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1 Introduction
The Lorenz system of equations is one of the most studied models in nonlinear dynamics, owing to
the wide range of fascinating and often counter intuitive results that the seemingly simple system
displays. A number of real world phenomena, such as weather predictions and biological systems, have
been modeled based on these equations. Since fluctuation phenomena are typical for all real systems
due to the discrete structure of matter and cannot be eliminated in principal, the behaviour of any
dynamical system in presence of external perturbation has always been an important field of study.
The presence of noise in any dynamical system was so far believed to boost the degree of disorder in
the system. Contrary to that belief, studies have shown that in nonlinear systems noise can induce
stochastic resonance (SR). This leads to the formation of more regular structures. This is manifested
by increase in the degree of coherence, amplification of weak signals and growth of the signal-to-noise
ratio. In other words, noise can play a constructive role, enhancing the degree of order in a system.

The term stochastic resonance was originally used in the context of a bistable oscillator model
that was proposed to describe the switching of earth’s climate between ice ages and periods of relative
warmth. In 1981, Benzi et al. used the Langevin equation to show that a dynamical system subject to
both periodic forcing and random perturbation may show a resonance behaviour which is absent when
either the forcing or the perturbation is absent. They found that an analytical theory of SR cannot
be developed for Lorenz model but we can discuss it qualitatively.

Around a decade later, Anishchenko et al. used high intensity noise on low frequency carrier signals
to study the effects of SR through frequency and amplitude modulation. They showed that distortions
of the signal can be minimized by choosing optimal noise and tuning operating characteristics of the
system. Quantitatively, they used a maximum value of coherence function to indicate the presence of
SR.

In 1994, Gao et al. studied the Lorenz equations in the parameter range in and slightly above the
metastable chaos regime with periodic forcing. They observed that noise induces oscillatory motions
with well-defined periods, a phenomenon similar to stochastic resonance. However, without a weak
periodic forcing, noise annihilates the two stable fixed point solutions, leaving the originally transient
metastable chaos the only observable. They also found that noise may induce hopping between one of
the fixed point solutions and the metastable chaos, thereby leading to a three-state intermittency.

In this report, the Lorenz system under various parameter conditions is studied. In particular, the
evolution of the dynamic variables with time and their trajectories on the phase plane are discussed.
This is followed by the study of the system in the presence of an external Gaussian noise. In the next
section, an analytical method to distinguish noise-induced chaos from deterministic chaos is applied.
The report is concluded by introducing a weak periodic forcing in the system and the presence of
stochastic resonance is checked by varying the noise intensity.

2 The Lorenz Equations
In 1963, Edward Lorenz, a meteorologist at the Massachusetts Institute of Technology, was trying to
construct mathematical models for weather and climate. He came up with a set of three non-linear
ordinary differential equations to mathematically describe an oversimplified model of convection rolls
in the atmosphere. The Lorenz equations are given by:

ẋ = σ(y − x) (1)

ẏ = rx− y − xz (2)

ż = xy − βz (3)
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Figure 1: Time series of x(t) and phase space plot for r = 11.8. The initial conditions used are
(10, 0, 1).

where σ is the Prandtl number, r is the Rayleigh number in a fluid convection model and β is
related to the aspect ratio of the rolls in the convection problem. The usual values of parameters used
are σ = 10 and β = 8

3 . In case of the convection model, x is proportional to the intensity of convective
motion, y is proportional to the temperature difference between ascending and descending currents.
Similar signs of x and y denote that warm fluid is rising and cold fluid is descending. The variable z is
proportional to the distortion of the vertical temperature profile. A positive value of z indicates that
the strongest gradients occur near the boundaries.

Dynamics of the Lorenz System
The Lorenz system of equations leads to different kinds of trajectories depending on the values of the
parameters as well as the initial conditions. The Lorenz system is a dissipative system, which means
that the phase space volume always contracts with flow.

The Lorenz system has three fixed points, which are given by: C0 = (0, 0, 0) and C± = (±
√
β(r − 1),±

√
β(r − 1), r−

1). For r < 1, C0 is a stable fixed point and C+ and C− do not exist, i.e, all trajectories lead to the
origin. For r > 1, C0becomes unstable and the system ends up in either of the two fixed points, C+

or C−, depending on the initial conditions. For r < 13.926, the trajectories are similar to that of a
damped periodic oscillator. They start at the initial conditions, oscillate periodically and gradually
reaches one of the steady state points, C+or C−. In Fig.1, we have shown the time evolution for the x
co-ordinate of the Lorenz equations, and the phase space plot of x(t) vs z(t). We see that x(t) displays
an oscillatory motion which gradually damps and reaches a constant value 5.367. On examining the
temporal evolution of the other two co-ordinates, we find that the system settles at (5.367, 5.367, 10.8),
i.e, the fixed point C+. The phase space plot also shows the presence of a fixed point attractor at C+.

For r ∈ (13.926, 24.06), the system exhibits metastable chaos. This means that for certain initial
conditions, the system exhibits chaos for an extensive period of time, before settling into either of the
two fixed points C±. This behaviour is generally encountered for values of r close to 24.06. Fig.2 shows
the time series for x(t) and phase space plot x(t) vs z(t) for r = 22.3. We see that the system behaves
chaotically and shows aperiodic irregular oscillations about the two fixed points for some time, and
then becomes oscillatory about one of the steady states, and finally tends to the steady state solution.

When r ∈ (24.06, 24.72), the system has two stable fixed points, C+ and C−, and a strange
attractor. Depending on the initial conditions, the system settles in either of these three attractors.
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Figure 2: Time series of x(t) and phase space plot for r = 22.3. The initial conditions used are
(10, 10, 10).
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Figure 3: Time series of x(t) and phase space plot for r = 28.
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As r is increased beyond rH , where rH = σ(3+β+σ)
σ−β−1 , the system undergoes a transition to chaos. This

transition to the chaotic state occurs at r = rH through Hopf bifurcation. The stable steady state
solutions vanishes, and the system behaves like a strange attractor. The attractor is stable in the sense
that almost all initial conditions get pulled into the attractor and traces the same butterfly-shaped
trajectory in phase space. A small change in initial conditions, or a small perturbation, does not
alter the overall shape of the attractor. However, the temporal evolution of individual trajectories are
unstable. They show sensitive dependence on initial conditions, which means that two orbits starting
extremely close to each other diverges exponentially. This exponential divergence is characterised by a
large positive value of the Lyapunov exponent. Hence, although it is certain that the orbits will always
follow a bounded trajectory on the attractor, the exact paths of the orbits are unpredictable. This
unpredictability in a deterministic system, i.e., in the absence of any stochastic component, is a result
of the non-linearity. Fig.3 shows the classic model of the Lorenz attractor with σ = 10, β = 8

3 ,r = 28
and initial conditions (0.1, 0.1, 0.1).

3 Effect of Noise on the Lorenz system
In this section, we study the effect of a stochasticity on the Lorenz equations. For this purpose, we
study the Lorenz system in details for two different values of the Rayleigh number : r = 24.01 and
r = 30.0. We know that in the absence of noise, the Lorenz system evolves periodically to a stable fixed
point for r = 24.01, as shown in Fig.4(a). For r = 30.0, the clean Lorenz system exhibits chaos, as
shown in Fig.4(b). We have used the Runge-Kutta 4th order method to numerically solve the Lorenz
equations (1)-(3) with initial conditions x0 = 0.1, y0 = 0.1, z0 = 0.1 and time step of h = 0.01.

Now, a Gaussian white noise is introduced in the y equation (2).

ẏ = rx− y − xz +Dξ(t) (4)

where r = 24.01 and Dξ(t) is white Gaussian noise with 〈ξ(t) = 0〉 and 〈ξ(t)ξ(t′) = δ(t− t′)〉 and
variance D2. Physically, this noise accounts for fluctuations in the temperature difference between the
ascending and descending currents in the fluid convection model. We observe that the addition of noise
results in the transition of the trajectory from the steady state to the chaotic state, shown in Fig.5.

The transition of the system from periodic to chaotic regime can also be noted distinctly from the
power spectral density (PSD) plot of the signal. The PSD of a signal gives the power present in the
signal per unit frequency as a function of frequency. The PSD of signal x(t) as a function of frequency
ω is defined as

PSDx(ω) =
(∆t)2

T

∣∣∣∣∣
N∑
k=1

xke
−2πiωk

∣∣∣∣∣
2

(5)

where xk is the discrete value of the variable at time tk = k∆t, with ∆t as the sampling time, ω is
the frequency of the fluctuation and T is the total time interval for which data is considered. We have
generated the PSD using the Fast Fourier Transform (FFT) algorithm, with sampling time ∆t = 0.01.
A sharp peak in the PSD at a given frequency and its harmonics implies that the signal is periodic
and has the frequency corresponding to the peak. Fig.6 shows the power spectral density of the signal
x(t) plotted against frequency. We see that in the absence of noise or for smaller values of noise, a
distinct peak in the spectral density is observed, along with harmonic peaks. This indicates that the
system is periodic. As noise is increased, the peaks start disappearing and at D = 0.05, the peaks
vanish completely indicating that the system becomes completely chaotic.

We further plot the curve of logA vs log(D2), where A is the average amplitude of oscillation of x(t)
and D represents the noise strength. This is shown in Fig.7. The slope is found to be 0.50. This square
root dependence of the amplitude and the noise level is a characteristic of Hopf bifurcation. As stated
earlier, the transition of the system from periodic to chaotic due to increasing r, i.e, in the absence
of noise, also occurs through Hopf bifurcation. Further, for r = 24.01, the system shows a time series
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Figure 4: Time series of x(t) for (a)r = 24.01 and (b)r = 30.0. The temporal evolution for a nar-
rower time range has been shown for both the cases in the right hand side figures to provide a clear
visualisation of the periodic nature of x(t) for r = 24.01, and the chaotic oscillations of x(t) for r = 30.0.
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Figure 5: Time series x(t) for r = 24.01 with different values of noise D. We have shown the plots for
a range of t = 800 to t = 850 to see the gradual transition to chaos with greater clarity.
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Figure 6: Power spectral density plot of x(t) at r = 24.01 for varying noise strength.
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Figure 7: log − log amplitude A of x(t) versus noise strength D2 for r = 24.01 and D = 0.05.

similar to that of the clean Lorenz system for r = 30.0. In other words, the introduction of noise to the
system is equivalent to increasing the value of r. In the following section, we compare the noise-induced
chaos at r = 24.01 to deterministic chaos at r = 30 and see whether they are characteristically similar.

4 Characterisation of chaos
In this section, we check whether the chaos induced by noise for smaller values of r is characteristically
similar to the chaos produced in the system due to higher values of r in the absence of noise. For
this purpose, we use the dynamical test for deterministic chaos. We use the time delay embedding
procedure to construct vectors of the form Xn = [xl, xl+L, ..., xl+(d−1)L] where L is the delay time and
d is the embedding dimension. We chose d and L such that the optimization criterion as specified by
Gao et al. is satisfied. We compute a series of ζ(n) curves defined by

ζ(n) =

〈
ln

(
||Xl+n −Xm+n||

Xl −Xm

)〉
(6)

with s ≤ ||Xl − Xm|| ≤ s + ∆s, where geometrically, (s, s + ∆s) represents a shell. The angular
brackets denote ensemble average over all possible pairs of (Xl, Xm).

The computations are carried out for a series of shells of arbitrary radii. The integer n corresponds
to the evolution time. In absence of noise, the chaotic behaviour is inherent to the system. In
this case, for small values of n, ζ(n) is independent of the radius of the shells used, and is linearly
increasing. Hence the linear region of ζ(n) forms a distinct envelope for a sequence of shells, whose
slope corresponds to a large positive Lyapunov exponent. The fact that the Lyapunov exponent is
independent of the shells used for computation characterizes the system as truly chaotic. However, in
case of stochastic process, ζ(n) depends on the radius of the shell used. Hence, as noise is added, the
envelope is destroyed. The slope of the graph then changes depending on the shell considered, and
implies that the process becomes stochastic. This distinguishes true chaos from noise-induced chaos.
In Fig., we have plotted the variation of ζ(n) with the evolution parameter n for 3 different cases. We
have used 3 different shells, given by (0.1n,0.5n), where l = 4, 5, 6. We observe a linear increase in ζ(n)
for smaller values of n. In Fig.8(c), where noise is absent, the linear region of ζ(n) forms a common
envelope for the 3 different shells. We observe that with a decrease in r and increase in the noise D,
the envelope breaks. This helps us distinguish between inherent chaos in the system and noise-induced
stochastic process. The slope of the linear envelope in Fig.8(c), which serves as an estimate of the
largest Lyapunov exponent, is found to be 0.1094.
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Figure 8: Plots showing variation of ζ(n) with n for (a)r = 24.01, D = 0.05, (b)r = 30.0, D = 0.0. The
delay vector was constructed with embedding dimension d = 10 and delay time L = 3.
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5 Stochastic resonance in Lorenz System
In this section, we observe the behaviour of the Lorenz system under a periodic force of small amplitude.
Our aim is to study the combined effect of noise and periodic force on the system, and check whether the
system shows stochastic resonance for optimal characteristics of the noise. In their review of stochastic
resonance, Anishchenko et al states that SR can be observed only in those non-linear systems for
which a characteristic time scale dependent on the noise intensity is available. For the case of Lorenz
model, this characteristic time scale is usually defined by the mean residence time of the system. The
residence time of a bistable system is defined as the average time the system spends in each state before
switching to the other state. In the chaotic regime, the Lorenz system displays a similar switching
behaviour between the two lobes of the strange attractor. The residence time is calculated as the
average time the system spends in one lobe of the Lorenz attractor before switching to the other lobe.

To study the phenomenon of SR in the Lorenz system, we choose r =24.01. We drive the system
from periodic to chaotic by adding an external noise of varying intensity, and study the characteristics
of the system. We begin by adding a periodic force of small amplitude to equation (4) :

ẏ = rx− y − xz +Dξ(t) +Acos(ω0t) (7)

where Acos(ω0t) is a periodic force of amplitude A and frequency ω0. The frequency of the periodic
force is taken to be 2π/τ , where τ is the mean residence time of the system in absence of external
noise. In Fig.9 we have shown the time series and PSD of x(t) for r = 24.01 and D = 0.05 with
different amplitudes of the periodic force. It is clear from both set of plots that as the amplitude of
the perodic force is increased, the trajectory of the Lorenz system transitions from chaotic to more
and more periodic. In the latter case, This is because beyond a certain amplitude of the force, the
amplitude of the perturbation is of so large that the system is forced to follow the driving frequency
of the periodic forcing. Thus, to guarantee that the response behavior is due to “resonance” and not
due to “forcing”, it is important to keep the amplitude of the periodic force sufficiently low. From the
plots, we see that choosing the periodic force amplitude to be A = 0.1 does not result in force-driven
periodicity. Hence we set the amplitude as A = 0.1.

SR in a system can be proven using a number of results, such as minimum entropy to indicate
enhanced order in the system, or a sharp peak in the signal-to-noise ratio (SNR) of the system for a
certain noise intensity. In this report, the later method is used. SNR compares the level of a desired
signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power,
often expressed in decibels. Mathematically, it can be defined as

SNR = 2

ω0+∆ω∑
ω0−∆ω

S(ω)δω/SN (ω0) (8)

where ω0 is the frequency of the periodic force and SN (ω0) is the value of the power spectral
density corresponding to frequency ω0. SNR is calculated as the area under the peak in the PSD
plot at ω = ω0. For a system subjected to a weak signal and noise, the SNR increases with the noise
intensity, reaches a maximum value for a certain intensity of noise, and then gradually decreases. This
shows that there is an optimal noise level at which the periodic component of the signal is maximized.
This is a conclusive proof of SR in the system.

Fig.10 shows that the SNR vs noise intensity plot attains a maximum at D = 0.3. This peak
in the SNR vs D plot implies the presence of stochastic resonance in the system for D = 0.3. The
corresponding time series plot and PSD plot are shown in Fig 11. We see that the PSD of the dynamic
variable x(t) has a spike at the frequency at which the PSD of the periodic signal shows a peak. This
implies that for D = 0.3, the Lorenz system has a periodic element characterised by the frequency of
the driving force. This is the characteristic of SR in the system.
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Figure 9: (a) Temporal evolution of x(t) for r = 24.01 and D = 0.05 with varying amplitude of periodic
force. The black curves represent the external periodic force scaled up to 20X. (b) PSD of x(t) for
r = 24.01 and D = 0.05 with varying amplitude of periodic force. The black curves show the PSD
plots of the external periodic force.
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Figure 10: Signal to noise ratio vs noise intensityD for r = 24.01, A = 0.1. The SNR reaches a
maximum at D = 0.3 and exhibits SR.

14



t
0 50 100 150 200 250 300

x(
t)

-20

-15

-10

-5

0

5

10

15

20
(a)

D
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
S

D

-60

-40

-20

0

20

40

60
(b)

Figure 11: (a) Time series of x(t) for r = 24.01, D = 0.3. (b) PSD vs D plot for x(t) and periodic force.
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6 Conclusion
In this report, we presented a brief analysis of the Lorenz system of equations and how the system
responds to external perturbation. In the first section, we studied the general dynamics of the system
in absence of noise. We observed that the system displays characteristically different behaviour for
different values of parameters. We studied the temporal evolution of the dynamic variables and their
phase space trajectories as the system undergoes transition from periodic to metastable to chaotic
nature with varying r. We saw that the system undergoes transition to chaotic state for a particular
value of r which is independent of the initial conditions, and this transition occurs through Hopf bifur-
cation. In the next section, we introduced an external white Gaussian noise in the system and studied
the aforementioned characteristics. It was seen that an external noise beyond a certain threshold value
(depending on the value of r) drives the system from periodic to chaotic. This transition also occurs
through Hopf bifurcation. Thus it can be concluded that the effect of adding an external noise to the
system at low values of r is essentially similar to increasing the value of r in absence of noise. In the
next section we used a pre-established analytical method to compare the inherent chaotic nature of
the system to the noise-induced chaotic behaviour. In the concluding section, we introduced a weak
periodic forcing to the system in the presence of noise and observed that for an optimal noise intensity,
the signal to noise ratio attains a maximum. We concluded that the Lorenz system exhibits stochastic
resonance in the presence of an external periodic driving force and noise.
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