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Chapter 1

Introduction

General Theory of Relativity is the most successful theory we have at present for describ-

ing the gravitational force. Quantum Field Theory is the framework in which quantum

mechanics and special relativity are reconciled. Both are extremely successful theories.

But it so happens that when we try to quantize gravity, we run into infinities. General

relativity in non-renormalizable. To tackle this problem, many approaches such as Loop

Quantum Gravity and Supersymmetry have been proposed. Quantum Field Theory in

Curved Spacetime is the first order approach to this problem.

This thesis aims at reviewing Quantum Field Theory in surved spacetime and applying

the method of anomalies to the problem of calculating Hawking flux. The subject of

quantum field theory in curved spacetime is the study of quantum fields propagating

in a classical gravitational background. It finds its applications in cases where the

spacetime curvature is low enough for quantum gravity effects to be negligible, but too

large for Minkowskian quantum field theory. It is not a theory of quantum gravity since

the background is not quantised. It is a semiclassical theory but it can give us useful

pointers as to what the full quantum theory of gravity must be. Even though it is a first

order approximation to the full theory of quantum gravity, we get new and interesting

results such as Unruh effect and Hawking Radiation in this regime.

Unruh effect is the following surprising effect: an accelerated observer moving through

a Minkowski vacuum will register a thermal spectrum of particle excitations. In layman

terms, if one waves a thermometer in empty space (vacuum) then one will measure a

certain temperature. This temperature is the Unruh temperature. Hawking Radiation

is the prediction that black holes radiate. In classical theory, the gravitational strength

of a black hole is so strong that not even a photon can escape it. But as we’ll see, black

holes do indeed radiate photons which also reduces their mass (black holes evaporate).
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Symmetries play an important role in quantum field theory. A symmetry of the classical

action is a transformation of the fields that leaves the action invariant, e.g., Lorentz,

Poincare transformation. An anomaly is a conflict between a symmetry of the classical

action and corresponding symmetry in quantum theory. For example, for a conformally

invariant Lagrangian, the trace of the EMT tensor is 0. But in the quantum theory

the trace acquires a non-zero value (during renormalization). This is known as the

trace/conformal anomaly. This thesis studies the calculation of the Hawking flux from

a black hole using the anomaly equation.

The thesis is divided into 4 chapters. Chapter 2 briefly reviews the important concepts

from general relativity and quantum field theory is flat spacetime. Chapter 3 introduces

the method of graduating from flat to curved spacetime. Unruh effect and the Hawking

effect are covered in this chapter. Chapter 4 introduces anomalies and investigates

the calculation of Hawking flux from gravitational anomalies. Chapter 5 gives a short

conclusion of the thesis. Unless otherwise cited, most of the discussion in this thesis

follows [1].



Chapter 2

Review - General Relativity and

Quantum Field Theory

In this chapter, we briefly review the main concepts of general relativity and quantum

field theory in flat spacetime.

2.1 General Relativity

General Relativity is currently the best description we have for explaining the force of

gravity. Einstein’s equations of classical general relativity (in the absence of matter) can

be derived from the Einstein-Hilbert action:

Sgrav = − 1

16πG

∫
d4x
√
−g (R+ 2Λ) (2.1)

where R is the Ricci curvature scalar and Λ is the cosmological constant.

On varying the action with respect to gαβ and setting it to zero, we get the vacuum

Einstein’s equations:

Rab −
1

2
Rgab + Λgab = 0 (2.2)

If we have matter fields φi present, the total action becomes S = Sgrav+Sm. On setting

it’s variation to zero and defining Tαβ = 2√
−g

δSm

δgαβ
we write:

Gab = Rab −
1

2
Rgab + Λgab = 8πGTab (2.3)

3



4

The tensor Tab is symmetric and covariantly conserved w.r.t general coordinate trans-

formation. T ab;a = 0

2.2 Quantum Field Theory in Flat Spacetime

A free field can be treated as a set of infinitely many harmonic oscillators qi(t)⇔ φx(t)

attached to each point x. Here x plays the role of index labelling the oscillator, same as

discrete index i. The action for a scalar field is written in analogy with the action for

describing N harmonic oscillators.

S[φ] =
1

2

∫
dt

[∫
d3xφ̇2(x, t)−

∫
d3xd3yφ(x, t)φ(y, t)M(x,y)

]
(2.4)

The action must be invariant w.r.t. the Lorentz transformations (boosts and rotations)

and to the spacetime translations (together, the Poincare group). The simplest Poincare

invariant action for a real scalar field if obtained for

M(x,y) =
[
−∆x +m2

]
δ(x− y) (2.5)

The action becomes

S[φ] =
1

2

∫
d3xdt

[
φ̇2 − (∇φ)2 −m2φ2

]
=

1

2

∫
d4x

[
ηµν(∂µφ)(∂νφ)−m2φ2

]
(2.6)

where ηµν = diag(1,−1,−1,−1). The action is manifestly translationaly invariant and

can be shown to be Lorentz invariant. If we find the equation of motion for the above

action, we get

φ̈(x, t)−∆φ(x, t) +m2φ(x, t) = 0 (2.7)

The oscillators φ(x, t) are coupled (due to the presence of second derivative in space).

To decouple them, we use the Fourier transform

φ(x, t) =

∫
d3k

(2π)3/2
eik·xφk(t) (2.8)

This converts the equation of motion into

φ̈k(t) + ω2
kφk(t) = 0 where ωk =

√
k2 +m2 (2.9)

For quantizing this scalar field, we need to cast the theory into the Hamiltonian formal-

ism. The canonical momenta are defined as the functional derivatives of the Lagrangian
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w.r.t. the generalized velocities φ̇ = ∂φ
∂t ,

π(x, t) =
δL[φ]

∂φ̇(x, t)
= φ̇(x, t) (2.10)

The Hamiltonian is then

H =

∫
d3x πφ̇− L =

1

2

∫
d3x

[
π2 + (∇φ)2 +m2φ2

]
(2.11)

and the Hamilton’s equations of motions are

∂φ(x, t)

∂t
=

δH

δπ(x, t)
= π(x, t)

∂π(x, t)

∂t
= − δH

δφ(x, t)
= ∆φ(x, t)−m2φ(x, t) (2.12)

For quantising the scalar field, we introduce the operators φ̂(x, t) and π̂(x, t) and impose

the standard equal time commutation relations[
φ̂(x, t), π̂(x, t)

]
= iδ(x− y);

[
φ̂(x, t), φ̂(y, t)

]
= [π̂(x, t), π̂(y, t)] = 0 (2.13)

We can introduce the creation and annihilation operators,

â−k (t) ≡
√
ωk
2

(
φ̂k +

iπ̂k
ωk

)
; â+

k (t) ≡
(
â−k (t)

)†
=

√
ωk
2

(
φ̂−k −

iπ̂−k
ωk

)
(2.14)

which satisfy the commutation relations

[
â−k (t), â+

k′(t)
]

= δ(k− k′) ;
[
â−k (t), â−k′(t)

]
=
[
â+
k (t), â+

k′(t)
]

= 0 (2.15)

We can also solve for â± as a function of time using Hamilton’s equation of motion. We

use the time independent part of the solution (which also satisfy the same commutation

relations) in the subsequent analysis. We can build up the Hilbert space by postulating

the existence of the vacuum state |0〉 which is annihilated by all operators â−k , i.e.,

â−k |0〉 = 0 ∀ k. The quantum states are constructed by applying the creation operators

with the required momentum repeatedly on the vacuum state. The basis of the Hilbert

space can be formed from considering all possible choices of required momentum and

required occupation number.

Alternatively, we can begin directly with the mode expansion of the quantum field φ̂(x, t)

φ̂(x, t) =

∫
d3k

(2π)3/2

1√
2

[
v∗k(t)eik·xâ−k + vk(t)e−ik·xâ+

k

]
(2.16)
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and postulate the commutation relations for the time-independent operators â−k and â+
k ,

[
â−k , â

+
k′
]

= δ(k− k′) ;
[
â−k , â

−
k′
]

=
[
â+
k , â

+
k′
]

= 0 (2.17)

From the equations of motion, we find that the mode functions vk(t) satisfy the equation

v̈k + ω2
kvk = 0 (2.18)

where ω2
k = k2 + m2. Substituting the mode expansion for φ̂ and π̂ into the canonical

commutation relations, we find that the canonical commutation relations are compatible

with (2.17) only if the normalization conditions

v̇k(t)v∗k(t)− vk(t)v̇∗k(t) = 2i (2.19)

are satisfied. Substituting the general solution of equation (2.18)

vk(t) =
1
√
ωk

(
αke

iωkt + βke
−iωkt

)
(2.20)

into the normalisation conditions, we find that

|αk|2 − |βk|2 = 1 (2.21)

This condition is not enough to determine αk, βk. Therefore the operators â−k and â+
k are

not yet unambiguously defined. This is the fact we use further to demonstrate that we

have two different sets of mode functions for the same field in curved spacetime. In this

case (flat spacetime), we can use the Hamiltonian to find another condition which will

help fix αk, βk. Another thing to note is that the modes v∗k(t) ∝ e−iωkt and vk(t) ∝ eiωkt

are known as the positive and negative frequency modes respectively.



Chapter 3

Quantum Field Theory in Curved

Spacetime

In this chapter, we describe the basics of Quantum Field Theory in curved spacetime.

QFT in CST describes quantum fields in the presence of gravitational fields in regimes

where the quantum nature of gravity does not play an important role. The back-reaction

of the quantum fields on the metric is usually neglected. The spacetime is described,

as in general relativity, by a manifold, M, on which a Lorentz metric, gab, is defined.

We will find interesting results such as Unruh effect (a uniformly accelerating observer

moving through a vacuum state measures a finite temperature) and Hawking radiation

(black holes radiate).

In flat spacetime, Lorentz invariance plays an important role. It allows us to identify a

unique vacuum state. However, in curved spacetime, we do not have Lorentz symmetry.

In general, there does not exist a unique vacuum state in a curved spacetime. As a

result, the concept of particles becomes ambiguous.

3.1 Quantum Driven Harmonic Oscillator

In Quantum Field Theory in Curved Spacetime, a time-varying background metric leads

to particle production. The driven harmonic oscillator is a lower dimensional classical

analog for this.

7
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3.1.1 Lagrangian and Quantisation

The Lagrangian for the driven harmonic oscillator is

L(t, q, q̇) =
1

2
q̇2 − 1

2
ω2q2 + J(t)q (3.1)

The corresponding Hamiltonian and Hamilton’s equation of motions are

H(p, q) =
p2

2
+
ω2q2

2
− J(t)q; q̇ = p, ṗ = −ω2q + J(t) (3.2)

We promote the classical variables to operators and impose the commutation relation

[q̂, p̂] = i. Introducing the creation and annihilation operators (as done in previous

chapter), we can find the equations of motion for the operators â±(t). On solving for

â±(t), we find,

â±(t) =

[
â±in ∓

i

2ω

∫ t

0
e∓iωt

′
J(t′)dt′

]
e±iωt (3.3)

where â±in are operator-valued constants of integration.

3.1.2 Particle production

Assume that J(t) is non-vanishing for t ∈ [0, T ] only. We can demarcate two regions

now, the ”in” region t < 0 and the ”out” region t > T . In both regions, the oscillator

is unperturbed and the form of J(t) is irrelevant as long as it is well-behaved. We have

to find the relation between the ”in” states and the ”out” states and show that particle

production indeed takes place. The ”in” and ”out” regions can be considered to be

analogous to flat spacetime and the driving force region can be considered as curved

spacetime.

It follows from (3.3) that in the ”in” region we have â±(t) = â±ine
±iωt and correspondingly

in out region we have â±(t) = â±oute
±iωt where

â−out ≡ â
−
in +

i√
2ω

∫ T

0
eiωt

′
J(t′)dt′ ≡ â−in + J0, â+

out = â+
in + J∗0 (3.4)

We have 2 sets of creation and annihilation operators. We can construct the Hilbert

space using them in both the ”in” and ”out” regions. The two annihilation operators,

â−in and â−out define two different vacuum states - the ”in” vacuum state |0in〉 and the

”out” vacuum state |0out〉. These states are the lowest-energy states for t < 0 and for

t > T respectively. But the physical interpretation of both the states is different. The

state |0in〉 is an eigenstate of â−out

â−out |0in〉 =
(
â−in + J0

)
|0in〉 = J0 |0in〉 (3.5)
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The eigenstates of the annihilation operator with nonzero eigenvalues are called coherent

states. Also â−in |0out〉 = −J0 |0out〉. Note that we are working in the Heisenberg picture

where the operators evolve with time and quantum states are time independent. If we

start out in the vacuum state |0in〉, we stay in that state for all time, but the physical

interpretation of the state changes with time. |0in〉 is the lowest energy state for t < 0,

but we will see that due to the external force J(t), the energy of the system changes and

hence |0in〉 is no longer the lowest energy state for t > T .

We can find the vector |0in〉 in terms of the ”out” states (since the ”out” states form a

complete basis in the Hilbert space). We find

|0in〉 = exp

[
−1

2
|J0|2 + J0â

+
out

]
|0out〉 (3.6)

The occupation number operator N̂(t) = â+(t)â−(t) has expectation value

〈0in| N̂(t) |0in〉 =

0 for t < 0

|J0|2 for t > T
(3.7)

Hence, the energy expectation value gets shifted

〈0in| Ĥ(t) |0in〉 =


ω
2 for t < 0(
1
2 + |J0|2

)
ω for t > T

(3.8)

The energy of the oscillator in the ”out” region becomes larger than the zero-point

energy. This can be interpreted as production of particles after the application of the

force J(t).

3.2 From flat to curved spacetime

The simplest relativistically invariant Lagrangian density for a real scalar field φ(x) in

a flat spacetime is:

L(φ, ∂µφ) =
1

2
ηµνφ,µφ,ν − V (φ) (3.9)

where ηµν is the Minkowski metric V (φ) describes the self-interaction of the field. For

generalising the Lagrangian from flat to curved spacetime with an arbitrary metric gµν ,

we have to:

• replace ηµν with the metric gµν

• replace ordinary derivatives by covariant derivatives
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• use the covariant volume element d4x
√
−g where g ≡ detgµν instead of the usual

volume element d3xdt

The resulting action,

S =

∫
d4x
√
−g
[

1

2
gµνφ;µφ;ν − V (φ)

]
(3.10)

depends explicitly on gµν and describes a scalar field which is minimally coupled to

gravity.

3.2.1 Nonminimal and conformal couplings

The action can contain additional terms which directly couple the fields to gravity via

the curvature tensor Rµνρσ. Such couplings are called nonminimal. The simplest action

for a nonminimally coupled scalar field is

S =

∫
d4x
√
−g
[

1

2
gµνφ,µφ,ν − V (φ)− ξ

2
Rφ2

]
(3.11)

where R is the Ricci curvature scalar and ξ is a constant parameter. The additional term

gives rise to a ”mass” correction which is proportional to the scalar curvature. With

V=0 and ξ = 1/6 this action has another symmetry, i.e., the action is invariant under

conformal transformations,

gµν → g̃µν = Ω2(x)gµν (3.12)

where the conformal factor is an arbitrary function of spacetime.

Conformal invariance is important because as we will see later, in conformally flat space-

times, where the metric can be written as gµν = Ω2(x)ηµν , the field decouples from

gravity, since its action is equivalent to an action in flat space.

The equation of motion for this action can be written as

φ;α
;α +

∂V

∂φ
+ ξRφ = 0 (3.13)

3.3 Fields in FLRW models

We only consider the class of a scalar field minimally coupled to a spatially flat FLRW

metric. The metric, in coordinates that make its symmetries manifest, is

ds2 = dt2 − a2(t)δabdx
adxb (3.14)
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Define a new coordinate, the conformal time

η(t) ≡
∫ t dt

a(t)
(3.15)

in terms of which the conformal equivalence of the metric to the Minkowski metric ηµν

becomes manifest:

ds2 = a2(η)
[
dη2 − δabdxadxb

]
= a2(η)ηµνdx

µdxν (3.16)

The action for a real minimally coupled massive scalar field φ(x) in a curved spacetime

is

S =
1

2

∫ √
−gd4x

[
gabφ,aφ,b −m2φ2

]
(3.17)

Substituting gab = a−2ηab and
√
−g = a4 we get

S =
1

2

∫
d3xdηa2

[
φ′2 − (∇φ)2 −m2a2φ2

]
(3.18)

where the prime ’ denotes derivative w.r.t. conformal time. Defining the auxiliary field

χ ≡ a(η)φ we rewrite the action in terms of χ (eliminating the total derivative terms)

S =
1

2

∫
d3xdη

[
χ′2 − (∇χ)2 −

(
m2a2 − a′′

a

)
χ2

]
(3.19)

The variation of the above action w.r.t. χ gives the equation of motion

χ′′ −∆χ+

(
m2a2 − a′′

a

)
χ = 0 (3.20)

This equation is formally equivalent to that of a Klein-Gordon field in Minkowski space-

time, except that the effective mass becomes time-dependent

m2
eff (η) = m2a2 − a′′

a
(3.21)

Thus the problem is mathematically equivalent to the problem of quantizing a free scalar

field in Minkowski spacetime. Note that the action is time-dependent, hence the energy

of the scalar field is not conserved which leads to particle creation.

We expand the field χ in Fourier modes and substitute the exapnsion into the equation

of motion to find that the Fourier modes χk(η) satisfy a set of decoupled ordinary

differential equations

χ′′k + ω2
k(η)χk = 0 (3.22)
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where

ω2
k(η) = k2 +m2

eff (η) = k2 +m2a2(η)− a′′

a
(3.23)

Since ω2
k(η) depends only on k ≡ |k|, the general solution for χk may be written as

χk(η) =
1√
2

[
a−k v

∗
k(η) + a+

−kvk(η)
]

(3.24)

where vk(η) and v∗k(η) are two linearly independent solutions of second order differential

equation. The two complex constants of integration a±k can depend on the direction of k

as well. Since the field χ is real, we have χ∗k(η) = χ−k(η) which implies that a+
k = (a−k )∗.

It can be easily shown that vk and v∗k are linearly independent iff their Wronskian

W [vk, v
∗
k] = v′kv

∗
k − vkv∗k ′ = 2iIm(v′v∗) (3.25)

is nonzero. Also, eq. (3.22) implies that the Wronskian will be time-independent. Hence,

if W is nonzero, we can always normalize vk such that Im(v′v∗) = 1. In this case the

complex solution vk(η) is called a mode function. Considering all this, we get

χ(x, η) =
1√
2

∫
d3k

(2π)3/2

[
a−k v

∗
k(η)eik·x + a+

k vk(η)e−ik·x
]

(3.26)

The field χ is quantized by imposing the standard equal-time commutation relations on

the field operator χ̂ and its canonically conjugate momentum π̂ ≡ χ̂′

[χ̂(x, η), π̂(y, η)] = iδ(x− y) (3.27)

[χ̂(x, η), χ̂(y, η)] = [π̂(x, η), π̂(y, η)] = 0 (3.28)

The Hamiltonian is given by

Ĥ(η) =
1

2

∫
d3x

[
π̂2 + (∇χ̂)2 +m2

eff (η)χ̂2
]

(3.29)

Alternatively, one can impose the commutation relations on the constants of integration

a±k [
â−k , â

+
k′
]

= δ(k− k′)
[
â−k , â

−
k′
]

=
[
â+
k , â

+
k′
]

= 0 (3.30)

together with the constraints that the mode function satisfy eq. (3.22) and the normal-

ization condition Im(v′kv
∗
k) = 1. a±k are now interpreted as the creation and annihilation

operators.

Here in lies the catch. Until we select the particular mode functions vk(η), the states

constructed using the creation and annihilation operators have an ambiguous physical

interpretation. The normalization condition is not enough to completely specify the
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complex solutions vk(η) of the second order differential equation (3.22). The functions

uk(η) = αkvk(η) + βkv
∗
k(η) (3.31)

with the condition |αk|2 − |βk|2 = 1 can be used as mode functions instead of vk(η).

The field operator can be expanded in terms of the mode functions uk(η) as

χ̂(x, η) =
1√
2

∫
d3k

(2π)3/2

[
eik·xu∗k(η)b̂−k + e−ik·xuk(η)b̂+k

]
(3.32)

where b±k are another set of creation and annihilation operators satisfying the com-

mutation relations. We can compare the two mode expansions to find the Bogoliubov

transformation

â−k = α∗k b̂
−
k + βk b̂

+
−k, â+

k = αk b̂
+
k + β∗k b̂

−
−k (3.33)

or inverting the equations to obtain b±k

b̂−k = αkâ
−
k − βkâ

+
−k, b̂+k = α∗kâ

+
k − β

∗
k â
−
−k (3.34)

Each set of creation and annihilation operators define their respective vacuums and their

respective Hilbert spaces. It is however not necessary that the vacuum state is same for

both set of operators. This can be shown by calculating the number operator for â±k in

the b̂±k vacuum state

〈
(b)0
∣∣ N̂ (a)

k

∣∣
(b)0
〉

=
〈

(b)0
∣∣ â+

k â
−
k

∣∣
(b)0
〉

= |βk|2δ(3)(0) (3.35)

The divergent factor δ(3)(0) is a result of quantization in infinite volume and hence the

mean density of the a-particles in the mode k is

nk = |βk|2 (3.36)

which shows that there exist a-particles in b-vacuum state. Next we are going to demon-

strate two related effects.

3.4 Unruh effect

The notion of particles depends on the definition of the positive frequency modes, which

an inertial observer defines w.r.t. the time t of some inertial reference frame. An

accelerating observer, however, defines the positive-frequency modes w.r.t. the proper

time (the time in the frame in which the observer is at rest). Hence, two observers, one
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inertial and one accelerated, will not agree on the number and nature of particles they

detect when they are observing the same region of spacetime. Fulling [2], Davies [3] and

Unruh [4] showed that an accelerating observer will observe a thermal bath of particles

whereas an inertial observer observes only vacuum. This effect is called Unruh effect and

the temperature of the observed thermal bath, the Unruh Temperature, is proportional

to the acceleration

T ≡ a

2π
(3.37)

We will now show this using a massless scalar field and assume that the observer moves

with a constant acceleration in a 1+1-dimensional spacetime. The idea is to determine

the trajectory of the accelerated observer in an inertial frame, construct an accelerated

comoving frame and then solve the wave equation and compare the notion of particles

in both coordinate frames.

3.4.1 Trajectory of an accelerated observer

Consider the two-dimensional Minkowski spacetime

ds2 = dt2 − dx2 = ηabdx
adxb (3.38)

The 2-velocity defined using the proper time ua = dxa/dτ satisfies the normalisation

condition uiui = 1. The condition for constant acceleration can be covariantly stated as

aiai = −a2 where ai is the 2-acceleration and a is the constant acceleration.

The calculation is simplified if we use the lightcone coordinates. The inertial lightcone

coordinates are defined as

u ≡ t− x v ≡ t+ x (3.39)

so the metric becomes

dss = dudv (3.40)

Notice that the coordinate transformation

u −→ ũ = αu, v −→ ṽ =
v

α
(3.41)

with α=constant leaves the metric invariant and hence is a Lorentz transformation.

The trajectory can be described in lightcone coordinates by

xα(τ) = (u(τ), v(τ)) (3.42)
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Using the normalisation conditions for proper velocity and proper acceleration, we find

that

u̇(τ)v̇(τ) = 1 ü(τ)v̈(τ) = −a2 (3.43)

which after solving yields

v(τ) =
A

a
eaτ +B u(τ) = − 1

Aa
e−aτ + C (3.44)

Performing a Lorentz transformation, we can set A = 1 and shifting the origin of the

corresponding inertial frame we can set B = C = 0. Therefore the trajectory becomes

u(τ) = −1

a
e−aτ v(τ) =

1

a
eaτ (3.45)

Going back to the original Minkowski coordinates t and x we have

t(τ) =
1

a
sinh aτ x(τ) =

1

a
cosh aτ (3.46)

The worldline of an accelerated observer is the right branch of the hyperbola x2 − t2 =

a−2. The observer arrives from infinity, momentarily comes to rest at x = a−1 and then

accelerates back to infinity.

3.4.2 Accelerated comoving coordinates

Now, we find a frame (ξ0, ξ1) comoving with the accelerating observer. The observer is

at rest at ξ1 = 0 and ξ0 coincides with the proper time τ along the observer’s worldline.

We would also like the metric to be conformally flat to simplify the quantization of fields.

ds2 = Ω2(ξ0, ξ1)
[
(dξ0)2 − (dξ1)2

]
(3.47)

where the scale factor Ω(ξ0, ξ1) is yet to be determined. The lightcone coordinates of

the comoving frame are

ũ ≡ ξ0 − ξ1 ṽ ≡ ξ0 + ξ1 (3.48)

in which the metric becomes

ds2 = Ω2(ũ, ṽ)dũdṽ (3.49)

and the observer’s worldline

ξ0(τ) = τ ξ1(τ) = 0 (3.50)
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becomes

ṽ(τ) = ũ(τ) = τ (3.51)

ξ0 is the proper time w.r.t. the observer’s location, hence

Ω2(ũ = τ, ṽ = τ) = 1 (3.52)

Now, eq.(3.40) and eq. (3.49) describe the same Minkowski spacetime in different coor-

dinate systems and hence

ds2 = dudv = Ω2(ũ, ṽ)dũṽ (3.53)

The functions u(ũ, ṽ) and v(ũ, ṽ) can depend on only one of the two arguments, otherwise

there will be terms such as dũ2 in the latter equality in the previous equation. We choose

u = u(ũ) v = v(ṽ) (3.54)

We shall now determine the functions u(ũ) and v(ṽ). If we consider the observer’s

trajectory in two coordinate systems and use equations 3.45 and 3.51, we can solve for

u(ũ) and v(ṽ). We have

u = C1e
−aũ (3.55)

and

v = C2e
aṽ (3.56)

where C1 and C2 are restricted by eq. 3.52. Taking C2 = −C1 we obtain

u = −1

a
e−aũ v =

1

a
eaṽ (3.57)

and the line interval becomes

ds2 = dudv = ea(ṽ−ũ)dũdṽ (3.58)

The metric in accelerated frame becomes

ds2 = e2aξ1
[
(dξ0)2 − (dξ1)2

]
(3.59)

which is the Rindler metric.

We can show that the coordinates ξ0 and ξ1 cover only the right wedge of the 1+1

dimensional Minkowski spacetime. Hence this coordinate system is incomplete. The

accelerated observer cannot observe more than a−1 in the direction opposite to the

acceleration. No comoving frame with an accelerating observer can cover the entire

Minkowski spacetime. The lightcone t=x plays the role of an event horizon.
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3.4.3 Quantum Fields in inertial and accelerated frames

Now consider a massless scalar field in 1+1 dimensional spacetime with minimal coupling

to gravity. The action is given by

S[φ] =
1

2

∫
gabφ,aφ,b

√
−gd2x (3.60)

It can be easily shown that this action is conformally invariant (since the determinant
√
−g changes by a factor Ω2 and the metric changes by a factor Ω−2 which cancel out

in the action). Hence the action looks same in both the inertial and accelerated frames.

S =
1

2

∫ [
(∂tφ)2 − (∂xφ)2

]
dtdx (3.61)

=
1

2

∫ [
(∂ξ0φ)2 − (∂ξ1φ)2

]
dtdx (3.62)

In terms of lightcone coordinates,

S = 2

∫
∂uφ∂vφdudv = 2

∫
∂ũφ∂ṽφdũdṽ (3.63)

The field equations

∂u∂vφ = 0 ∂ũ∂ṽφ = 0 (3.64)

have the solutions,

φ(u, v) = A(u) +B(v), φ(ũ, ṽ) = Ã(ũ) + B̃(ṽ) (3.65)

where A, Ã,B, B̃ are arbitrary smooth functions. Particularly,

φ ∝ e−iωu = e−iω(t−x) (3.66)

describes a right-moving, positive-frequency mode w.r.t. the Minkowski time t, while

φ ∝ e−iωũ = e−iΩ(ξ0−ξ1) (3.67)

describes a right-moving positive frequency mode w.r.t. the proper time τ = ξ0. The

solutions φ ∝ e−iωv and φ ∝ e−iΩṽ describe left-moving modes. The left and right

moving modes do not affect each other and can be considered separately. In the right

wedge of the Minkowski spacetime where both coordinate systems overlap, we can write
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the mode expansion for the field operator φ̂ as

φ̂ =

∫
dω

(2π)1/2

1√
2ω

[e−iωuâ−ω + eiωuâ+
ω ] + (left-moving modes) (3.68)

=

∫
dΩ

(2π)1/2

1√
2Ω

[e−iΩũb̂−Ω + eiΩũb̂+Ω ] + (left-moving modes) (3.69)

where â±ω , b̂
±
Ω both sets of operators satisfy the standard commutation relations. We can

associate a vacuum state with each set of creation and annihilation operators.

The Minkowski vacuum |0M 〉 is the zero eigenvector of all annihilation operators â−ω

â−ω |0M 〉 = 0 (3.70)

Similarly, Rindler vacuum is the zero eigenvector of all annihilation operators b̂−Ω

b̂−Ω |0R〉 = 0 (3.71)

The Minkowski vacuum is the physical vacuum which is defined w.r.t. the inertial

observer wheras the Rindler vacuum is defined w.r.t. the accelerating observer. An

inertial observer detects no particles in the Minkowski vacuum. Similarly, an accelerating

observer detects no particles in the Rindler vacuum. But to the accelerating observer the

Minkowski vacuum will appear to be a state with particles. This is the Unruh effect. We

now calculate the occupation number of the Rindler particles in the Minkowski vacuum

state.

3.4.4 Unruh temperature

We can relate the operators â± and b̂± using the Bogoliubov transformation

b̂−Ω =

∫
dω
[
αΩωâ

−
ω − βΩωâ

+
ω

]
(3.72)

The normalization condition for the Bogoliubov coefficients is∫
dω (αΩωα

∗
Ω′ω − βΩωβ

∗
Ω′ω) = δ(Ω− Ω′) (3.73)

which follows from the compatibility of the commutation relations for the creation and

annihilation operators.

Using the Bogoliubov transformation in the mode expansion for φ̂ we obtain a useful

relation

|αΩω|2 = e
2πΩ
a |βΩω|2 (3.74)
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As earlier, we now compute the occupation number < N̂Ω > for the Rindler b-particles

in the Minkowski vacuum state.

〈
N̂Ω

〉
≡ 〈0M | b̂+Ω b̂

−
Ω |0M 〉 =

[
exp

(
2πΩ

a

)
− 1

]−1

δ(0) (3.75)

where we have used the Bogoliubov transformation and eq. (3.74). This is interpreted

as the mean number of particles with frequency Ω found by the accelerated observer.

The divergent factor δ(0) is due to the infinite volume of space. If we take the field

in a finite box and then quantise it, we can obtain the mean density of particles with

frequency Ω as

nΩ =

[
exp

(
2πΩ

a

)
− 1

]−1

(3.76)

We can do a similar calculation for the left-moving modes as well. Thus we see that

massless particles detected by the accelerated observer in the Minkowski vacuum obey

the Bose-Einstein distribution with the Unruh temperature

T ≡ a

2π
(3.77)

3.5 Hawking Radiation

We can do a similar calculation (as done in the previous section) for a black hole back-

ground and find that a black hole radiates. This phenomenon is called Hawking radi-

ation. We derive the Hawking temperature for a massless scalar field in 2-dimensional

spacetime.

3.5.1 Schwarzschild metric

A 4-dimensional non-rotating black hole with zero electric charge and mass M is de-

scribed by the Schwarzschild metric,

ds2 =

(
1− 2M

r

)
dt2 − dr2

1− 2M
r

− r2
(
dθ2 + dφ2sin2θ

)
(3.78)

We are using natural units here. For simplifying the calculations we consider a 2-

dimensional black hole,

ds2 = gabdx
adxb =

(
1− 2M

r

)
dt2 − dr2

1− 2M
r

(3.79)



20

Introduce the tortoise coordinates

dr∗ =
dr

1− 2M
r

⇒ r∗(r) = r − 2M + 2M ln
( r

2M
− 1
)

(3.80)

The metric then becomes

ds2 =

(
1− 2M

r(r∗)

)
[dt2 − dr∗2] (3.81)

The tortoise coordinate is only defined for r > rg and varies in the range −∞ < r∗ <

+∞. Introduce the tortoise lightcone coordinates

ũ ≡ t− r∗, ṽ ≡ t+ r∗ (3.82)

and write the metric as

ds2 =

(
1− 2M

r(ũ, ṽ

)
dũdṽ (3.83)

These coordinates do not remove the singularity present at r = 2M and do not cover

the complete spacetime. They cover only the exterior of the black hole.

3.5.2 Kruskal-Szekeres coordinates

These coordinates describe the entire spacetime (apart from the singularity at r = 0).

The Kruskal-Szekeres lightcone coordinates are defined as

u = −4Mexp

(
− ũ

4M

)
, v = 4Mexp

(
ṽ

4M

)
(3.84)

in which the metric takes the form

ds2 =
2M

r(u, v)
exp

(
1− r(u, v)

2M

)
dudv (3.85)

The metric is now regular at r = 2M . This singularity is a coordinate singularity which

can be removed by coordinate transformation. Also, as defined above, the Kruskal-

Szekeres coordinates vary in the intervals −∞ < u < 0 and 0 < v < +∞, covering only

the exterior of the black hole. However, they can be analytically extended to u > 0 and

v < 0 so the Kruskal-Szekeres coordinates span the entire spacetime.We may find the

original Schwarzschild coordinates t and r in terms of the Kruskal-Szekeres coordinates,

if we consider these equations

uv = −16M2exp

(
r∗

2M

)
= −16M2

( r

2M
− 1
)
exp

( r

2M
− 1
)

(3.86)
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and (v
u

)2
= exp

(
2t

2M

)
(3.87)

These equations are valid even for arbitrary u and v. We observe from these equations

that the black hole horizon r = 2M corresponds to u = 0, v = 0. v = 0 corresponds to

t = −∞ and u = 0 corresponds to t = +∞. Thus, the Schwarzschild spacetime has two

horizons, v = 0 the past horizon and u = 0 the future horizon.

3.5.3 Hawking temperature

Let us consider a massless scalar field with the action given by

S[φ] =
1

2

∫
gabφ,aφ,b

√
−gd2x (3.88)

in a 2-dimensional spacetime. To make our analysis easier, let us point out the mathe-

matical similarities between the Minkowski/Rindler coordinates(for an accelerating ob-

server) and the tortoise/Kruskal-Szekers coordinates(for a Schwarzschild black hole).

The transformation between the corresponding lightcone coordinates is

u = −a−1exp(−aũ) and v = a−1exp(aṽ) for Minkowski/Rindler

u = −κ−1exp(−κũ) and v = κ−1exp(κṽ) for Kruskal/tortoise (3.89)

where κ = (2M)−1 is known as the surface gravity of the horizon. Also, Kruskal-

Szekeres coordinates cover the entire spacetime, like Minkowski coordinates and the

tortoise coordinates, like the Rindler coordinates, cover only the region exterior to the

horizon.

The conformal invariant action allows us to write the solution of the scalar field equation

in terms of tortoise lightcone coordinates as

φ = Ã(ũ) + B̃(ṽ) (3.90)

or in terms of Kruskal-Szekeres lightcone coordinates as

φ = A(u) +B(v) (3.91)

where A, Ã,etc. are arbitrary smooth functions. As we did in the case of the scalar

field in the Rindler spacetime, we can expand the quantized massless scalar field into its
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modes in the tortoise lightcone coordinates as

φ̂ =

∫
dΩ

(2π)1/2

1√
2Ω

[e−iΩũb̂−Ω + eiΩũb̂+Ω ] + (left-moving modes) (3.92)

These are the right-moving modes w.r.t. time t, which move away from the black hole.

The proper time of an observer at rest located at asymptotic infinity (far away from

the black hole) coincides with t since ds2 → dũdṽ = dt2 − dr∗2 as r → ∞. This

observer has the notion of particles w.r.t. the positive frequency modes w.r.t. time t.

The creation and annihilation operators are b̂±Ω . The vacuum state corresponding to

these operators is |0B〉 where

b̂−Ω |0B〉 = 0 (3.93)

|0B〉 is called the Boulware vacuum. It has no particles from the point of view of an

asymptotic observer. Boulware vacuum is similar to the Rindler vacuum.

Similarly, we can expand the field operator in Kruskal-Szekeres lightcone coordinates

φ̂ =

∫
dω

(2π)1/2

1√
2ω

[e−iωuâ−ω + eiωuâ+
ω ] + (left-moving modes) (3.94)

We define another set of creation and annihilation operator â±ω that defines the Kruskal

vacuum |0K〉 as

â−ω |0K〉 = 0 (3.95)

The Kruskal vacuum is analogous to Minkowski vacuum.

We can derive the occupation number in the same way as done in the previous section.

The remote observer sees particles in the Kruskal vacuum with the thermal spectrum

〈
N̂Ω

〉
≡ 〈0K | b̂+Ω b̂

−
Ω |0K〉 =

[
exp

(
2πΩ

κ

)
− 1

]−1

δ(0) (3.96)

corresponding to the Hawking temperature

TH =
κ

2π
=

1

8πM
(3.97)



Chapter 4

Anomalies and Hawking flux

4.1 What are anomalies?

Mostly, a symmetry of the classical theory is also a symmetry of the quantum theory

based on the same Lagrangian. When that is not the case, the symmetry is said to

be anomalous. Using Noether’s theorem, we can find conserved currents for continuous

global symmetries. If a symmetry is anomalous then it is not actually a symmetry and

the associated current will not be conserved. For example, a gauge anomaly invalidates

the gauge symmetry of a quantum field theory. A gravitational anomaly is a gauge

anomaly which violates the general covariance of general relativity.

The author is further studying the precise analytical formulation of anomalies in quan-

tum field theory.

4.2 Hawking flux using Anomalies

The discussion in this chapter follows [5] and the references cited therein.

4.2.1 Gravitational anomaly and basic setup

The previous derivation of Hawking radiation is based on calculating the Bogoliubov

coefficients. Another approach to calculate the Hawking flux is to calculate the the

energy-momentum tensor in the blackhole backgrounds. Classically, the EM tensor is

covariantly conserved in a curved background. However, in quantum theory, the EM

23
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tensor is not necessarily conserved. For example, for a chiral scalar field in (1+1)-

dimensional curved spacetime the covariant derivative of the EM tensor becomes

∇µTµν =
1

96π
√
−g

εβδ∂δ∂αΓανβ (4.1)

The right hand side is the consistent gravitational anomaly([6][7][8][9]). It was shown

by Christensen and Fulling [10], that under certain simplifying assumptions the above

anomaly can be interpreted as a flux of radiation, which agrees with the Hawking flux

quantitatively.

The above idea was shown to be valid for a variety of spacetimes by Robinson and

Wilczek([11]). The basic idea in ([11]) is that the effective theory near the horizon

becomes two-dimensional and chiral. With dimensional reduction procedure, we can

effectively describe a theory with a metric given only by the ”r-t” sector of the full

spacetime metric. This chiral theory is anomalous. The two-dimensional covariant

gravitational anomaly is used to calculate the Hawking flux. The metric used for our

analysis is

ds2 = −f(r)dt2 +
1

h(r)
dr2 + r2dΩ (4.2)

which can describe a variety of spacetimes like Schwarzschild, Reissner-Nordstrom, Kerr.

The boundary condition is obtained from a vanishing of energy-momentum tensor at

the horizon.

4.2.2 Anomaly equations and solving for EM tensor

We divide the spacetime into two regions. In the region outside the horizon, the theory

is anomaly-free and EM tensor remain conserved.

∇µTµ(o)ν = 0 (4.3)

Near the horizon in the region r ∈ [r+,∞], the ingoing modes are lost to the black hole

which leads to an anomaly in the EM tensor there. We take the covariant form of d=2

gravitational anomaly ([11][12])

∇µTµ(H)ν =
1

96π
ενµ∂

µR = Aν (4.4)

where εµν = εµν/
√
−g and εµν =

√
−gεµν are two-dimensional antisymmetric tensors

with εtr = εrt = 1.
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Calculating both component of A, we find that the anomaly is purely timelike

Ar = 0 At =
1√
−g

∂rN
r
t (4.5)

where

N r
t (r) =

1

96π

(
hf ′′ +

f ′h′

2
− f ′2h

f

)
(4.6)

Now we solve both the conservation and anomalous equations. Outside the horizon, the

conservation equation yields,

∂r

(√
−gT r(o)t

)
= 0 =⇒ T r(o)t(r) =

ao√
−g

(4.7)

where ao is an integration constant.

Near the horizon, the anomaly equation leads to,

∂r

(√
−gT r(H)t

)
= ∂rN

r
t (r) =⇒ T r(H)t =

1√
−g

(bH +N r
t (r)−N r

t (rH)) (4.8)

where bH is an integration constant.

4.2.3 Hawking flux

As in [12][13], we can write the EM tensor as a sum of two contributions:

T rt(r) = T r(o)t(r)θ(r − rH − ε) + T r(H)t(r)H(r) (4.9)

where H(r) = 1− θ(r − rH − ε). and θ(x) is the step function.

Calculating ∇µTµt, we find that

∇µTµt = ∂rT
r
t(r) + ∂r

(
ln
√
−g
)
T rt(r) =

1√
−g

∂r
(√
−gT rt(r)

)
=

1√
−g

[(√
−g
(
T r(o)t(r)− T

r
(H)t(r)

)
+N r

t (r)
)
δ(r − r+ − ε) + ∂r(N

r
t (r)H(r))

]
(4.10)

The total derivative term is canceled by quantum effects of classically irrelevant ingoing

modes. The vanishing of the Ward identity under diffeomorphism transformation means

that the coefficient of the delta function in the above equation vanishes

T r(o)t − T
r
(H)t +

N r
t (r)√
−g

= 0 (4.11)
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Substituting the solutions for T r(o)t and T r(H)t in the above equation, we have,

ao = bH −N r
t (rH) (4.12)

Now we fix the integration constant bH imposing the boundary condition, i.e., the van-

ishing of the covariant energy-momentum tensor at the horizon. We find bH = 0. Hence,

the total flux of the energy-momentum tensor is given by

ao = −N r
t (rH) =

1

192π
f ′(rH)h′(rH) (4.13)

For Schwarzschild metric f(r) = h(r) = (1− 2M
r ). Using this we obtain

ao =
1

192π

1

4M2
(4.14)

A beam of massless black body radiation moving outwards in the radial direction at a

temperature TH has a flux of the form:

ao =
π

12
T 2
H (4.15)

Comparing we get,

TH =
1

8πM
(4.16)

which is in complete agreement with the Hawking temperature obtained in the previous

chapter.



Chapter 5

Conclusion

In this thesis work, we reviewed the basic concepts of general relativity and quantum

field theory in curved spacetime and henceforth graduated to quantum field theory in

curved spacetime. As a first order approximation to the full theory of quantum gravity,

quantum field theory in curved spacetime gave us some interesting and unexpected

results such as Unruh effect and Hawking radiation. The main difference between flat

and curved spacetime is that in curved spacetime, once cannot define a unique vacuum

state. We calculate the Unruh and Hawking temperature using Bogoliubov coefficients.

An anomaly is the breaking of a classical symmetry at the quantum level. Anomalies

were introduced in a qualitative fashion. The gravitational anomaly was shown success-

fully to yield the Hawking temperature. Further study is being done by the author in

the area of anomaly and generalisation of the above method for higher spin fields.
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