A Differentiable Monster

Harshith Sairaj A

Indian Institute of Science Education and Research Kolkata

DMS Day February 25, 2023

Harshith Sairaj A (IISER K)

A Differentiable Monster

3 N

A 1

Differentiable functions are nice

Figure: A differentiable function[left] and its derivative[right]

Let $(a, b) \subset \mathbb{R}$ and $f : (a, b) \to \mathbb{R}$ be differentiable. Then:

- *f* is continuous on (*a*, *b*).
- *f*′ follows the intermediate value property.

A function $f : \mathbb{R} \to \mathbb{R}$ is **increasing** on $(a, b) \subset \mathbb{R}$ if

 $f(x) \leq f(y)$

for $x, y \in (a, b)$ and x < y. Similarly, it is **decreasing** if $f(x) \ge f(y)$.

We say a function is **monotone** on (a, b) if it is either increasing or decreasing on (a, b).

Harshith Sairaj A (IISER K)

Figure: A function that is not monotone on (0, 1)

イロト イポト イヨト イヨト

Monotonicity and differentiable functions

If a differentiable function is increasing in an interval, then $f' \ge 0$ in that interval.

Sign of derivative and monotonicity

If $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function such that f' is continuous (C^1 function).

If f'(a) > 0, then *f* is increasing in an interval of '*a*'.

What if we drop continuity of derivative?

If a differentiable function f be such that f'(0) > 0, then does there exists a interval about 0 where f is monotone?

What if we drop continuity of derivative?

If a differentiable function f be such that f'(0) > 0, then does there exists a interval about 0 where f is monotone?

A function is **nowhere monotone** if it is not monotone on any non empty open interval.

Image: A matrix and a matrix

Nowhere monotone?

A function is **nowhere monotone** if it is not monotone on any non empty open interval.

Figure: Weierstrass function

$$f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)$$

Don't these functions feel very "rugged"?

Harshith Sairaj A (IISER K)

We have seen that nowhere monotone functions are very **rugged** and we have a notion of **"smoothness"** (*no sharp edges*) associated to differentiable functions.

We have seen that nowhere monotone functions are very **rugged** and we have a notion of **"smoothness"** (*no sharp edges*) associated to differentiable functions.

Does there exist a **differentiable** function

 $f:\mathbb{R}\to\mathbb{R}$

which is nowhere monotone?

We have seen that nowhere monotone functions are very **rugged** and we have a notion of **"smoothness"** (*no sharp edges*) associated to differentiable functions.

Does there exist a **differentiable** function

 $f:\mathbb{R}\to\mathbb{R}$

which is nowhere monotone?

Yes!

There exists a nowhere monotone differentiable function.

< 口 > < 何 >

There exists a nowhere monotone differentiable function.

AIM

We want to find a function *f* such each of the sets

$$\{x\in\mathbb{R}: f'(x)>0\}$$
 and $\{x\in\mathbb{R}: f'(x)<0\}$

is dense sets in \mathbb{R} . Then *f* cannot be monotone in any non-empty open interval.

There exists a nowhere monotone differentiable function.

AIM

We want to find a function *f* such each of the sets

$$\{x \in \mathbb{R} : f'(x) > 0\}$$
 and $\{x \in \mathbb{R} : f'(x) < 0\}$

is dense sets in \mathbb{R} . Then *f* cannot be monotone in any non-empty open interval.

- Given any open interval: say (*a*, *b*)
- If *f* were increasing in (a, b), the $f'(x) \ge 0$ for $x \in (a, b)$.
- Since the set of points where f' is negative is dense in \mathbb{R} . There would be a point in (a, b) with derivative negative.

A differentiable monster

is a nowhere monotone differentiable function.

Theorem (Alfred Köpcke - 1887)

There exists a differentiable function $f : \mathbb{R} \to \mathbb{R}$ which is nowhere monotone. In particular, each of the sets

$$Z_f := \{x \in \mathbb{R} : f'(x) = 0\}$$
 and $Z_f^c := \{x \in \mathbb{R} : f'(x) \neq 0\}$

is dense in \mathbb{R} , and f' is discontinuous at each point of Z_f^c .

Definition (G_{δ} set)

A G_{δ} set is a countable intersection of open sets.

Examples

The zero set of a continuous function is a (closed) G_{δ} set

$$f^{-1}(0) = \bigcap_{n>0} f^{-1}\left(-\frac{1}{n}, \frac{1}{n}\right)$$

12/30

< 同 > < 三 >

Definition (G_{δ} set)

A G_{δ} set is a countable intersection of open sets.

Examples

The zero set of a continuous function is a (closed) G_{δ} set

$$f^{-1}(0) = \bigcap_{n>0} f^{-1}\left(-\frac{1}{n}, \frac{1}{n}\right)$$

Baire's Theorem

Countable intersection of dense open sets in \mathbb{R} is a dense G_{δ} set.

Countable intersection dense G_{δ} sets in \mathbb{R} is a dense G_{δ} set.

< ロ > < 同 > < 回 > < 回 > .

How large is the set of points of continuity of a derivative?

3 N

Image: Image:

How large is the set of points of continuity of a derivative? Very Large!

Lemma (Pointwise limit of continuous functions)

Let $g(x) = \lim_{n \to \infty} g_n(x)$ where $g_n : \mathbb{R} \to \mathbb{R}$ is continuous. Then, the set of points of continuity of g is a dense G_{δ} set.

How large is the set of points of continuity of a derivative? Very Large!

Lemma (Pointwise limit of continuous functions)

Let $g(x) = \lim_{n \to \infty} g_n(x)$ where $g_n : \mathbb{R} \to \mathbb{R}$ is continuous. Then, the set of points of continuity of g is a dense G_{δ} set.

Theorem (Continuity of derivative)

Let $F : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Then, the set of points of continuity of F' is a dense G_{δ} set.

How large is the set of points of continuity of a derivative? Very Large!

Lemma (Pointwise limit of continuous functions)

Let $g(x) = \lim_{n \to \infty} g_n(x)$ where $g_n : \mathbb{R} \to \mathbb{R}$ is continuous. Then, the set of points of continuity of g is a dense G_{δ} set.

Theorem (Continuity of derivative)

Let $F : \mathbb{R} \to \mathbb{R}$ be a differentiable function.

Then, the set of points of continuity of F' is a dense G_{δ} set.

Proof

$$g_n(x):=\frac{F(x+1/n)-F(x)}{1/n}$$

By the definition of differentiation $\lim_{n\to\infty} g_n(x) = F'(x)$. We are done by the above lemma.

Harshith Sairaj A (IISER K)

A Differentiable Monster

Does there exist a strictly increasing differentiable function $h : \mathbb{R} \to \mathbb{R}$ with vanishing derivative on a dense set in \mathbb{R} ?

Does there exist a strictly increasing differentiable function $h : \mathbb{R} \to \mathbb{R}$ with vanishing derivative on a dense set in \mathbb{R} ?

Proposition (Dimitrie Pompeiu - 1907)

There exists a strictly increasing differentiable function $h:\mathbb{R}\to\mathbb{R}$ for which each of the sets

$$Z_h := \{x \in \mathbb{R} : h'(x) = 0\}$$
 and $Z_h^c := \{x \in \mathbb{R} : h'(x) > 0\}$

is dense in \mathbb{R} .

Such a function is called as a **Pompeiu's function**.

Intuition for Pompeiu's Function

25 Feb 2023

ヘロア 人間 アメヨアメヨア

3

25 Feb 2023

< ∃ >

э

< 口 > < 同 >

→ Ξ → ...

Image: A matrix and a matrix

< ロ > < 同 > < 三 > < 三 > <

くロト (部) (ア・) (ア・)

(日)

A Pompeiu's Function h

Figure: g[left] and g'[right]

Take an enumeration $Q := \{q_j : j \in \mathbb{N}\}$ of \mathbb{Q} , such that $|q_j| \leq j$. Let 0 < r < 1.

$$g(x):=\sum_{j=1}^{\infty}r^j(x-q_j)^{\frac{1}{3}}$$

Then *g* is continuous and strictly increasing. It has an inverse *h* which is a strictly increasing differentiable function with *h'* being zero on $g(\mathbb{Q})$.

Harshith Sairaj A (IISER K)

A Differentiable Monster

25 Feb 2023

We denoted $Z_h = \{x \in \mathbb{R} : h'(x) = 0\}$ and $Z_h^c = \{x \in \mathbb{R} : h'(x) > 0\}$. They are both dense in \mathbb{R} .

- *h*' can't be continuous on Z^c_h as Z_h is dense in ℝ. So the set of points of continuity of *h*' must be in Z^c_h
- Z_h contains a dense G_δ set.

Z_h is a very large set

- $Z_h = \{x \in \mathbb{R} : h'(x) = 0\}$ contains the points of continuity of h' so it contains a dense G_δ set. (This is a very large set)
- $Z_h^c = \{x \in \mathbb{R} : h'(x) > 0\}$ is a dense set.

- $Z_h = \{x \in \mathbb{R} : h'(x) = 0\}$ contains the points of continuity of h' so it contains a dense G_δ set. (This is a very large set)
- $Z_h^c = \{x \in \mathbb{R} : h'(x) > 0\}$ is a dense set.
- Pick a countable and dense set $D \subset Z_h^c$
- There exists *t* such that $D + t \subset Z_h$ and $D t \subset Z_h$.

- $Z_h = \{x \in \mathbb{R} : h'(x) = 0\}$ contains the points of continuity of h' so it contains a dense G_δ set. (This is a very large set)
- $Z_h^c = \{x \in \mathbb{R} : h'(x) > 0\}$ is a dense set.
- Pick a countable and dense set $D \subset Z_h^c$
- There exists *t* such that $D + t \subset Z_h$ and $D t \subset Z_h$.
 - $G := \bigcap_{\eta \in D} \left(\left(-\eta + Z_h \right) \cap \left(\eta Z_h \right) \right)$
 - − *G* is non-empty in fact a dense G_δ set. Pick $t \in G$.

- $Z_h = \{x \in \mathbb{R} : h'(x) = 0\}$ contains the points of continuity of h' so it contains a dense G_δ set. (This is a very large set)
- $Z_{h}^{c} = \{x \in \mathbb{R} : h'(x) > 0\}$ is a dense set.
- Pick a countable and dense set $D \subset Z_h^c$
- There exists *t* such that $D + t \subset Z_h$ and $D t \subset Z_h$.

-
$$G := \bigcap_{\eta \in D} \left(\left(-\eta + Z_h \right) \cap \left(\eta - Z_h \right) \right)$$

− *G* is non-empty in fact a dense G_δ set. Pick $t \in G$.

it's here, run!

Then f(x) := h(x - t) - h(x) is a differentiable monster!

•
$$Z_h = \{x \in \mathbb{R} : h'(x) = 0\}$$
 and $Z_h^c = \{x \in \mathbb{R} : h'(x) > 0\}$

•
$$f(x) := h(x - t) - h(x)$$

•
$$f'(x) = h'(x - t) - h'(x)$$
 and for $\eta \in D$

글 🖌 🖌 글 🕨

Image: A matrix and a matrix

•
$$Z_h = \{x \in \mathbb{R} : h'(x) = 0\}$$
 and $Z_h^c = \{x \in \mathbb{R} : h'(x) > 0\}$

•
$$f(x) := h(x - t) - h(x)$$

- f'(x) = h'(x t) h'(x) and for $\eta \in D$
- $f'(t+\eta) = h'(\eta) h'(t+\eta) > 0$
- $f'(\eta) = h'(\eta t) h'(\eta) < 0$

э

•
$$Z_h = \{x \in \mathbb{R} : h'(x) = 0\}$$
 and $Z_h^c = \{x \in \mathbb{R} : h'(x) > 0\}$

•
$$f(x) := h(x - t) - h(x)$$

•
$$f'(x) = h'(x - t) - h'(x)$$
 and for $\eta \in D$

- $f'(t + \eta) = h'(\eta) h'(t + \eta) > 0$
- $f'(\eta) = h'(\eta t) h'(\eta) < 0$
- f' > 0 on t + D which is a dense set
- f' < 0 on *D* which is a dense set

•
$$Z_h = \{x \in \mathbb{R} : h'(x) = 0\}$$
 and $Z_h^c = \{x \in \mathbb{R} : h'(x) > 0\}$

•
$$f(x) := h(x - t) - h(x)$$

•
$$f'(x) = h'(x - t) - h'(x)$$
 and for $\eta \in D$

- $f'(t + \eta) = h'(\eta) h'(t + \eta) > 0$
- $f'(\eta) = h'(\eta t) h'(\eta) < 0$
- f' > 0 on t + D which is a dense set
- f' < 0 on *D* which is a dense set

Examining the monster (Cont.)

- f' > 0 on t + D which is a dense set
- f' < 0 on *D* which is a dense set

Examining the monster (Cont.)

- f' > 0 on t + D which is a dense set
- f' < 0 on *D* which is a dense set

AIM

We wanted to find a function *f* such each of the sets

$$\{x \in \mathbb{R} : f'(x) > 0\}$$
 and $\{x \in \mathbb{R} : f'(x) < 0\}$

is dense sets in \mathbb{R} . Then *f* cannot be monotone in any non-empty open interval.

f cannot be monotone in any non-empty open set!

Pompeiu's Function in Depth

Figure: g[left] and g'[right]

Take an enumeration $Q := \{q_j : j \in \mathbb{N}\}$ of \mathbb{Q} , such that $|q_j| \le j$. Let 0 < r < 1.

$$g(x) := \sum_{j=1}^{\infty} r^j (x - q_j)^{\frac{1}{3}}$$

Take an enumeration $Q := \{q_j : j \in \mathbb{N}\}$ of \mathbb{Q} , such that $|q_j| \leq j$. Let 0 < r < 1. ~

$$g(x):=\sum_{j=1}^\infty r^j(x-q_j)^{\frac13}$$

27/30

3 N

Image: A matrix and a matrix

Take an enumeration $Q := \{q_j : j \in \mathbb{N}\}$ of \mathbb{Q} , such that $|q_j| \leq j$. Let 0 < r < 1.

$$g(x):=\sum_{j=1}^{\infty}r^j(x-q_j)^{\frac{1}{3}}$$

• *g* uniformly converges on compact sets. Hence *g* is continuous.

Take an enumeration $Q := \{q_j : j \in \mathbb{N}\}$ of \mathbb{Q} , such that $|q_j| \leq j$. Let 0 < r < 1.

$$g(x):=\sum_{j=1}^{\infty}r^j(x-q_j)^{\frac{1}{3}}$$

- *g* uniformly converges on compact sets. Hence *g* is continuous.
- Since each term is strictly increasing, *g* is strictly increasing.

Take an enumeration $Q := \{q_j : j \in \mathbb{N}\}$ of \mathbb{Q} , such that $|q_j| \leq j$. Let 0 < r < 1.

$$g(x):=\sum_{j=1}^{\infty}r^j(x-q_j)^{\frac{1}{3}}$$

- *g* uniformly converges on compact sets. Hence *g* is continuous.
- Since each term is strictly increasing, *g* is strictly increasing.
- In this setting

$$g'(x) = \sum_{j=1}^{\infty} r^j \frac{1}{3(x-q_j)^{\frac{2}{3}}}$$

when the sum converges. Otherwise we have $g'(x) = +\infty$. In particular g' is $+\infty$ for points in Q.

• As *g* is strictly increasing and continuous, it has a inverse *h* which is strictly increasing and continuous.

- As *g* is strictly increasing and continuous, it has a inverse *h* which is strictly increasing and continuous.
- *h*' is zero on *g*(Q). And *h*' is finite on every point as *g*' > 0 for every point.

- As *g* is strictly increasing and continuous, it has a inverse *h* which is strictly increasing and continuous.
- *h*' is zero on *g*(Q). And *h*' is finite on every point as *g*' > 0 for every point.
- $h : \mathbb{R} \to \mathbb{R}$ is differentiable and Z is dense:

$$g(\mathbb{Q})\subset Z=\{x\in\mathbb{R}:h'(x)=0\}$$

• Since *h* is strictly increasing

$$Z^c = \{x \in \mathbb{R} : h'(x) > 0\}$$

is dense.

- Bull. Amer. Math. Soc. **56** (2019), 211-260 : Differentiability versus continuity: Restriction and extension theorems and monstrous examples
- Continuous Nowhere Differentiable Functions: The Monsters of Analysis Marek Jarnicki and Peter Pflug

Hope you were not scared by the monster.

Thank you!

30/30

3 N

Image: Image: