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Lagrange interpolation
Given n + 1 data points (x0, y0) , (x1, y1) , . . . (xn, yn), the Lagrange
polynomials are defined by

Li (x) =
(x − x0) . . . (x − xi−1) (x − xi+1) . . . (x − xn)

(xi − x0) . . . (xi − xi−1) (xi − xi+1) . . . (xi − xn)

These satisfy
Li (xj) = δij

Then, the interpolating polynomial between the data points is

pn (x) ≡
n∑

i=0

yiLi (x)

Note that we can write Li (x) in terms of the function
Ψn (x) ≡ (x − x0) . . . (x − xn) as

Li (x) =
Ψn (x)

(x − xi ) Ψ′n (xi )
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Lagrange interpolation
Error

Let f (x) be a function with at least n + 1 continuous derivatives.

Let pn (x) be the polynomial approximating f (x) by interpolating
between the points (xi , f (xi )) for i = 0, 1, . . . n.

How good is this approximation?

Let t ∈ R. Then ∃ξ ∈ It ≡ H{t, x0, . . . xn} :

f (t)− pn (t) =
(t − x0) . . . (t − xn)

(n + 1)!
f (n+1) (ξ)
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Lagrange interpolation
Error - proof

If t ∈ {x0, . . . , xn} the result is trivial!

So, let’s assume t /∈ {x0, . . . , xn}.
Define

Ψ (x) ≡ (x − x0) . . . (x − xn)

E (x)≡ f (x)− pn (x)

G (x) ≡ E (x)− Ψ (x)

Ψ (t)
E (t)

Obviously, Ψ (xi ) = E (xi ) = 0 for i = 0, 1, . . . n. Thus

G (xi ) = 0, i = 0, 1, . . . , n

and
G (t) = 0

Thus, G (x) has at least n + 2 distinct zeros in It .
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Lagrange interpolation
Error - proof

The Mean Value Theorem
If f (x) is defined and continuous on the interval [a, b] and differen-
tiable on (a, b), then there is at least one number c in the interval
(a, b) (that is a < c < b) such that

f ′ (c) =
f (b)− f (a)

b − a

The tangent to the curve of f (x) is parallel at at least one point
to the chord joining the endpoints (a, f (a)) and (b, f (b)).
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The Mean Value Theorem
If f (x) is defined and continuous on the interval [a, b] and differen-
tiable on (a, b), then there is at least one number c in the interval
(a, b) (that is a < c < b) such that

f ′ (c) =
f (b)− f (a)

b − a

There is at least one zero of f ′ (x) between two successive zeros
of f (x).



Lagrange interpolation
Error - proof

Ψ (x) ≡ (x − x0) . . . (x − xn)

E (x)≡ f (x)− pn (x)

G (x) ≡ E (x)− Ψ (x)

Ψ (t)
E (t)

G (x) has at least n + 2 distinct zeros in It .

G ′ (x) has at least n + 1 distinct zeros in this interval!
G (j) (x) has at least n + 2− j distinct zeros in It !
G (n+1) (x) has at least one!
Let ξ be a zero of G (n+1) (x) in It .

Now, E (n+1) (x) = f (n+1) (x)and Ψ(n+1) (x) = (n + 1)!

0 = G (n+1) (ξ) = f (n+1) (ξ)− (n + 1)!

Ψ (t)
E (t)
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Lagrange interpolation
Error - estimate

Let us now estimate the error for equally spaced datapoints.

Let us use the notation cn+1 = Max t∈I
∣∣f (n+1) (t)

∣∣
I n = 1 : Linear interpolation

E (t) = (t−x0)(t−x1)
2! f ′′ (ξ) =⇒ |E (t)| ≤ h2

8 c2

I n = 2 :

E (t) = (t−x0)(t−x1)(t−x2)
2! f ′′′ (ξ) =⇒ |E (t)| ≤

√
3 h3

27 c3
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Lagrange interpolation
Error - warning!!

Higher order interpolation is bad near the edges!

Ψ6 (x) for equally spaced points −3,−2, . . . , 2, 3



Newton interpolation
Another look

Let’s say we have a n − 1 th order polynomial pn−1 (x)
interpolating a function f (x) at the n points x0, x1, . . . , xn−1.

How can we get pn (x) - the interpolating polynomial if we add one
more interpolation point xn?
We are seeking a n-th order correction polynomial C (x)

pn (x) = pn−1 (x) + C (x)

Now C (xi ) = pn (xi )− pn−1 (xi ) = 0 for all i = 0, 1, . . . n − 1.

C (x) = an (x − x0) . . . (x − xn−1)

Since pn (xn) = f (xn), we have

f (xn) = pn−1 (xn) + an (xn − x0) . . . (xn − xn−1)

Which gives us an ≡ f [x0, x1, . . . , xn]



Newton interpolation
Another look

Let’s say we have a n − 1 th order polynomial pn−1 (x)
interpolating a function f (x) at the n points x0, x1, . . . , xn−1.
How can we get pn (x) - the interpolating polynomial if we add one
more interpolation point xn?

We are seeking a n-th order correction polynomial C (x)

pn (x) = pn−1 (x) + C (x)

Now C (xi ) = pn (xi )− pn−1 (xi ) = 0 for all i = 0, 1, . . . n − 1.

C (x) = an (x − x0) . . . (x − xn−1)

Since pn (xn) = f (xn), we have

f (xn) = pn−1 (xn) + an (xn − x0) . . . (xn − xn−1)

Which gives us an ≡ f [x0, x1, . . . , xn]



Newton interpolation
Another look

Let’s say we have a n − 1 th order polynomial pn−1 (x)
interpolating a function f (x) at the n points x0, x1, . . . , xn−1.
How can we get pn (x) - the interpolating polynomial if we add one
more interpolation point xn?
We are seeking a n-th order correction polynomial C (x)

pn (x) = pn−1 (x) + C (x)

Now C (xi ) = pn (xi )− pn−1 (xi ) = 0 for all i = 0, 1, . . . n − 1.

C (x) = an (x − x0) . . . (x − xn−1)

Since pn (xn) = f (xn), we have

f (xn) = pn−1 (xn) + an (xn − x0) . . . (xn − xn−1)

Which gives us an ≡ f [x0, x1, . . . , xn]



Newton interpolation
Another look

Let’s say we have a n − 1 th order polynomial pn−1 (x)
interpolating a function f (x) at the n points x0, x1, . . . , xn−1.
How can we get pn (x) - the interpolating polynomial if we add one
more interpolation point xn?
We are seeking a n-th order correction polynomial C (x)

pn (x) = pn−1 (x) + C (x)

Now C (xi ) = pn (xi )− pn−1 (xi ) = 0 for all i = 0, 1, . . . n − 1.

C (x) = an (x − x0) . . . (x − xn−1)

Since pn (xn) = f (xn), we have

f (xn) = pn−1 (xn) + an (xn − x0) . . . (xn − xn−1)

Which gives us an ≡ f [x0, x1, . . . , xn]



Newton interpolation
Another look

Let’s say we have a n − 1 th order polynomial pn−1 (x)
interpolating a function f (x) at the n points x0, x1, . . . , xn−1.
How can we get pn (x) - the interpolating polynomial if we add one
more interpolation point xn?
We are seeking a n-th order correction polynomial C (x)

pn (x) = pn−1 (x) + C (x)

Now C (xi ) = pn (xi )− pn−1 (xi ) = 0 for all i = 0, 1, . . . n − 1.

C (x) = an (x − x0) . . . (x − xn−1)

Since pn (xn) = f (xn), we have

f (xn) = pn−1 (xn) + an (xn − x0) . . . (xn − xn−1)

Which gives us an ≡ f [x0, x1, . . . , xn]



Newton interpolation
Another look

Let’s say we have a n − 1 th order polynomial pn−1 (x)
interpolating a function f (x) at the n points x0, x1, . . . , xn−1.
How can we get pn (x) - the interpolating polynomial if we add one
more interpolation point xn?
We are seeking a n-th order correction polynomial C (x)

pn (x) = pn−1 (x) + C (x)

Now C (xi ) = pn (xi )− pn−1 (xi ) = 0 for all i = 0, 1, . . . n − 1.

C (x) = an (x − x0) . . . (x − xn−1)

Since pn (xn) = f (xn), we have

f (xn) = pn−1 (xn) + an (xn − x0) . . . (xn − xn−1)

Which gives us an ≡ f [x0, x1, . . . , xn]



Newton interpolation
Another look

Let’s say we have a n − 1 th order polynomial pn−1 (x)
interpolating a function f (x) at the n points x0, x1, . . . , xn−1.
How can we get pn (x) - the interpolating polynomial if we add one
more interpolation point xn?
We are seeking a n-th order correction polynomial C (x)

pn (x) = pn−1 (x) + C (x)

Now C (xi ) = pn (xi )− pn−1 (xi ) = 0 for all i = 0, 1, . . . n − 1.

C (x) = an (x − x0) . . . (x − xn−1)

Since pn (xn) = f (xn), we have

f (xn) = pn−1 (xn) + an (xn − x0) . . . (xn − xn−1)

Which gives us an ≡ f [x0, x1, . . . , xn]



Newton interpolation
Another look

f [x0, x1, . . . , xn] =
f (xn)− pn−1 (xn)

(xn − x0) . . . (xn − xn−1)

Alternatively, note that an is the coefficient of xn in pn (x).
We already know that

pn (x) =
n∑

i=0

Ψn (x)

(x − xi ) Ψ′n (xi )
f (xi )

Thus

f [x0, x1, . . . , xn] =
n∑

i=0

f (xi )

Ψ′n (xi )

Which shows that f [x0, x1, . . . , xn] is invariant under a
permutation of the nodes x0, x1, . . . , xn.
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Which shows that f [x0, x1, . . . , xn] is invariant under a
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Newton interpolation
Another look

We can use this to derive (HW!!!)

f [x0, x1, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0

which is why this is called the divided difference!

Another form (Hermite-Genocchi) - assuming the function f is n
times continuously differentiable

f [x0, x1, . . . , xn] =

∫
. . .

∫
f (n) (t0x0 + . . .+ tnxn) dt1 . . . dtn

where t0 + . . .+ tn = 1 and the integration is over the region
τ = {(t1, . . . , tn) | ti ≥ 0,

∑n
i=1 ti ≤ 1}
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Newton interpolation
Error

Let t ∈ R be distinct from the nodes x0, . . . xn used to define an
interpolating polynomial pn (x).

Consider an interpolating polynomial pn+1 (x) that has x0, . . . , xn, t
as nodes.

pn+1 (x) = pn (x) + (x − x0) . . . (x − xn) f [x0, . . . , xn, t]

Since pn+1 (t) = f (t), we have

f (t)− pn (t) = (t − x0) . . . (t − xn) f [x0, . . . , xn, t]

Comparing with f (t)− pn (t) = Ψn (t)
f (n+1) (ξ)

(n + 1)!
, we get

f [x0, . . . , xn, t] =
f (n+1) (ξ)

(n + 1)!
, for some ξ ∈ H{x0, . . . , xn, t}



Newton interpolation
Error

Let t ∈ R be distinct from the nodes x0, . . . xn used to define an
interpolating polynomial pn (x).
Consider an interpolating polynomial pn+1 (x) that has x0, . . . , xn, t
as nodes.

pn+1 (x) = pn (x) + (x − x0) . . . (x − xn) f [x0, . . . , xn, t]

Since pn+1 (t) = f (t), we have

f (t)− pn (t) = (t − x0) . . . (t − xn) f [x0, . . . , xn, t]

Comparing with f (t)− pn (t) = Ψn (t)
f (n+1) (ξ)

(n + 1)!
, we get

f [x0, . . . , xn, t] =
f (n+1) (ξ)

(n + 1)!
, for some ξ ∈ H{x0, . . . , xn, t}



Newton interpolation
Error

Let t ∈ R be distinct from the nodes x0, . . . xn used to define an
interpolating polynomial pn (x).
Consider an interpolating polynomial pn+1 (x) that has x0, . . . , xn, t
as nodes.

pn+1 (x) = pn (x) + (x − x0) . . . (x − xn) f [x0, . . . , xn, t]

Since pn+1 (t) = f (t), we have

f (t)− pn (t) = (t − x0) . . . (t − xn) f [x0, . . . , xn, t]

Comparing with f (t)− pn (t) = Ψn (t)
f (n+1) (ξ)

(n + 1)!
, we get

f [x0, . . . , xn, t] =
f (n+1) (ξ)

(n + 1)!
, for some ξ ∈ H{x0, . . . , xn, t}



Newton interpolation
Error

Let t ∈ R be distinct from the nodes x0, . . . xn used to define an
interpolating polynomial pn (x).
Consider an interpolating polynomial pn+1 (x) that has x0, . . . , xn, t
as nodes.

pn+1 (x) = pn (x) + (x − x0) . . . (x − xn) f [x0, . . . , xn, t]

Since pn+1 (t) = f (t), we have

f (t)− pn (t) = (t − x0) . . . (t − xn) f [x0, . . . , xn, t]

Comparing with f (t)− pn (t) = Ψn (t)
f (n+1) (ξ)

(n + 1)!
, we get

f [x0, . . . , xn, t] =
f (n+1) (ξ)

(n + 1)!
, for some ξ ∈ H{x0, . . . , xn, t}



Newton interpolation
Error

Let t ∈ R be distinct from the nodes x0, . . . xn used to define an
interpolating polynomial pn (x).
Consider an interpolating polynomial pn+1 (x) that has x0, . . . , xn, t
as nodes.

pn+1 (x) = pn (x) + (x − x0) . . . (x − xn) f [x0, . . . , xn, t]

Since pn+1 (t) = f (t), we have

f (t)− pn (t) = (t − x0) . . . (t − xn) f [x0, . . . , xn, t]

Comparing with f (t)− pn (t) = Ψn (t)
f (n+1) (ξ)

(n + 1)!
, we get

f [x0, . . . , xn, t] =
f (n+1) (ξ)

(n + 1)!
, for some ξ ∈ H{x0, . . . , xn, t}



Newton-Cotes integration

To calculate
∫ b
a f (x) dx numerically, we can approximate the

function f (x) in (a, b) by an interpolating polynomial pn (x) and
estimate ∫ b

a
f (x) dx =

∫ b

a
pn (x) dx + E ≈

∫ b

a
pn (x) dx

We usually take the nodes to be an evenly spaced set of n + 1
points

x0 = a, x1 = a + h, . . . , xj = a + jh, . . . , xn = b

where h =
b − a

n
.
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Newton-Cotes integration
n = 1 - the Trapezoidal rule

f (x) ≈ f (a)
x − b

a− b
+ f (b)

x − a

b − a

∫ b

a
f (x) dx ≈

∫ b

a

[
f (a)

x − b

a− b
+ f (b)

x − a

b − a

]
dx

Using
∫ b
a (x − a) dx =

(b − a)2

2
= −

∫ b
a (x − b) dx , we get

∫ b

a
f (x) dx ≈ b − a

2
[f (a) + f (b)]
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Newton-Cotes integration
Trapezoidal rule - Error estimate

f (x) = f (a)
x − b

a− b
+ f (b)

x − a

b − a
+ (x − a) (x − b) f [a, b, x ]

So, the error is

E =

∫ b

a
(x − a) (x − b) f [a, b, x ] dx

To evaluate the integral we use the
Integral Mean Value Theorem
Let w (x) be non-negative and integrable on [a, b] , and let f (x)
be continuous on [a, b] .Then ∃ξ ∈ (a, b) :∫ b

a
w (x) f (x) dx = f (ξ)

∫ b

a
w (x) dx
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Newton-Cotes integration
Trapezoidal rule - Error estimate

E = f [a, b, ξ]

∫ b

a
(x − a) (x − b) dx

E =

[
1

2
f ′′ (η)

][
−(b − a)3

6

]
= −(b − a)3

12
f ′′ (η) for some η ∈ (a, b)

The error is not very small for large intervals - which is why we use
the Composite version!
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Newton-Cotes integration
Composite Trapezoidal rule - Error estimate

For the n interval composite trapezoidal rule, the error is

En = −h3

12

n−1∑
i=0

f ′′ (ηi ) ηi ∈ (a + ih, a + ih + h)

E = −b − a

12
h2

[
1

n

n−1∑
i=0

f ′′ (ηi )

]
= −b − a

12
h2f ′′ (η)

Since

lim
n→∞

En

h2
= − 1

12
lim
n→∞

[
h
n−1∑
i=0

f ′′ (ηi )

]
= − 1

12

[
f ′ (b)− f ′ (a)

]
For large n, we can estimate

En ≈ −
h2

12

[
f ′ (b)− f ′ (a)

]
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Newton-Cotes integration
Simpson’s 1/3rd rule

We can use a quadratic polynomial interpolating f (x) in [a, b].

The integral works out to be

I2 =
h

3

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
, h =

b − a

2

The error is given by

E2 =

∫ b

a
(x − a) (x − b) (x − c) f [a, b, c, x ] dx , c =

a + b

2

We can’t use the IMVT directly since (x − a) (x − b) (x − c) is not
positive definite in [a, b]
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Newton-Cotes integration
Simpson’s 1/3rd rule

We can use w (x) =
∫ x
a (t − a) (t − b) (t − c) dt

, which obeys

w (a) = w (b) = 0, w (x) > 0 for x ∈ (a, b)

Integrating by parts

E2 =

∫ b

a
w ′ (x) f [a, b, c, x ] dx = −

∫ b

a
w (x) f [a, b, c, x , x ] dx

Now we can use IMVT to determine

E2 = −f [a, b, c, ξ, ξ]

∫ b

a
w (x) dx for some ξ ∈ (a, b)

leading to

E2 = −h5

90
f (4) (η) for some η ∈ (a, b)
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Hermite interpolation

Sometimes, we need to interpolate both values and derivatives!

We are seeking a 2n − 1degree polynomial satisfying

p (xi ) = yi , p′ (xi ) = y ′i , i = 1, 2, . . . , n

We need to find 2n polynomials h1, . . . hn, h̃1, . . . h̃n, each of degree
2n − 1 satisfying

hi (xj) = δij , h′i (xj) = 0

and
h̃i (xj) = 0, h̃′i (xj) = δij

Then

Hn (x) =
n∑

i=1

[
yihi (x) + y ′i h̃i (x)

]
is the Hermite interpolating polynomial.
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Hermite interpolation
We already have a set on n − 1 degree polynomials Li (x) that
satisfy Li (xj) = δij .

Let us try the 2n − 1 degree polynomial

h̃i (x) = (ax + b) [Li (x)]2

Then
h̃′i (x) = a [Li (x)]2 + 2 (ax + b) L′i (x) Ll (x)

Demanding h̃i (xj) = 0 leads to

axi + b = 0

Demanding h̃′i (xj) = δij leads to

a + 2 (ax + b) L′i (xi ) = 1

This leads to
h̃i (x) = (x − xi ) [Li (x)]2

Similarly
hi (x) =

(
1− 2L′i (xi ) (x − xi )

)
[Li (x)]2
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Hermite interpolation
Uniqueness

Let Gn (x) be another polynomial of degree 2n − 1 that
interpolates the same values and derivatives.

Consider R (x) = Gn (x)− Hn (x)

Then R (x) is at most of degree 2n − 1

But it must have double roots at x1, . . . , xn(Since
R (xi ) = R ′ (xi ) = 0)

Thus R (x)must be identically zero!

The error can be shown to be

f (x)− Hn (x) = [Ψn (x)]2
f (2n) (x)

(2n)!
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Gauss quadrature

Recall that the Gauss quadrature formula is∫ 1

−1
f (x) dx ≈

n∑
i=1

wi f (xi )

where the freedom of choice of the n weights wi and the n nodes
xi is expolited to get an expression that is correct for all
polynomials up to degree 2n − 1.

As we have already seen, in principle we can find the wi and xi
from the 2n equations

n∑
i=1

wix
j
i =

{
0 for j = 1, 3, . . . , 2n − 1
2

j+1 for j = 2, 4, . . . , 2n − 2

This is a set of non-linear equations - not only are they difficult to
solve, the existence of solutions for general n is not even clear a
priori.
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