lines or bound-bound transitions, we can describe 
the spontaneous probabilities for emission in terms of atomic constants. 
Consider spontaneous transition between upper level, u, and lower level, l, 
separated by energy hv. Assume emission is isotropic. Probability that atom 
will emit its quantum of energy in time dt and in a solid angle dω is Aul dt dω. 
Aul  is the Einstein probability coefficient for spontaneous emission. 
 
If there are Nu  excited atoms per unit volume, the contribution of spontaneous 

emission to emission coefficient is,  hANj ulu  
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Probability for stimulated emission giving a quantum in time interval dt in solid 
angle dω is, Bul Iv dt dω , where directional dependence of Iv  becomes 
important since it fixes directional dependence of these new photons. Bul  is 
the Einstein probability coefficient for stimulated emission. 
 
True absorption probability is defined in the same way and the proportionality 
constant is denoted by Blu . Mass absorption coefficient for this bound-bound 
transition can be expressed in terms of B's considering radiation absorbed per 
unit path length from intensity beam Iv , 
 

      hIBNhIBNI ululul   

where Nl  is the population of lower level per unit volume. 
 

 hBNhBN ululul   
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BLACK BODY RADIATION 
 

 

 

EMPIRICAL RELATIONS 
 

Blackbody spectrum is continuous, isotropic and unpolarized. Intensity of 
continuum is found to depend only on frequency and temperature of 
blackbody. Two laws are found empirically. 
 
First of these is a scaling relation, 
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Where F(.) is a unique function that can be tabulated from measurements. 
 

Now, say u=v/T  =>  uFuTI 33  

From observations, 

KcmT 28978.0max 
 

Wien's law 
 
Second law is the Stefan-Boltzmann law, i.e., total power output is specified 
purely by temperature according to 

4

0

TdF  


 

Where Fv  is the flux and ζ is the Stefan-Boltzmann constant.  
ζ = 5.6703*10-5 erg/sec cm2 deg4 

 
It follows from Wien's law. Let u=v/T 

 uFuTI 33  
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At low frequencies, 2

22

c

kT
I


  , which is the Rayleigh-Jean's 

approximation. 

At high frequencies, 
TconsteconstI /3. 

   , which is the Wien's 

approximation. 
 
 

PLANCK'S RADIATION LAW 
 

We derive the Planck's law using the two-level atom. Upper level population 
Nu , lower level population is Nl and since atoms are in container in 
thermodynamic equilibrium => their population are related by, 
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where energy difference Xu – Xl = hv 
 
Equilibrium condition implies that all the ways for electron to go from u to l 
must be balanced by the return paths. 
Number of spontaneous emissions per second per unit solid angle per unit 
volume is NuAul. Rate of stimulated emission per unit solid angle and volume is 
NuBulIv where Iv is taken at v appropriate to the transition. Absorption pumps 
electron upward, so for this rate we write NlBluIv  
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   (Ratio of emission to absorption) 

this has the form of source function. 
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Substitute for population ratio according to the excitation equation, 
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This must go to Rayleigh-Jean's approximation in limit of small v. Expand 
exponential keeping only 1st order terms, 
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which must be made equal to 2kTv2/c2 . This can be done only if, 
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Substitute into 
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 which is the Planck's radiation law. 

This is also Bv(T), blackbody source function. From this equation, we can 
derive Wien's law and Stefan-Boltzmann law. 
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RADIATIVE AND CONVECTIVE ENERGY 
TRANSPORT 

 
 
 

THE TRANSFER EQUATION AND ITS FORMAL SOLUTION 
 

The major mode of transport of energy is radiation. Consider radiation 
traveling in direction s. The change in specific intensity, dIv, over an increment 
of path length, ds, is sum of losses and gains, 

dsjdsIdI   
 

Divide by   dds  , 
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    This is the equation of radiative transfer. 

 
Integrate using standard integrating factor scheme. 
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' f ' is the function to be determined. 
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=> b = -1 and 
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Integration constant can be written as c0 = Iv(0) 
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This is the transfer equation. Iv is a function of optical depth along a line. This 
equation can be applied directly in studies of interstellar medium since 
observation at a point on celestial sphere corresponds to observation along 
such a line. For stellar atmospheres, it is conventional to define optical depth 
relative to star along a stellar radius and not along the line of sight. 
Appropriate projection factor must then be incorporated. 
 

THE TRANSFER EQUATION FOR DIFFERENT GEOMETRIES 
 

Assume spherical stars => spherical coordinates, the z axis is towards 
observer. Because we are concerned with geometry, the transfer equation can 
be written in the form, 








SI

dz

dI


 

In general, 
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From figure, 

dzdr cos  

dzrd  sin  

Hence transfer equation, 
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sincos

 

 

This form of the equation is used in stellar interiors and in calculation of very 
thick stellar atmospheres such as those found in supergiants and possible 
giants. Generally, in most stars the geometrical thickness of photosphere is 
very small compared to stellar radius. Solar photosphere is ~700km thick or 
~0.1% of solar radius. => Plane parallel approximation can be made => θ 
doesn't depend on z => no second term in above equation, 
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It is a custom/convention to adopt a new geometrical depth variable, x, for 
plane geometry case defined by dx=-dr 

)(cos dxdSI
d

dI



 



  
 

This is the basic form of transfer equation used in the central arena of stellar 
atmospheres. 
 
Optical depth defined in this way is measured along x and not along the line of 
sight which is at some angle, θ, as shown. 
 

 
 

=> ds = dx secθ 
 
This amounts to replacing ηv  with -ηv secθ. The negative sign comes from 
choosing dx = - dr. 
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The integration limit, c, replaces the Iv(0) integration constant. This is done 
because the boundary conditions are clearly different for radiation having 
θ≥90 ° (radiation inward) than for that having θ≤90°  (radiation outward). 
 
In the first case Iv(0)=0 for a normal isolated star, where ηv  =0 is taken to be 
outer boundary of atmosphere. Radiation from other stars, galaxies is 
completely negligible compared to star's own radiation. => For inward directed 
radiation, 
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For second case, we consider radiation at depth ηv  and deeper until no more 
radiation can be seen at our station. In other words, the integration limit is ηv=∞ 
=> For outward directed radiation 
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=> Full intensity at position ηv  is then  
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One must require 
0














eSLt
 to ensure that the integral 

exists. Real stars meet this condition effortlessly. 
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Special case  at stellar surface 

0)0( inI  
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The last equation is relevant to solar work. For most stars, we must deal with 
the flux. 
 

THE FLUX INTEGRAL 
 

Expand     dIF cos    in spherical polar coordinates and assume 

no azimuthal dependence in Iv, 
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We substitute Iv
out , Iv

in  into the above equation.  
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where we have assumed Sv  to be isotropic. Let w = sec θ    and   x = tv - ηv 
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Exponential integrals, 
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which is a monotonically diminishing function of x. 
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for E2(ηv-tv)  in 2nd integral, let w = - secθ  and  x = ηv - tv   in inner integral of 2nd 
term. 
The above equation is the basic relation we have sought. Theoretical stellar 
spectrum to be compared to observation is Fv(0) 
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Surface flux is composed of sum of source function at each depth multiplied by 
extinction factor E2(tv), appropriate to that depth below the surface and the 
sum is taken over all depth contributing a significant amount of radiation at the 
surface. Fv is the flux per unit area. Total radiation at frequency v is 4πR2Fv 
where R is star's radius. 
 

THE MEAN INTENSITY AND K INTEGRALS 
 

We derive expressions for I  and κv  as function of ηv. 
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EXPONENTIAL INTEGRALS' PROPERTIES 
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RADIATIVE EQUILIBRIUM 
 

Conservation of energy must apply to flow of radiation upward through the 
stellar photosphere. Assume no sources or sinks of energy in photosphere 
and the energy generated in core of star is simply flowing outward to outer 
boundary. => Divergence of flux is zero everywhere in the photosphere. 
Virtually all the calculations we consider are for plane parallel geometry. 
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 which is a constant. 

F is total energy flux in ergs/per cm2. In that case where all the energy is 

carried via radiation 
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This special case is called radiative equilibrium and first condition for radiative 

equilibrium is, 0

0

FdF 


    

This must be satisfied at every depth in photosphere. If convection plays a 
significant role as a mode of energy transport, then 
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Φ(x) is convective flux. Substitute Fv , 
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This is known as Milne's 2nd equation. It says that in case if radiative 
equilibrium, solution of transfer equation is found when an Sv is known that 
satisfies this equation. 

Other radiative equilibrium condition that have been used are derived from 
transfer equation, 
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Integration over solid angle gives, 
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Assuming κvρ is independent of direction. If Sv  is also independent of direction 
and we substitute for 1st and 2nd integrals the definition of flux and mean 
intensity, 
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Second integration over v gives 
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In radiative equilibrium, left hand side LHS = 0, 
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Final radiative equilibrium condition obtained in similar way. Multiply transfer 
equation by cosθ before integrating over solid angle and frequency with result, 
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Milne's equation corresponding to above 2 equations follows from substituting 

κv  and I  into them. 

The three Milne equation aren't independent. The Sv  that is a solution of one 
will be solution of all three. 
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Flux constant F0 = ζT4
eff   where Teff  is the effective temperature. 

 

THE GREY CASE 
 

Simplification  κv  is frequency independent hence the name grey. 
Integrate transfer equation over v, 
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Define  κv=κ,  dII 



0

 and  
 dSS 




0

 

SI
dx

dI
  cos

 

SI
d

dI



cos

    

Total radiation is described by a single transfer equation. 
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Milne's equations simplify to, 
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Solution of grey case. 

From 
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Solution is found by casting both K and F in terms of intensity, which 
Eddington assumed, as a first approximation, could be represented by a 
constant inward term and constant outward term. 

I(η) = Iin (η) for all θ>π/2 

I(η) = Iout (η) for all θ≤π/2 

i.e., at any η, I is constant over each hemisphere. 
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Also, 
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Finally, 
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Also, 0)0()0(2 FFI   (evaluated at the outer boundary) 
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Source function for grey case as solved using Eddington approximation. It 
varies linearly with optical depth. 

Now we write the frequency integrated source function, S = I  for the case of 
pure absorption. Use v integrated form of Planck's law and along with Fv = πIv 
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at  η=2/3   T(η) = Teff  

Complete and rigorous solution of grey case leads to 
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q(η)  slowly varying function  from 0.577 at η=0 to 0.710 at η=∞. 
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CONVECTIVE TRANSPORT 
 

Flux carried by convection can be expressed in terms of average cell ("energy 
bucket") characteristics : the temperature excess (ΔT), of the cell over its 
terminal surroundings, the specific heat at constant pressure, Cp ; the cell 
density, ρ ; and upward velocity, v, of the cell, 

vTC p  
 

Convection is small contributor to energy flow. 
Physical motions of convective cells are important for spectral lines where 
even small Doppler shifts alter the line profiles. These aerodynamic behaviors 
are often called turbulence. Momentum of convective cells isn't dissipated 
when the optical depth of the cells becomes small. Turbulence may extend 
well into the upper photosphere even though the original cells are in complete 
radiative exchange with the adjacent gases. 
 

CONDITION FOR CONVECTIVE FLOW 
 

Convective cell must be buoyed upward at each depth if it is to continue to 
rise. Since density of photosphere is less in higher layers and cell can be 
expected to stay in pressure equilibrium with its surroundings, it expands as it 
rises. We calculate density change to see if expanded cell will continue to rise 
or it will sink. 
 
Assume convective cell behaves adiabatically (no leakage from energy 
bucket). 
 
γ = ratio of specific heats and P = total pressure 
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For convection, density of cell must decrease at least as rapidly as the 
photospheric density => For convection, 

ephotosphercell Pd
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must hold. Use T instead of ρ. Using  P = (ρ/μ)kT  where μ is mean molecular 
weight in grams. 
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This is the condition for convection. 
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