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Lagrange interpolation
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These satisfy
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Lagrange interpolation
Given n+ 1 data points (xo, y0), (x1,¥1) ;- .- (Xn, ¥n), the Lagrange
polynomials are defined by
]  (x=x0) . (x = x1) (X = Xig1) oo (X = xn)
i(x) =
(xi —x0) .- (xi = xi—1) (Xi = Xi1) - .. (Xi — Xn)

These satisfy
Li () = i

Then, the interpolating polynomial between the data points is
n
Pn (x) = Z yiLi (x)
i=0

Note that we can write L; (x) in terms of the function
V,(x)=(x—xp)...(x—xp) as
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Lagrange interpolation

Error

Let f (x) be a function with at least n + 1 continuous derivatives.
Let p, (x) be the polynomial approximating f (x) by interpolating
between the points (x;, f (x;)) for i =0,1,...n.

How good is this approximation?

Let t € R. Then 3¢ € Iy = H{t,x0,...Xn} :

F() — p (1) = L2 XE)B, .+..1()t! %) (n41) ()
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Lagrange interpolation
Error - proof
If t € {x0,...,Xn} the result is trivial!

So, let's assume t ¢ {xo,...,Xn}.
Define

Obviously, ¥ (x;) = E(x;) =0 for i =0,1,...n. Thus
G(x;) =0, i=0,1,...,n

and
G(t)=0

Thus, G (x) has at least n + 2 distinct zeros in ;.



Lagrange interpolation

Error - proof

The Mean Value Theorem

If f(x) is defined and continuous on the interval [a, b] and differen-
tiable on (a, b), then there is at least one number ¢ in the interval
(a, b) (that is a < ¢ < b) such that

f(b)—f(a)
b—a

f'(c) =

The tangent to the curve of f (x) is parallel at at least one point
to the chord joining the endpoints (a, f (a)) and (b, f (b)).




Lagrange interpolation

Error - proof

The Mean Value Theorem

If f(x) is defined and continuous on the interval [a, b] and differen-
tiable on (a, b), then there is at least one number c in the interval
(a, b) (that is a < ¢ < b) such that

f(b)—f(a)
b—a

f'(c) =

There is at least one zero of f'(x) between two successive zeros
of f(x).




Lagrange interpolation

Error - proof

V(x)=(x—x0)...(x —xn)

E (x)=f(x) — pn(x
GMEEM—ﬁgEm

G (x) has at least n + 2 distinct zeros in I;.
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Error - proof

V(x) = (x = x0) - (x = xn)
E(x)=f(x) = pn(x)
)

G()=E() - ‘jj((j))f(r)

G (x) has at least n + 2 distinct zeros in /;.
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Now, E("1D) (x) = f(n+1) (x)
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Lagrange interpolation

Error - proof

V(x) = (x = x0) - (x = xn)
E(x)=f(x) = pn(x)
)

G()=E() - ‘jj((f))f(n

G (x) has at least n + 2 distinct zeros in /;.

G’ (x) has at least n+ 1 distinct zeros in this interval!
GU) (x) has at least n+ 2 — j distinct zeros in /!
G("1) (x) has at least one!

Let & be a zero of G(™1) (x) in /.

Now, E(*D) (x) = F("+1) (x)and WD) (x) = (n +1)!

(n+1)!

0= GO =" O -y

E(t)
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Let us now estimate the error for equally spaced datapoints.
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» n=1: Linear interpolation
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Lagrange interpolation

Error - estimate

Let us now estimate the error for equally spaced datapoints.

Let us use the notation ¢,y 1 = Max ¢/ ‘f(”“) (1)]

» n=1: Linear interpolation
E(t) = C2f=lpr(e) — |E (1) < o

> n=2:

E(r) = Cellpnllnl () — |E ()] < Bes



Lagrange interpolation

Error - warning!!

Higher order interpolation is bad near the edges!
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Newton interpolation
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Another look
Let's say we have a n — 1 th order polynomial p,_1 (x)
interpolating a function f (x) at the n points xg, X1, . .., Xp—1-
How can we get p, (x) - the interpolating polynomial if we add one
more interpolation point x,?
We are seeking a n-th order correction polynomial C (x)

P (%) = pa-1 (x) + € (x)
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Newton interpolation

Another look
Let's say we have a n — 1 th order polynomial p,_1 (x)
interpolating a function f (x) at the n points xg, X1, . .., Xp—1-
How can we get p, (x) - the interpolating polynomial if we add one
more interpolation point x,?
We are seeking a n-th order correction polynomial C (x)

P (%) = pa-1 (x) + € (x)

Now C (xi) = pn (xi) — pn—1(x;) =0 forall i =0,1,...n— 1.
C(x) =an(x—x0)...(x—xn-1)
Since pp (xn) = f (xn), we have
f (Xa) = Pn—1(Xn) + an (Xa — x0) - . . (Xn — Xn—1)

Which gives us a, = f [xo, X1, - - -, Xn]



Newton interpolation
Another look

f (Xn) — Pn—-1 (Xn)

f X =
[X(),Xl, » X ] (Xn — XO) - (Xn —anl)
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flx0, X1,y Xn] = (

Alternatively, note that a, is the coefficient of x” in p, (x).
We already know that

Po0) =3 (Al ()

Thus




Newton interpolation
Another look

f (Xn) — Pn—1 (Xn)

Xn —X0) « - (Xn — Xp—1)

flx0, X1,y Xn] = (

Alternatively, note that a, is the coefficient of x” in p, (x).
We already know that

Po0) =3 (Al ()

i=0
Thus
n f (X,')
f [X07X1a s aXn] = ZO \U/n (Xi)
Which shows that f [xo, X1, . .., Xp| is invariant under a

permutation of the nodes xp, x1, ..., Xn.



Newton interpolation
Another look

We can use this to derive (HW!!!)

flxi,. ., xn] — f[x0,---, Xn—1]

X0y X1,y Xn] = PR
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which is why this is called the divided difference!



Newton interpolation
Another look

We can use this to derive (HW!!!)

fxi,...,xn] — f[x0,-.-,Xn-1]

fx0, X1,y %Xn] = o
n

which is why this is called the divided difference!

Another form (Hermite-Genocchi) - assuming the function f is n
times continuously differentiable

f[xo,xl,...,x,,]—/.../ F) (toxo + . . . + toxn) dt1 ... dt,

where tg + ...+ t, = 1 and the integration is over the region
T={(tr,...,ts) |[t; >0, > " t; <1}
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Newton interpolation

Error
Let t € R be distinct from the nodes xg, . .. x, used to define an
interpolating polynomial p, (x).
Consider an interpolating polynomial p,11 (x) that has xp, ..., xp, t
as nodes.

Pnt1 (X) = pn(X) + (x = x0) ... (x = xn)  [x0, - - - , Xn, t]

Since pp11 (t) = f(t), we have
f(t)—pn(t)=(t—x0)...(t —xn)f[x0,---,Xn,t]

s (6)

Comparing with f (t) — p, (t) = Y, (t) m

, we get

for some £ € H {xo,...,Xn, t}



Newton-Cotes integration

To calculate fab f (x) dx numerically, we can approximate the
function f (x) in (a, b) by an interpolating polynomial p, (x) and

estimate
b b b
/ f(x)dX:/ p,,(x)dx+E%/ pn (x) dx



Newton-Cotes integration

To calculate fab f (x) dx numerically, we can approximate the
function f (x) in (a, b) by an interpolating polynomial p, (x) and
estimate

/abf(X)dxz/abpn(x)danEz/abpn(X)dX

We usually take the nodes to be an evenly spaced set of n+ 1
points

xo=a,xx=a+h,....x;=a+jh....x,=b

where h = b—a.

n



Newton-Cotes integration

n =1 - the Trapezoidal rule

f(x)%f(a)a

X —

b




Newton-Cotes integration

n =1 - the Trapezoidal rule

X —a
f
(b) ,—,
x—b X —a
" f(b)bi



Newton-Cotes integration

n =1 - the Trapezoidal rule

/abf(X)dx%/ab [f(a):_z+f(b)z_z dx

Ry
Using fab(x—a)dx: (b 23) :—fab(x—b)dx, we get

b —
/ f (x) dx ~ b2 2[F (a) + £ (b)]



Newton-Cotes integration

Trapezoidal rule - Error estimate

x—b X —a
f(b
a—b+ ()b—a

f(x)="7(a) + (x —a)(x—b)f[a,b,x]



Newton-Cotes integration

Trapezoidal rule - Error estimate

x—b X —a

a—b+f(b)b—a

f(x)="(a) +(x —a)(x —b)fa,b,x]

So, the error is

b
E:/a (x —a)(x —b) f[a, b, x] dx



Newton-Cotes integration

Trapezoidal rule - Error estimate

x—b X —a

—i—f(b)b_a

+ (x—a)(x—b)f[a,b,x]

So, the error is

b
E:/a (x —a)(x —b) f[a, b, x] dx

To evaluate the integral we use the

Integral Mean Value Theorem
Let w (x) be non-negative and integrable on [a, b] , and let f (x)
be continuous on [a, b] .Then 3¢ € (a, b) :

/abw(x)f(x)dxzf(g)/abw(xwx




Newton-Cotes integration

Trapezoidal rule - Error estimate

b
E:f[a,b,f]/ (x —a)(x — b) dx



Newton-Cotes integration

Trapezoidal rule - Error estimate

b
E:f[a,b,g]/ (x —a) (x — b) dx

e- o [52



Newton-Cotes integration

Trapezoidal rule - Error estimate

b
E:f[a,b,g]/ (x —a)(x — b)dx

_ )3 _ )3
E— Bfﬁ (77)] [_(b6)] — (b 12 ) " (n) for some n € (a, b)



Newton-Cotes integration

Trapezoidal rule - Error estimate

b
E:)‘[a,b,g]/a (x —a) (x — b) dx

_ )3 _ )3
E— Bfﬁ (77)] [_([76)] — (b 12 ) " (n) for some n € (a, b)

The error is not very small for large intervals



Newton-Cotes integration

Trapezoidal rule - Error estimate

b
E:)’[a,b,g]/a (x —a) (x — b) dx

_ )3 _ )3
E— Bfﬁ (77)] [_([76)] — (b 12 ) " (n) for some n € (a, b)

The error is not very small for large intervals - which is why we use
the Composite version!



Newton-Cotes integration
Composite Trapezoidal rule - Error estimate
For the n interval composite trapezoidal rule, the error is

h3n71 , . .
E":_DZ;f (ni) n;i € (a+ ih,a+ ih+ h)



Newton-Cotes integration
Composite Trapezoidal rule - Error estimate
For the n interval composite trapezoidal rule, the error is

h3 n—1 , . .
En:—m;f (mi) ni € (a+ih,a+ ih+ h)

E=-—

b—a 2|1 - 1"
o > (mi)
i=0



Newton-Cotes integration
Composite Trapezoidal rule - Error estimate
For the n interval composite trapezoidal rule, the error is

h3 n—1 , . .
En:—m;f (mi) ni € (a+ih,a+ ih+ h)

E=-—

b—a 2 ]-n_l 1 b—a 21
o " ;Zf )| === b ()
i=0



Newton-Cotes integration
Composite Trapezoidal rule - Error estimate
For the n interval composite trapezoidal rule, the error is

h3n1

E,=— 12 f”(n,) ni € (a+ih,a+ ih+ h)

b—a 2 ]-n_l " b—a 2 ¢t
E=-——5h ;Zf )| === b ()

i=0
Since

E, "
i = [ )



Newton-Cotes integration

Composite Trapezoidal rule - Error estimate
For the n interval composite trapezoidal rule, the error is
p
h3 n—1
E,=— 12 " (i) ni € (a+ih,a+ ih+ h)
=0

b—a 2 ]-n_l " b—a 2 ¢t
E=-——5h ;Zf )| === b ()
Py

Since

En_ // _ 1 ! g
i = 10| = - )



Newton-Cotes integration
Composite Trapezoidal rule - Error estimate
For the n interval composite trapezoidal rule, the error is

h3n1

En = f// (771)

12 € (a+ih,a+ih+ h)

i=0

b—a 1 b—a
E = — — h2 _ f// ; — — h2fl/
12 [n > )] 7 )
Since
E, _ // 1., /
i = 10| = - )
For large n, we can estimate

h2

Enm =15 [ (B) = F(3)]
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Simpson’s 1/3rd rule

We can use a quadratic polynomial interpolating f (x) in [a, b].
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b
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We can use a quadratic polynomial interpolating f (x) in [a, b].
The integral works out to be
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The error is given by

a+b
2

b
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We can't use the IMVT directly since (x — a) (x — b) (x — ¢) is not
positive definite in [a, b]



Newton-Cotes integration
Simpson’s 1/3rd rule

We can use a quadratic polynomial interpolating f (x) in [a, b].
The integral works out to be

lg—g[f(a)+4f(a—~2_b)+f(b)y . b;a

The error is given by

a+b
2

b
E2:/ (x —a)(x—=b)(x—c)f]a,b,c,x]dx, c=

We can't use the IMVT directly since (x — a) (x — b) (x — ¢) is not
positive definite in [a, b]
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Newton-Cotes integration
Simpson’s 1/3rd rule
We can use w (x) = [~ (t — a)(t — b) (t — c) dt, which obeys
w(a) =w(b) =0, w (x) > 0 for x € (a, b)
Integrating by parts
b b
E, = / w’ (x) f [a, b, c,x] dx = —/ w (x) f[a, b, c, x, x] dx
a a
Now we can use IMVT to determine
b
E, = —fa, b, c,§,§]/ w (x) dx for some £ € (a, b)
a

leading to

h5
E, = f%f(df) (n) for some 1 € (a, b)
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Hermite interpolation

Sometimes, we need to interpolate both values and derivatives!
We are seeking a 2n — ldegree polynomial satisfying

P(Xi):)/i, p,(Xi):yl{a i:1>27"'7n

We need to find 2n polynomials hy, ... hy, 711, ... h,, each of degree
2n — 1 satisfying

and

Then
Hn () = S [yibi (x) + yihi ()]
i=1
is the Hermite interpolating polynomial.
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Hermite interpolation

We already have a set on n — 1 degree polynomials L; (x) that
satisfy L;j(x;) = d;. Let us try the 2n — 1 degree polynomial

hi (x) = (ax + b) [L; (X))

Then 3
o (x) = a[Li (x)]> + 2 (ax + b) L: (x) Ly (x)

Demanding h; (x;) = 0 leads to
axi+b=20
Demanding A’ (x;) = &; leads to
a+2(ax+b)Li(x)=1

This leads to
hi (x) = (x = %) [Li (x))?
Similarly
hi (x) = (1= 2L} () (x = X)) [Li (<))
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Hermite interpolation

Uniqueness

Let G, (x) be another polynomial of degree 2n — 1 that
interpolates the same values and derivatives.

Consider R (x) = G (x) — Hp (x)
Then R (x) is at most of degree 2n — 1

But it must have double roots at xi, ..., x,(Since
R(xi) = R'(xi) = 0)

Thus R (x)must be identically zero!

The error can be shown to be
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Gauss quadrature

Recall that the Gauss quadrature formula is

1 n
/ f(x)dx~ Z w;f (x;)
-1 i=1

where the freedom of choice of the n weights w; and the n nodes
X; is expolited to get an expression that is correct for all
polynomials up to degree 2n — 1.

As we have already seen, in principle we can find the w; and x;
from the 2n equations
forj=1,3,...,2n—1
Z Wixi =4 5
= forJ:2,4,...,2n—2

J+1

This is a set of non-linear equations - not only are they difficult to
solve, the existence of solutions for general n is not even clear a
priori.



Gauss quadrature



