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1 Introduction

Definition 1.1. (Metric Space) Let X be a set. A function d : X ×X → R is called metric if the
following holds:

(i) d(x, y) ≥ 0 ∀x, y ∈ X and d(x, y) = 0 ⇐⇒ x = y;

(ii) d(x, y) = d(y, x) (symmetric);

(iii) d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X (triangle inequality).

The set X equipped with a metric is called metric space, denoted by (X, d).

Definition 1.2. (Grassmannian of k-planes) Grassmannian of k-planes is a set of all k dimensional
subspaces of Rn. We denote it by Gk(Rn). From now on I will call any such as Grassmannian.

We define d : Gk(Rn)×Gk(Rn)→ Rn such that

d(L,L′) = sup
x∈L∩Sn−1

d(x, L′) (1)

where d(x, L′) = infy∈L′ dE(x, y), with dE(x, y) as the usual euclidean metric in Rn.

We will show that (Gk(Rn), d) is a metric space and the induced topology has properties -
compactness and path-connectedness.

2 Proof of (Gk(Rn), d) as a metric space

In this section we will show that Gk(Rn) is a metric space equipped the function d defined in Eqn
(1). First, we show that d is a metric.

Claim. d is a metric

Proof. (i) We begin by showing that the first property of metric holds.

First we prove a result, which will be used later.

Result 2.1. Let V and W be two k dimensional subspaces of a vector space and V ⊆ W .
Then V = W .
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Proof. Let dimV = dimW = k and Bv = v1, v2, ..., vk be a basis of V . As V ⊆ W , Bv is a
list in W . Moreover, it is a linearly independent list in W (since, it is a basis of V ).
Now, we can make Bv a basis of W by adding some vectors of W in Bv. But as dimW = k,
any basis of W must have length k. So, we can conclude Bv is also a basis of W . This
implies, ∀w ∈W , w =

∑k
i=1 aivi ∈ V (as Bv is basis of V ). So, W ⊆ V . Hence, V = W .

Now,

dE(x, y) ≥ 0; (as it is the usual metric in Rn)

=⇒ inf
y∈L′

dE(x, y) ≥ 0

=⇒ sup
x∈L∩Sn−1

inf
y∈L′

dE(x, y) ≥ 0

=⇒ d(L,L′) ≥ 0

Since L and L′ are are arbitrary, it is true for all L and L′ in Gk(Rn).

Let d(L,L′) = 0. This implies:

sup
x∈L∩Sn−1

d(x, L′) = 0

=⇒ d(x, L′) = 0, ∀x ∈ L ∩ Sn−1

=⇒ inf
y∈L′

dE(x, y) = 0

=⇒ dE(x, y0) = 0, (for some y0 ∈ L′, by Claim 2.4, see next page)

=⇒ x = y0

=⇒ x ∈ L′

=⇒ L ⊆ L′.

By Result 2.1, we get L = L′. So, d(L,L′) = 0 =⇒ L = L′.

Now, consider d(L,L) = supx∈L∩Sn−1 infy∈L dE(x, y). Fix x0 ∈ L ∩ Sn−1. So,

dE(x0, x0) = 0;

=⇒ inf
y∈L

dE(x0, y) = 0; (as dE(x, y) ≥ 0)

=⇒ sup
x0∈L∩Sn−1

inf
y∈L

dE(x0, y) = 0;

=⇒ d(L,L) = 0.

So, d(L,L′) ≥ 0 and d(L,L′) = 0 ⇐⇒ L = L′.

(ii) To show that the function d is symmetric, first we show that the supremum is actually
achieved i.e., supx∈L∩Sn−1 d(x, L′) = d(x0, L

′), for some x0 ∈ L ∩ Sn−1.

Lemma 2.2. The function d : Rn → R such that d(x, L′) = infy∈L′ dE(x, y) is continuous in
Rn.

Proof. Let {xn}n∈N be a sequence in Rn, which converges to x0 ∈ Rn i.e., ∀ε > 0, ∃N ∈ N
such that ∀n ≥ N , dE(xn, x0) < ε.

We fix n. d(xn, L
′) = infy∈L′ dE(xn, y) implies: given ε > 0, ∃y ∈ L′ such that d(xn, L

′) ≤
dE(xn, y) ≤ d(xn, L

′) + ε. Now,

d(x0, L
′) ≤ dE(x0, y) ≤ dE(x0, xn) + dE(xn, y), (triangle inequality)

≤ dE(x0, xn) + d(xn, L
′) + ε

< d(xn, L
′) + 2ε, (∀n ≥ N)

=⇒ d(x0, L
′)− d(xn, L

′) < 2ε, (∀n ≥ N and ∀ε > 0)
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By interchanging x0 and xn we will get d(xn, L
′) − d(x0, L

′) < 2ε, ∀n ≥ N and ∀ε > 0. So,
|d(xn, L

′)− d(x0, L
′)| < 2ε. Hence d(x, L′) is continuous at x0. Since it is continuous for any

x0 in Rn, it is continuous in Rn.

Proposition 2.3. Let g : X → R be a continuous function and X be compact. Then
supx∈X g(x) ∈ g(X).

Proof. Since g is continuous and X is compact, g(X) ⊆ R is compact. So, g(X) is closed in
bounded (Heine-Borel Theorem). As g(X) is bounded, sup g exists, and as g(X) is closed,
sup g ∈ g(X).

Now, L∩Sn−1 = Sk−1 is compact. We restrict the function d(x, L′) to L∩Sn−1. So, d(x, L′)
is continuous in L ∩ Sn−1 (subset of Rn). By Proposition 2.3, supremum is achieved. So,
d(L,L′) = supx∈L∩Sn−1 d(x, L′) = d(x0, L

′), for some x0 ∈ L ∩ Sn−1.

Now, d(x0, L
′) = infy∈L′ dE(x0, y).

Claim 2.4. infy∈L′ d(x0, y) = dE(x0, y0), for some y0 ∈ L′, and y0 is unique.

Proof. Let y0 be the orthogonal projection of x0 into L′. So, 〈x0 − y0, y0〉 = 0. Moreover, as
x0 − y0 is perpendicular to the plane L′, we get 〈x− y0, v〉 = 0,∀v ∈ L′.
Let {vi}ki=1 be an orthonormal basis of L′. Since y0 ∈ L′, y0 =

∑k
i=1 aivi, ai ∈ R. We extend

this list to a basis {v1, ..., vk, uk+1, ..., un} of Rn. By Gram-Schimdt orthogonalization, we
get {vi}ni=1, an orthonormal basis of Rn.

Now, x0 ∈ Rn =⇒ x0 =
∑n

i=1 bivi, where bj ∈ R.

We take v = vj , for j = 1, 2, ..., k.

〈x− y0, vj〉 = 0

=⇒

〈
n∑

i=1

bivi −
k∑

i=1

aivi, vj

〉
= 0

=⇒

〈
k∑

i=1

(bi − ai)vi, vj

〉
= 0, (〈vi, vj〉 = 0, for i 6= j)

=⇒ bj = aj (for j = 1, 2, ..., k)

So, y0 =
∑k

i=1 bivi.

Let y′0 ∈ L′ and y′0 6= y0. So, y′0 =
∑k

i=1 civi, ci ∈ R. Now,

dE(x0, y
′
0) =

√√√√ k∑
i=1

(bi − ci)2 +

n∑
i=k+1

b2i

=⇒ (dE(x0, y
′
0))

2 =
k∑

i=1

(bi − ci)2 + (dE(x0, y0))
2

=⇒ dE(x0, y
′
0) > dE(x0, y0)

Since y′0 is arbitrary, we can say that infy∈L′ d(x0, y) = dE(x0, y0).

To show that y0 is unique, let us assume ∃ỹ ∈ L′ such that 〈x0 − ỹ, ỹ〉 = 0. Now, x0 =
y0 + y⊥0 = ỹ + ỹ⊥. This gives, y0 − ỹ = ỹ⊥ − y⊥0 . Since y0 − ỹ ∈ L′ and ỹ⊥ − y⊥0 ∈ L′

⊥ and
both are equal, y0 − ỹ = 0 =⇒ y0 = ỹ. Hence, y0 is unique.
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So, d(L,L′) = d(x0, L
′) = dE(x0, yx0), where yx0 is the orthogonal projection of x0 into L′.

Now,

d(L,L′) = dE(x0, yx0)

= dE(yx0 , x0), (symmetry)

= dE(ŷ0, xŷ0) (using properties of congruent triangles)

= d(ŷ0, L), (since, infimum is achieved)

≤ sup
y∈L′∩Sn−1

d(y, L) = d(L′, L).

where ŷ0 is the unit vector in the direction of yx0 and xŷ0 is the orthogonal projection of ŷ0
on L.

Now, interchanging L′ and L we get d(L′, L) ≤ d(L,L′). So, d(L,L′) = d(L′, L); (symmetric).

(iii) Triangle inequality:

Let L, L′, L′′∈ Gk(Rn). We need to show that d(L,L′′) ≤ d(L,L′) + d(L′, L′′).

Figure 1: for ‖yx‖ 6= 0

Take x ∈ L ∩ Sn−1 such that d(L,L′′) = dE(x, y′′x), where y′′x = PL′′(x) is the orthogonal
projection of x on L′′ (see Figure 1, as supremum and infimum are achieved). Using the
Pythagoras Theorem we get,

‖x‖2 = ‖yx‖2 + ‖x− yx‖2

=⇒ ‖yx‖2 + ‖x− yx‖2 = 1 (since x is a unit vector)

=⇒ ‖yx‖ ≤ 1; (as ‖x− yx‖2 ≥ 0)

Now, ŷx = λyx, where λ = 1
‖yx‖ ≥ 1 (‖yx‖ 6= 0). So,

‖ŷx − PL′(ŷx)‖ = |λ|‖yx − PL′(yx)‖ (as projection map P is linear)

≥ ‖yx − PL′(yx)‖

The distance between ŷx and ŷ′x = PL′(ŷx) is always greater than the distance between yx
and y′x. Now, translate the vector ŷx − PL′ to yx so that the line starting from yx intersects
L′′ at y′x.

Since dE(x, y′′x) is the shortest distance between L and L′′, we have

dE(x, y′′x) ≤ dE(x, y′x)

≤ dE(x, yx) + dE(yx, y
′
x); (triangle inequality)

≤ dE(x, yx) + dE(ŷx, ŷ
′
x); (as dE(yx, y

′
x) ≤ dE(ŷx, ŷ

′
x))
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Since we have started with the x for which the supremum is achieved, from the above relation
we have d(L,L′′) ≤ d(L,L′) + d(L′, L′′).

For the case, where ‖yx‖ = 0 i.e., two of the planes are orthogonal to each other (say L
and L′, see Figure 2); we have d(L,L′′) ≤ 1 = d(L,L′) (since, x is a unit vector). So,

Figure 2:

d(L,L′′) ≤ d(L,L′) + d(L′, L′′) (as d(L′, L′′) ≥ 0).

We have shown that the function d satisfies all the properties of metric. Hence, d is a metric
and (Gk(Rn), d) is a metric space.

The metric, d is uniformly bounded by 1. Since, the distance between any two k-planes is given by
the distance between a unit vector and the orthogonal projection of the unit vector. The distance
is 1 when there are two k-planes perpendicular to each other.

3 Some topological properties of Grassmannian

The induced topology on Grassmannian has some nice topological properties - compactness and
path-connectedness. Hausdorff property of Grassmannian is evident (as it is a metric space). We
check the two other topological properties, mentioned here.

Proposition 3.1. Gk(Rn) is compact.

Proof. Let f : O(n) → Gk(Rn) be a function defined as f(A) = span(A1, A2, ..., Ak), where Ai is
a coloumn vector of A. If we can show that f is onto and continuous, then we are done.

Claim 3.2. (f is onto) ∀L ∈ Gk(Rn), ∃A ∈ O(n) such that f(A) = L.

Proof. Let BL = {vi}ki=1 be an orthonormal basis of L. Since BL is a linearly independent list, we
extend it to {v1, v2, ..., vk, uk+1, ..., un}, a basis of Rn. Using Gram-Schimdt orthogonalization we
get an orthonormal basis {vi}ni=1 of Rn.

So taking A = [v1 v2 ... vn], we have f(A) = span(v1, v2, .., vk) = L. As vi’s are orthonormal,
A ∈ O(n). Since L is arbitrary, f is onto.

Claim 3.3. (f : O(n)→ Gk(Rn) is continuous) ∀ε > 0, ∃δ > 0 such that ∀A ∈ O(n), ∀B ∈ O(n)
if dE(A,B) < δ then d(f(A), f(B) < ε.

(Note). We have taken the metric in O(n) to be euclidean because we can identify an element of
O(n) as a vector of Rn2

.
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Proof. Let A = [aij ] and B = [bij ] be elements of O(n). Now,

(dE(A,B))2 =

n∑
(i,j)=1

(aij − bij)2 < δ2

=⇒
n∑

i=1

(ai1 − bi1)2 + ...+

n∑
i=1

(ain − bin)2 < δ2

=⇒
n∑

i=1

(aij − bij)2 < δ2; since (aij − bij)2 ≥ 0, for each j = 1, 2, ..., n

=⇒ dE(Aj , Bj) < δ, (for each j = 1, 2, ..., n)

Since supremum and infimum both are achieved, we have d(f(A), f(B)) = supx∈f(A)∩Sn−1 d(x, f(B))

= d(x, f(B)) = dE(x, Pf(B)(x)), for some x ∈ f(A) ∩ Sn−1, where P is the orthogonal projection

operator. Now, x =
∑k

i=1 λiAi, with
∑n

i=1 λ
2
i = 1. So,

d(f(A), f(B)) = dE(x, Pf(B)(x))

= dE

(
k∑

i=1

λiAi, Pf(B)

(
k∑

i=1

λiAi

))

= dE

(
k∑

i=1

λiAi,
k∑

i=1

λiPf(B)(Ai)

)
, (since, P is linear)

≤
k∑

i=1

dE

(
λiAi, λiPf(B)(Ai)

)
, (using triangle inequality)

=

k∑
i=1

|λi|dE
(
Ai, Pf(B)(Ai)

)
, (as dE is the euclidean norm)

≤
k∑

i=1

|λi|dE(Ai, Bi);
(

as dE

(
Ai, Pf(B)(Ai)

)
is the infimum

)
<
√
kδ (as dE(Ai, Bi) < δ and using Cauchy-Schwarz inequality,

k∑
i=1

|λi| ≤
√
k)

= ε (taking δ =
ε√
k

)

Since f is continuous for all A, B in O(n), it is continuous in O(n).

As, f : O(n)→ Gk(Rn) is onto and continuous, and O(n) is compact, we have Gk(Rn) is compact.

Proposition 3.4. Gk(Rn) is path-connected.

Proof. Let f : SO(n)→ Gk(Rn) is a function defined as f(A) = span(A1, A2, ..., An).
As SO(n) ⊂ O(n) and f is continuous on O(n) (shown in the previous section), f is continuous
on SO(n). It is sufficient to show that f is onto.

Going by the same logic as in the proof of Claim 2, we get an orthogonal matrix
A = [v1 v2 ... vn]. If det(A) = 1, then A ∈ SO(n) and we are done.

If det(A) = −1, we do a linear transformation, to get A′ such that

A′ = [v1 v2 ... vn]


−1 0 0 ... 0
0 1 0 ... 0
...

. . .

0 0 0 ... 1

 = [−v1 v2 ... vn]
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Now, det(A′) = 1. So, A′ ∈ SO(n). Hence, f is onto.

We know that continuous function preserves path-connectedness. Since SO(n) is path-connected
and f : SO(n)→ Gk(Rn) is continuous and onto, Gk(Rn) is path-connected.
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