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1 Introduction

Definition 1.1. (Metric Space) Let X be a set. A function d : X x X — R is called metric if the
following holds:

(i) d(z,y) >0 Vr,ye X and d(z,y) =0 < z=y;

(i) d(z,y) = d(y,2) (symmetric);

(iii) d(z,y) <d(x,z)+d(z,y) Vz,y,z € X (triangle inequality).
The set X equipped with a metric is called metric space, denoted by (X, d).

Definition 1.2. (Grassmannian of k-planes) Grassmannian of k-planes is a set of all £ dimensional
subspaces of R™. We denote it by G (R™). From now on I will call any such as Grassmannian.

We define d : Gi(R") x Gi(R™) — R" such that

d(L,L'Y)= sup d(z,L") (1)

zeLNnSn—1

where d(z, L') = inf e/ dg(z,y), with dg(z,y) as the usual euclidean metric in R™.

We will show that (Gx(R"™),d) is a metric space and the induced topology has properties -
compactness and path-connectedness.

2 Proof of (G;(R"),d) as a metric space

In this section we will show that G (R™) is a metric space equipped the function d defined in Eqn
(1). First, we show that d is a metric.

Claim. d is a metric

Proof. (i) We begin by showing that the first property of metric holds.

First we prove a result, which will be used later.

Result 2.1. Let V and W be two k& dimensional subspaces of a vector space and V C W.
Then V =W.



(i)

Proof. Let dimV =dimW = k and B, = vy, v9,...,v; be a basisof V. AsV C W, B, is a
list in W. Moreover, it is a linearly independent list in W (since, it is a basis of V).

Now, we can make B, a basis of W by adding some vectors of W in B,. But as dim W = k,
any basis of W must have length k. So, we can conclude B, is also a basis of W. This
implies, Vw € W, w = Zle a;v; €V (as By is basis of V). So, W C V. Hence, V. =W. O

Now,
dp(z,y) > 0; (as it is the usual metric in R")
= inf dg(x,y) >0
yeL’

— sup inf dg(z,y) >0
zeLnsn—1 YEL

= d(L,L') >0
Since L and L’ are are arbitrary, it is true for all L and L’ in Gi(R™).
Let d(L,L’) = 0. This implies:

sup d(z, L") =0
zeLNnsn—1

—d(z,L))=0, VzecLNns"!
= inf dg(x,y) =0
yeL’

= dg(z,y0) =0, (for some yo € L', by Claim 2.4, see next page)
=T =1

=—=zxel

— LCL.

By Result 2.1, we get L=L'". So, d(L,L')=0 = L=1L1"
Now, consider d(L, L) = sup,cpngn—1 infyer, dp(z,y). Fix o € LN S"1. So,

dg (20, z0) = 0;
— lng dE($07y) = 0, (as dE(lU,y) > 0)
ye
= sup inf dg(zg,y) =0;
zo€LNSn—1 YEL
= d(L,L) =0.
So, d(L,L')>0and d(L,L') =0 < L=1"
To show that the function d is symmetric, first we show that the supremum is actually
achieved i.e., sup,cngn-1 d(z, L) = d(xo, L), for some zg € L N S™~1.
Lemma 2.2. The function d : R” — R such that d(x, L") = inf e/ dg(x,y) is continuous in
R™.
Proof. Let {xy,}nen be a sequence in R™, which converges to xg € R" i.e., Ve > 0,IN € N
such that Vn > N, dg(xn,, 20) < €.
We fix n. d(zn,L') = infycr dp(xy,y) implies: given € > 0, 3y € L' such that d(z,, L") <
dp(zy,y) < d(xn, L") + €. Now,
d(zo, L) < dg(wo,y) < dp(xo,7n) + dg(zn,y), (triangle inequality)
< dp(xo,zy) + d(zn, L") + €
< d(xn, L")+ 26, (Vn>N)
= d(xo, L) —d(xp, L") <2, (Vn > N and Ve > 0)



By interchanging o and z;,, we will get d(z,, L") — d(xo, L') < 26, ¥n > N and Ve > 0. So,
|d(zp, L") — d(z0, L")| < 2¢. Hence d(z, L') is continuous at xq. Since it is continuous for any
xg in R™, it is continuous in R™. O

Proposition 2.3. Let ¢ : X — R be a continuous function and X be compact. Then
sup,cx 9(z) € g(X).

Proof. Since g is continuous and X is compact, g(X) C R is compact. So, g(X) is closed in
bounded (Heine-Borel Theorem). As g(X) is bounded, sup g exists, and as g(X) is closed,
supg € g(X). O

Now, LNS"~1 = §¥=1 is compact. We restrict the function d(z, L) to LNS"~!. So, d(x, L)
is continuous in L N S™~! (subset of R"). By Proposition 2.3, supremum is achleved. So,
d(L, L") = supyepngn-1 d(x, L') = d(zg, L"), for some z¢ € LN S" L.

Now, d(zo, L') = infyer dp(zo,y).

Claim 2.4. infyc;s d(xo,y) = dr(zo, yo), for some yg € L', and yo is unique.

Proof. Let yo be the orthogonal projection of xq into L'. So, (xg — yo,yo) = 0. Moreover, as
xo — Yo is perpendicular to the plane L', we get (x — yo,v) =0,Vv € L.

Let {v;}¥_, be an orthonormal basis of L. Since yo € L', yo = Zle a;v;, a; € R. We extend
this list to a basis {v1, ..., Vg, Ukt1, ..., up} of R™. By Gram-Schimdt orthogonalization, we
get {v;}7_;, an orthonormal basis of R".

Now, zp € R" = zg = >, bjv;, where b; € R.
We take v = vy, for j = 1,2,..., k.

<x—y0,’l)j> =0
n k

— <Zbﬂ)z —ZCLZ"UZ‘,U]‘> =0
=1 i=1

k
= <Z:(bZ - ai)vi,vj> =0, ((v;j,v5) =0, for i # j)

=1
- bj = aj (fOI“ 7 =12, ,,IC)

k
So, yo = > iy bivi.
Let yj, € L’ and y(, # yo. So, y; = Zle civi, ¢ € R. Now,

k
dp(zo,y)) = Z (bi —¢;)? Z b?

=1 i=k+1

k
— (de(wo,yp))* = Y _(bi — &i)* + (dr(x0, 30))?
=1
= dp(zo, yy) > de(z0,Y0)

Since y; is arbitrary, we can say that inf,cr d(zo,y) = dg(zo, yo)-

To show that yg is unique, let us assume 3y € L’ such that (z¢g — 7,9) = 0. Now, zy =
Yo +yy = ¥+ §+. This gives, yo — § = §= — yg. Since yo — §J € L' and §+ — yg € L'* and
both are equal, yo —y =0 = yg = y. Hence, yq is unique. O



So, d(L,L") = d(xo, L") = dg(z0,Yz,), where y,, is the orthogonal projection of g into L'.
Now,

d(L, L)

dE(J}(), yzo)

E(Ywo: o),  (symmetry)
E(Y0,25,) (using properties of congruent triangles)

[l
& &

d(9o, L), (since, infimum is achieved)

sup  d(y,L) =d(L',L).
yel/Nnsn—1

IN

where )y is the unit vector in the direction of y,, and x4, is the orthogonal projection of g
on L.

Now, interchanging L' and L we get d(L', L) < d(L,L’). So, d(L,L’) = d(L’, L); (symmetric).
(iii) Triangle inequality:
Let L, L', L"€ Gi(R™). We need to show that d(L, L") < d(L,L") +d(L',L").

Figure 1: for ||yz|| # 0

Take € L N S" ! such that d(L,L") = dg(z,y!), where y/ = Pr.(x) is the orthogonal
projection of x on L” (see Figure 1, as supremum and infimum are achieved). Using the
Pythagoras Theorem we get,

l1* = llya I + llz - yal®

— |lye|* + ||z — y||* =1 (since x is a unit vector)

= gzl <15 (as ||z — yal* > 0)

Now, 9z = Ayz, where A = H o = (HywH e 0)
|0z — Pr(92)|| = |All|yz — Pr/(yz)|| (as projection map P is linear)
> [|yx — Pr(ya) |l

The distance between 3, and g, = Pr/(9,) is always greater than the distance between y,
and y... Now, translate the vector g, — P/ to y, so that the line starting from y, intersects
L" at y.,.
Since dg(x,y) is the shortest distance between L and L”, we have

< dp(r,y:) +de(Ys. y,);  (triangle inequality)

<dp(r,yz) + dp(Jz, 9y); (a8 dB(Ye, ¥y) < dp(Ye,9;))



Since we have started with the x for which the supremum is achieved, from the above relation
we have d(L, L") < d(L,L") +d(L',L").

For the case, where |lyz| = 0 i.e., two of the planes are orthogonal to each other (say L
and L', see Figure 2); we have d(L,L") < 1 = d(L,L’) (since, x is a unit vector). So,

Figure 2:

d(L, L") < d(L,L') + d(L, L") (as d(L', L") > 0).

We have shown that the function d satisfies all the properties of metric. Hence, d is a metric
and (Gx(R™),d) is a metric space. O

The metric, d is uniformly bounded by 1. Since, the distance between any two k-planes is given by
the distance between a unit vector and the orthogonal projection of the unit vector. The distance
is 1 when there are two k-planes perpendicular to each other.

3 Some topological properties of Grassmannian

The induced topology on Grassmannian has some nice topological properties - compactness and
path-connectedness. Hausdorff property of Grassmannian is evident (as it is a metric space). We
check the two other topological properties, mentioned here.

Proposition 3.1. Gi(R") is compact.
Proof. Let f:O(n) — G(R™) be a function defined as f(A) = span(Ai1, Ag, ..., Ax), where A; is

a coloumn vector of A. If we can show that f is onto and continuous, then we are done.

Claim 3.2. (f is onto) VL € Gx(R™), 3A € O(n) such that f(A) = L.

Proof. Let By, = {v;}¥_, be an orthonormal basis of L. Since By, is a linearly independent list, we
extend it to {vi,ve, ..., Uk, Ukt1, ..., Un }, @ basis of R™. Using Gram-Schimdt orthogonalization we
get an orthonormal basis {v;}; of R™.

So taking A = [v1 va ... vy, we have f(A) = span(vy,va,..,vr) = L. As v;’s are orthonormal,
A € O(n). Since L is arbitrary, f is onto. O

Claim 3.3. (f : O(n) — Gi(R™) is continuous) Ve > 0, 3§ > 0 such that YA € O(n), VB € O(n)
if dp(A, B) < 6 then d(f(A), f(B) < e.

(Note). We have taken the metric in O(n) to be euclidean because we can identify an element of
O(n) as a vector of R™.



Proof. Let A = [a;;] and B = [b;;] be elements of O(n). Now,
(dp(A,B)* = > (ay —by)* < 6°

(4,4)=1

- Z(ail — bi1)2 + ...+ Z(am — bm)Q < 62
i=1 =1

n
== Z(aij — bij)? < 8% since (a;; — bi;)* > 0, for each j = 1,2,...,n
i=1

= dgp(Aj,Bj) <0, (foreachj=1,2,..,n)

Since supremum and infimum both are achieved, we have d(f(A), f(B)) = sup,e f(a)nsn—1 d(z, f(B))
= d(z, f(B)) = dp(z, Pyp)(x)), for some z € f(A) N S""!, where P is the orthogonal projection
operator. Now, x = Zle N A, with 37 A2 = 1. So,

d(f(A), f(B)) = de(z, Py(p)(x))

k k
=dp (Z AiAi, Py(p) (Z )\iAi>>
=1 =1
k k
=dg (Z AiA;, Z W) (AZ)) , (since, P is linear)
i=1 i=1

k
< Z dg (/\iAi, ) (AZ-)), (using triangle inequality)
i=1

k
= Z IAilde (AZ-, Pr(p (Ai)>, (as dg is the euclidean norm)
i=1
k
< Z |Ailde (4, B;); (as dg (Ai, Pr(p (Al)> is the infimum )
i=1

k
<VEké (as dg(A;, B;) < § and using Cauchy-Schwarz inequality, Z IAil < VE)
i=1

=€ (taking 6 = i)

vk
Since f is continuous for all A, B in O(n), it is continuous in O(n). O

As, f: O(n) — Gi(R™) is onto and continuous, and O(n) is compact, we have G (R") is compact.
O

Proposition 3.4. G;(R") is path-connected.

Proof. Let f:SO(n) — Gi(R") is a function defined as f(A) = span(Ai1, Aa, ..., Ap).
As SO(n) € O(n) and f is continuous on O(n) (shown in the previous section), f is continuous
on SO(n). It is sufficient to show that f is onto.

Going by the same logic as in the proof of Claim 2, we get an orthogonal matrix
A =[v; vg ... vy]. If det(A) =1, then A € SO(n) and we are done.
If det(A) = —1, we do a linear transformation, to get A" such that

-1 0 0 .. 0
A v 0O 1 0 .. 0 o
= [v1 vy ... Uy : . = [—v1 v ... U]
0 0 O 1



Now, det(A") = 1. So, A’ € SO(n). Hence, f is onto.

We know that continuous function preserves path-connectedness. Since SO(n) is path-connected
and f: SO(n) = Gi(R™) is continuous and onto, G(R"™) is path-connected. O



