
Introduction to Monte Carlo Methods

Dr. Ananda Dasgupta
IISER Kolkata

Autumn Semester 2017

1 Monte Carlo Methods

The Monte Carlo methods of simulation use computer generated pseudo-random
numbers to study naturally occurring random processes. It was first used in
physics by von Neumann, Ulam and Metropolis near the end of the Second
World War to study the diffusion of neutrons in fissionable material. The novel
contribution of von Neumann and Ulam was to realize that determinate math-
ematical problems could be treated by finding a probabilistic analogue which is
then solved by a stochastic sampling experiment.

2 A simple illustration

π by throwing pebbles

Imagine a child throwing pebbles at random on a square field. If she manages to
do it entirely at random, the fraction of pebbles that lands inside the inscribed
circle, in the limit of a very large number of pebbles, approaches the ratio of the

areas of the circle and the square :
π

4
! The series of pictures below show this in

action - although, out of fear of being accused of child abuse, we have enlisted
the help of a computer in carrying out the throwing and counting!

n = 100
πest = 3.2

n = 500
πest = 3.172

n = 1000
πest = 3.108

n = 5000
πest = 3.1264

π by throwing pebbles - the code

from random import random

1

N = input(’Enter number of pebbles : ’)

Nhits = 0

for i in range(N):

x = 2*random()-1

y = 2*random()-1

if x*x+y*y < 1:

Nhits += 1

print ’estimate for pi : ’, 4*float(Nhits)/N

3 Monte Carlo integration

This method of estimating π is actually a determination of the area of the
circle - which in turn is actually the double integral

∫∫
C
dxdy . Monte Carlo

techniques are a very good way for calculating higher dimensional integrals.
The standard approach towards calculating a higher-dimensional integral is via
iterative evaluation of one-dimensional integrals, e.g

∫∫∫
B3

f(x, y, z) dxdydz =

∫ +1

−1
dx

∫ +
√
1−x2

−
√
1−x2

dy

∫ +
√

1−x2−y2

−
√

1−x2−y2
dzf(x, y, z)

If you try to evaluate this numerically by using, say, 10-point Simpson method,
you will need to evaluate the inner double integral (that over y and z) at 10
values of x - each of these will require the evaluation of the innermost (z) in-
tegral at 10 values of y, and these, in turn will require the evaluation of the
integrand at 10 values of z. This is a total of 1000 function evaluations. The
number of points where the integrand needs to be evaluated increases exponen-
tially with dimension in all standard integration techniques (like trapezoidal,

etc.) In Monte-Carlo methods the error is ∝ 1√
N

- independent of the number

of dimensions! Thus, although evaluation of a lower dimensional integral will
require a much larger number of points if you try Monte Carlo, as opposed to,
say Simpson’s method for the same level of accuracy - the situation is reversed
for higher dimensional integrals.

π again - this time from a sphere

The code

import numpy as np

N = input(’Enter number of points : ’)

2

Nhits = 0

for i in range(N):

pt = np.random.rand(3)

if pt.dot(pt)<1:

Nhits += 1

print ’Volume : ’,float(Nhits)/N

4 Throwing pebbles again - but locally

Going back to our child throwing pebbles , consider, now, a situation where the
field is big! It may not be possible for the poor child to throw pebbles uniformly
over such a large area. So, let’s modify the game a bit! Imagine that the kid
now starts at some fixed point inside the square field and throws a pebble at
random with eyes closed. If the pebble lies inside the field, she walks over to
where the pebble has landed, and throws another pebble from there. She keeps
up at this game for a large number of throws. If at any stage the pebble lands
outside the field, the kid just places another pebble at her current location
and tries again! At the end of the game, she counts the number of pebbles that
are inside the circle. The ratio of this number to the total number of throws
gives an estimate for the ratio of the areas of the circle and the field.

Note that in this case too, somehow the pebbles end up being distributed
uniformly all over the field. The probability of a pebble being added to a given
point in the n+ 1th step, depends only on the position of the nth pebble! This
is the essence of a Markov Chain!

The idea of putting down another pebble whenever one is thrown out of the
field sounds counter-intuitive at first. It seems that we are, in a way, rewarding
failure! Notice that if the child has a small reach, then she is most likely to
throw a pebble out of the field if she is standing close to an edge (even more so
if she is near a corner). It is more likely that pebbles will pile up on top of each
other at such points, rather than at a point in the middle of the filed. On the
other hand, a region near the middle of the field can have pebbles coming in
from all directions (depending, of course, on the position of the kid in the last
step)- the option is much less if you are near the edge.In other words, the parts
of the field that are less likely to be reached are also the ones harder to get out
of! The two effects balance out to give the uniform distribution.

The code

from random import random

x,y = 1.0,1.0

3

n,NN = 0,1000000

d = 0.5

for i in xrange(NN):

dx = (random()*2-1)*d

dy = (random()*2-1)*d

if abs(x+dx)<=1 and abs(y+dy)<=1:

x = x+dx

y = y+dy

if x**2+y**2<1:

n += 1

print 4*float(n)/NN

5 A tale of two (types of) days

In the fictitious City of Markovia - each day can only be either of two kinds -
either sunny or rainy! If today is sunny, the chance that tomorrow will be rainy
is 40%, which, of course means that the chance of tomorrow being sunny is 60%.
On the other hand, if today is rainy, then chances are even that tomorrow will
be either sunny or rainy. The question that we are trying to answer is : in the
long run, what is the chance that a given day will be rainy or sunny?

In such problems it helps to think in terms of ensembles. Imagine a universe
where you have millions and millions of copies of Markovia - identical cities in
which the same rules are going to play out over time. Physics would have been
a very costly affair, of course, if we really had to build this - but thoughts are
free, after all! The state of affairs in Markovia can be depicted by the picture on
the left below. The equations on the right are relevant for our multi-Markovia

ensemble. Here P
(n)
R and P

(n)
S denote the probabilities that an arbitrary city

in the ensemble has a rainy or a sunny n-th day, respectively. The equations
simply translates the diagram into maths! Such an equation that describes
how probabilities evolve at each step in a stochastic process is called a master
equation.

In case you find it a bit difficult to follow the equation, here’s a
cartoon version of the argument that can be used to understand it.
If the number of cities in our multi-Markovia ensemble is Nens, then
on the n-th day, the number of cities that will have a sunny day is

P
(n)
S Nens, while the rest, P

(n)
R Nens will have a rainy day (of course,

here we are making the sin of replacing the fraction of cities by the
probabilities - but, as you must be aware, this is not a bad thing to

4

do if the total numbers are huge, as we assume here). Out of the

P
(n)
S Nens which are having a sunny n-th day, 60%, or 0.6P

(n)
S Nens

will continue to have a sunny n+ 1-th day. On the other hand, half

of the other P
(n)
R Nens will also have a sunny n + 1-th day. So, the

total number of cities that will have a sunny n+ 1-th day is

0.6P
(n)
S Nens + 0.5P

(n)
S Nens

and so on ...

The code and results

The code below simulates the multi-Markovia ensemble. The array days stores
the state of a given day (1 codes for “sunny”, and 0 for “rainy”) in each of
the NN cities in the ensemble. The inner loop visits each city (actually, each
element of the array, and determines probabilistically if the state (sunny or
rainy) should be changed. The trailing end of the output of the code, which
shows the fraction of cities in multi-Markovia which are sunny on a given day
is shown alongside. Although here we have started with an ensemble where all
the cities have a sunny day to begin with, in the long run things seem to settle
down to a situation where about 55% of the cities are sunny on a given day.

import numpy as np

NN = 100000

Ndays = 1000

days = np.ones(NN,dtype="int")

for i in xrange(Ndays):

for j in xrange(NN):

r = np.random.rand()

day = days[j]

if day == 1 and r<0.4:

days[j] = 0

if day == 0 and r<0.5:

days[j] = 1

if i% 20 == 0:

print i,’\t’,float(sum(days))/NN

680 0.55554

700 0.55448

720 0.55439

740 0.55703

760 0.55663

780 0.5576

800 0.5546

820 0.55438

840 0.55712

860 0.55564

880 0.55533

900 0.55672

920 0.55539

940 0.55478

960 0.55498

980 0.55609

Note that we could have cheated and just used the master equation to see
how the probabilties evolve over time. A simple line of python like

P_r,P_s = 0.4*P_s+0.5*P_r,0.6*P_s+0.5*P_r

inside the loop would have sufficed.

5

6 Markov chains

Some simple math

The master equation for Markovian weather

P
(n+1)
S = 0.6P

(n)
S + 0.5P

(n)
R

P
(n+1)
R = 0.4P

(n)
S + 0.5P

(n)
R

can be re-written in the matrix form below :

P(n+1) = M P(n+1), P(n) ≡

(
P

(n)
S

P
(n)
R

)
, M ≡

(
0.6 0.5
0.4 0.5

)
This means that

P(n) = MnP(0)

and thus, the evolution of probabilities reduces to a problem of linear algebra!
Obviously, all the elements of M must be non-negative. that the ij element

of M is the conditional probability that given the system (in our example, the
weather in a given day in Markovia) is in state j (two choices in our example)
on the n-th day, it is in state i on the n+1-th. We often denote such “transition

probabilities” by Wi←j . We obviously must have
∑
i

Mij =
∑
i

Wi←j = 1, the

system must be in one of the states i on the n+1-th day! Matrices obeying this
condition are called Markovian matrices or stochastic matrices.

If M, which is a ν × ν matrix (for Markovia, ν is just 2 - but we are leaving
open scope for generalization here) has ν eigenvalues, λ1, λ2, . . . , λν correspond-
ing to the eigenvectors v1, v2, . . . , vν . Then we can expand the initial column
vector P(0) in the form1

P(0) = c1v1 + c2v2 + . . .+ cνvν

Since Mnvi = λni vi, we have

MnP(0) = c1λ
n
1 v1 + c2λ

n
2 v2 + . . .+ cνλ

n
νvν

If one of the eigenvalues, say λ1, is larger in magnitude than all the others, then
for large n we will have the first term on the left dominating the rest.

Now, it is obvious that the 1 × ν row vector (1, 1, . . . , 1) acted upon by M
from the right is a row vector whose j-th term is

∑
iMij = 1. So,

(1, 1, . . . , 1)M = (1, 1, . . . , 1) =⇒ MT

1
1
· · ·
1

 =

1
1
· · ·
1

1Note that we have made a simplifying assumption that M has a complete set of eigenvec-

tors - this is by no means guaranteed to happen!

6

Since a square matrix and its transpose has the same eigenvalues, it follows that
one of the eigenvalues of M must be 1.

Moreover, it is also easy to see that any eigenvalue of a Markov matrix
satisfies |λ| ≤ 1. To prove this, let v = (v1, v2, . . . , vν)

T
be the corresponding

eigenvector. Let vk be the element with the largest magnitude. Then λvk =∑
jMkjvj =⇒

|λ| |vk| =

∣∣∣∣∣∣
∑
j

Mkjvj

∣∣∣∣∣∣
≤

∑
j

|Mkj | |vj |

≤
∑
j

|Mkj | |vk|

≤

∑
j

|Mkj |

 |vk| = |vk|
Since an eigenvector must be non-null, |vk| > 0, which shows that |λ| ≤ 1.

The two results above seems to indicate that after a large number of steps,
the system will settle down to a steady state probabilty distribution - that
corresponding to the eigenvalue 1. There are some caveats, though. What we
had proven so far does not imply that all other eigenvalues (other than 1, that
is) have magnitudes less than 1. Again, we have not proved that the eigenvalue
of 1 is non-degenerate. Modulo these difficulties, it is usually true that the
probability distribution settles down to a steady vale in the long run.

If this happens, then the elements πi of limn→∞P(n) must obey

πi =
∑
j

Wi←jπj

Since
∑
jWj←i = 1, we have∑

j

Wj←iπi =
∑
j

Wi←jπj

This can always be satisfied if we demand detailed balance

Wj←iπi = Wi←jπj

Note that while this condition is not necessary for the system to achieve steady
state, it (along with a technical ciondition called ergodicity) is sufficient to
ensure that it does reach steady state. What is also really nice about this
principle is that if you need to sample states according to some probability
distribution {πi}, you can design a Markov chain that does that, by simply
chosing

Wj←i

Wi←j
=
πj
πi

7

The added bonus here is that we don’t need to know the actual probabilities -
only the relative probability will do! This is especially important in statistical
mechanics - because there we know the relative probability of two states as long
as we can determine their energies - while the actual value of the probabilities
may be very difficult to determine.

A famous Markov chain Monte Carlo algorithm - the Metropolis Algo-
rithm - ensures detailed balance by first proposing a new state at random, and
then accepting a proposed change i→ j with the probability

pi→j = min

[
1,
πj
πi

]
You can easily check that this method obeys detailed balance, while maximizing
the chance that a proposed change will be accepted.

8

