
The math behind the methods
and some madness...

part 2

Ananda Dasgupta

PH3105, Autumn Semester 2017



Orthogonal Polynomials
Weight functions

Let w (x) be a non-negative function on the interval (a, b).

We
assume further that

1. The integral

∫ b

a
w (x) |x |n dx exists and is finite for all n ≥ 0.

2. If

∫ b

a
w (x) g (x) dx = 0 for some non-negative g (x), then

g (x) = 0.

Such a function is called a weight function.
Examples

1. w (x) = 1, a ≤ x ≤ b

2. w (x) =
1√

1− x2
, −1 ≤ x ≤ 1

3. w (x) = e−x , 0 ≤ x ≤ ∞
4. w (x) = e−x

2
, −∞ ≤ x ≤ ∞
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Orthogonal Polynomials
Inner product

Given a weight function on (a, b) we can define the inner product
of f , g ∈ C [a, b] by

(f , g) ≡
∫ b

a
w (x) f (x) g (x) dx

The inner product obeys

1. (f , g) = (g , f )

2. For all scalars α1 and α2 ,
(a1f1 + α2f2, g) = α1 (f1, g) + α2 (f2, g)

3. (f , f ) ≥ 0 for all f ∈ C [a, b]
and (f , f ) = 0 iff f (x) = 0, a ≤ x ≤ b.
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Orthogonal Polynomials
Inner product

We define the Euclidean norm (or the 2-norm) by

||f ||2 ≡

√∫ b

a
w (x) [f (x)]2 dx =

√
(f , f )

This obviously obeys the properties

I ||f ||2 = 0 iff f (x) = 0 in (a, b)

I ||αf ||2 = |α| ||f ||2 for all scalars α

The Cauchy-Scwarz inequality

∀f , g ∈ C [a, b] , |(f , g)| ≤ ||f ||2 ||g ||2

allows us to show that the Euclidean norm obeys the triangle
inequality

||f + g ||2 ≤ ||f ||2 + ||g ||2
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Orthogonal Polynomials
We say that two functions f , g ∈ C [a, b] are orthogonal if

(f , g) = 0

Theorem
(Gram-Schmidt) There exists a sequence of polynomials
{φn (x) |n ≥ 0} with degree (φn) = n, for all n and

(φn, φm) = 0 ∀n 6= m, n,m ≥ 0

In addition, we can impose the following properties:
(i) (φn, φn) = 1, for all n;
(ii) the coefficient of xn in φn (x) is positive
- which will make the sequence unique.

For w (x) = 1 on (−1, 1) we can find

φ0 (x) =

√
1

2
, φ1 (x) =

√
3

2
x , φ2 (x) =

√
5

2

1

2

(
3x2 − 1

)
, . . .
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Orthogonal Polynomials
Legendre polynomials

For w (x) = 1 on (−1, 1) define

Pn (x) =
1

2nn!

dn

dxn

[(
x2 − 1

)n]

Then ∫ +1

−1
Pn (x) Pm (x) dx = 0 ∀n 6= m

and Pn (1) = 1.

(Pn,Pn) =
2

2n + 1

φn (x) =

√
2n + 1

2
Pn (x)
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Orthogonal Polynomials
Chebyshev polynomials

Let w (x) =
1√

1− x2
, −1 ≤ x ≤ 1

Tn (x) = cos
(
n cos−1 x

)
, n ≥ 0

From cos (A± B) = cos A cos B ∓ sin A sin B we can show that

Tn+1 (x) = 2xTn (x)− Tn−1 (x) , n ≥ 1

T0 (x) ≡ 1, T1 (x) = x

T2 (x) = 2x2 − 1, T3 (x) = 4x3 − 3x

(Tn,Tm) =


0 n 6= m

π m = n = 0
π

2
m = n > 0



Orthogonal Polynomials
Chebyshev polynomials

Let w (x) =
1√

1− x2
, −1 ≤ x ≤ 1

Tn (x) = cos
(
n cos−1 x

)
, n ≥ 0

From cos (A± B) = cos A cos B ∓ sin A sin B we can show that

Tn+1 (x) = 2xTn (x)− Tn−1 (x) , n ≥ 1

T0 (x) ≡ 1, T1 (x) = x

T2 (x) = 2x2 − 1, T3 (x) = 4x3 − 3x

(Tn,Tm) =


0 n 6= m

π m = n = 0
π

2
m = n > 0



Orthogonal Polynomials
Chebyshev polynomials

Let w (x) =
1√

1− x2
, −1 ≤ x ≤ 1

Tn (x) = cos
(
n cos−1 x

)
, n ≥ 0

From cos (A± B) = cos A cos B ∓ sin A sin B we can show that

Tn+1 (x) = 2xTn (x)− Tn−1 (x) , n ≥ 1

T0 (x) ≡ 1, T1 (x) = x

T2 (x) = 2x2 − 1, T3 (x) = 4x3 − 3x

(Tn,Tm) =


0 n 6= m

π m = n = 0
π

2
m = n > 0



Orthogonal Polynomials
Chebyshev polynomials

Let w (x) =
1√

1− x2
, −1 ≤ x ≤ 1

Tn (x) = cos
(
n cos−1 x

)
, n ≥ 0

From cos (A± B) = cos A cos B ∓ sin A sin B we can show that

Tn+1 (x) = 2xTn (x)− Tn−1 (x) , n ≥ 1

T0 (x) ≡ 1,

T1 (x) = x

T2 (x) = 2x2 − 1, T3 (x) = 4x3 − 3x

(Tn,Tm) =


0 n 6= m

π m = n = 0
π

2
m = n > 0



Orthogonal Polynomials
Chebyshev polynomials

Let w (x) =
1√

1− x2
, −1 ≤ x ≤ 1

Tn (x) = cos
(
n cos−1 x

)
, n ≥ 0

From cos (A± B) = cos A cos B ∓ sin A sin B we can show that

Tn+1 (x) = 2xTn (x)− Tn−1 (x) , n ≥ 1

T0 (x) ≡ 1, T1 (x) = x

T2 (x) = 2x2 − 1, T3 (x) = 4x3 − 3x

(Tn,Tm) =


0 n 6= m

π m = n = 0
π

2
m = n > 0



Orthogonal Polynomials
Chebyshev polynomials

Let w (x) =
1√

1− x2
, −1 ≤ x ≤ 1

Tn (x) = cos
(
n cos−1 x

)
, n ≥ 0

From cos (A± B) = cos A cos B ∓ sin A sin B we can show that

Tn+1 (x) = 2xTn (x)− Tn−1 (x) , n ≥ 1

T0 (x) ≡ 1, T1 (x) = x

T2 (x) = 2x2 − 1,

T3 (x) = 4x3 − 3x

(Tn,Tm) =


0 n 6= m

π m = n = 0
π

2
m = n > 0



Orthogonal Polynomials
Chebyshev polynomials

Let w (x) =
1√

1− x2
, −1 ≤ x ≤ 1

Tn (x) = cos
(
n cos−1 x

)
, n ≥ 0

From cos (A± B) = cos A cos B ∓ sin A sin B we can show that

Tn+1 (x) = 2xTn (x)− Tn−1 (x) , n ≥ 1

T0 (x) ≡ 1, T1 (x) = x

T2 (x) = 2x2 − 1, T3 (x) = 4x3 − 3x

(Tn,Tm) =


0 n 6= m

π m = n = 0
π

2
m = n > 0



Orthogonal Polynomials
Chebyshev polynomials

Let w (x) =
1√

1− x2
, −1 ≤ x ≤ 1

Tn (x) = cos
(
n cos−1 x

)
, n ≥ 0

From cos (A± B) = cos A cos B ∓ sin A sin B we can show that

Tn+1 (x) = 2xTn (x)− Tn−1 (x) , n ≥ 1

T0 (x) ≡ 1, T1 (x) = x

T2 (x) = 2x2 − 1, T3 (x) = 4x3 − 3x

(Tn,Tm) =


0 n 6= m

π m = n = 0
π

2
m = n > 0



Orthogonal Polynomials
Some properties

Theorem
Let {φn (x) |n ≥ 0} be an orthogonal family of polynomials on
(a, b)with weight function w (x). If f (x) is a polynomial of degree
m we have

f (x) =
m∑

n−0

(f .φn)

(φn, φn)
φn (x)

Corollary

Let f (x) be a polynomial of degree ≤ m − 1. Then

(f , φm) = 0
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Orthogonal Polynomials
Some properties

Theorem
Let {φn (x) |n ≥ 0} be an orthogonal family of polynomials on
(a, b)with weight function w (x). Then the polynomial φn (x)has
exactly n distinct real roots in the open interval (a, b) .

Proof.
Let x1, x2 . . . , xm be all the roots of φn (x) in (a, b) at which φn (x)
changes sign. Trivially, m ≤ n. Let’s assume m < n .
Define

B (x) = (x − x1) (x − x2) . . . (x − xm)

Then φn (x) B (x) does not change sign in (a, b).Consequently∫ b

a
w (x) B (x)φn (x) dx 6= 0

However, degree (B (x)) = m < n - and so (B, φn) = 0 - a
contradiction!
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Orthogonal Polynomials
Some properties

Thus, φn (x)must have n roots x1, . . . , xn in (a, b) and each of this
must be a simple root,

i.e. φ′n (xi ) 6= 0.

φn (x) = An

(
x − x

(n)
1

)(
x − x

(n)
2

)
. . .
(

x − x
(n)
n

)
= Anxn + Bnxn−1 + . . .

Theorem
Triple Recursion Relation
For n ≥ 1

φn+1 (x) = (anx + bn)φn (x)− cnφn−1 (x)

where an =
An+1

An
, bn = an

[
Bn+1

An+1
− Bn

An

]
and

cn =
An+1An−1

A2
n

(φn, φn)

(φn−1, φn−1)
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Hermite interpolation

Sometimes, we need to interpolate both values and derivatives!

We are seeking a 2n − 1degree polynomial satisfying

p (xi ) = yi , p′ (xi ) = y ′i , i = 1, 2, . . . , n

We need to find 2n polynomials h1, . . . hn, h̃1, . . . h̃n, each of degree
2n − 1 satisfying

hi (xj) = δij , h′i (xj) = 0

and
h̃i (xj) = 0, h̃′i (xj) = δij

Then

Hn (x) =
n∑

i=1

[
yihi (x) + y ′i h̃i (x)

]
is the Hermite interpolating polynomial.
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Hermite interpolation
We already have a set on n − 1 degree polynomials Li (x) that
satisfy Li (xj) = δij .

Let us try the 2n − 1 degree polynomial

h̃i (x) = (ax + b) [Li (x)]2

Then
h̃′i (x) = a [Li (x)]2 + 2 (ax + b) L′i (x) Ll (x)

Demanding h̃i (xj) = 0 leads to

axi + b = 0

Demanding h̃′i (xj) = δij leads to

a + 2 (ax + b) L′i (xi ) = 1

This leads to
h̃i (x) = (x − xi ) [Li (x)]2

Similarly
hi (x) =

(
1− 2L′i (xi ) (x − xi )

)
[Li (x)]2
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Hermite interpolation
Uniqueness

Let Gn (x) be another polynomial of degree 2n − 1 that
interpolates the same values and derivatives.

Consider R (x) = Gn (x)− Hn (x)

Then R (x) is at most of degree 2n − 1

But it must have double roots at x1, . . . , xn(Since
R (xi ) = R ′ (xi ) = 0)

Thus R (x)must be identically zero!

The error can be shown to be

f (x)− Hn (x) = [Ψn (x)]2
f (2n) (x)

(2n)!
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Gauss quadrature

Recall that the Gauss quadrature formula is∫ 1

−1
f (x) dx ≈

n∑
i=1

wi f (xi )

where the freedom of choice of the n weights wi and the n nodes
xi is expolited to get an expression that is correct for all
polynomials up to degree 2n − 1.

As we have already seen, in principle we can find the wi and xi
from the 2n equations

n∑
i=1

wix
j
i =

{
0 for j = 1, 3, . . . , 2n − 1
2

j+1 for j = 2, 4, . . . , 2n − 2

This is a set of non-linear equations - not only are they difficult to
solve, the existence of solutions for general n is not even clear a
priori.
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Gauss quadrature

Let {φn (x) |n ≥ 0} be a family of orthogonal polynomials on (a, b)
with respet to the weight function w (x).

Theorem
For each n ≥ 1, there is a unique numerical integration formula of
degree of precision 2n − 1. Assuming f (x)to be 2n times
continuously differentiable on [a, b] , this formula is∫ b

a
w (x) f (x) dx =

n∑
j=1

wj f (xj) +
(φn, φn)

A2
n (2n)!

f (2n) (η)

for some η ∈ (a, b). Here, the nodes are the roots of φn (x), and

wj = − an (φn, φn)

φ′n (xj)φn+1

(
xj

)
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Gauss quadrature
Proof - an outline

Consider the Hermite interpolating polynomial for f (x) where the
nodes are the n roots of φn (x) in (a, b).

f (x) ≈ Hn (x) =
n∑

i=1

[
f (xi ) hi (x) + f ′ (xi ) h̃i (x)

]
Remember

En (x) = f (x)− Hn (x) = [Ψn (x)]2
f (2n) (ξ)

(2n)!
, ξ ∈ (a, b)

where

Ψn (x) = (x − x1) . . . (x − xn) =
1

An
φn (x)
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Gauss quadrature
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∫ b

a
w (x) Hn (x) dx
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n∑

i=1

f (xi )

∫ b

a
w (x) hi (x) dx +

n∑
i=1

f ′ (xi )

∫ b

a
w (x) h̃i (x) dx

where
h̃i (x) = (x − xi ) [Li (x)]2

Recall that

Li (x) =
Ψn (x)

(x − xi ) Ψ′n (xi )
=

φn (x)

(x − xi )φ′n (xi )

and thus

h̃i (x) =
φn (x)

φ′n (xi )
Li (x)

Thus

∫ b

a
w (x) h̃i (x) dx =

1

φ′n (xi )

∫ b

a
w (x)φn (x) Li (x) dx = 0

since degree Li (x) = n − 1.
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with
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where
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1− 2L′i (xi ) (x − xi )

)
[Li (x)]2

We can rewrite

wi =

∫ b

a
w (x) [Li (x)]2 dx > 0

All the weights are positive. After some manipulation, we get the
expression for the weights noted above.
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Richardson extrapolation
Consider the composite trapezoidal estimate of an integral

I0 ≡
∫ b

a
f (x) dx = I (h) + E (h)

where h = b−a
N is the step size.

We will get a better estimate of I0 if we could estimate E (h)!
Evaluating this integral for two different step-sizes gives

I (h1) + E (h1) = I (h2) + E (h2)

Now, we know

E ≈ −b − a

12
h2f ′′ (ξ)

so

E (h1)

E (h2)
≈ h2

1

h2
2

=⇒ E (h1)

h2
1

=
E (h2)

h2
2

=
E (h2)− E (h1)

h2
2 − h2

1

=
I (h1)− I (h2)

h2
2 − h2

1
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Richardson extrapolation

A better estimate for I0 would be

I0 = I (h2) + E (h2)

= I (h2) +
h2
2

h2
2 − h2

1

[I (h1)− I (h2)]

It can be shown that this estimate has an error O
(
h4
)
!

In particular, we often use

I0 ≈
4

3
I

(
h

2

)
− 1

3
I (h)
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Richardson extrapolation
The next step

Using three step sizes h, h
2 and h

4 , we can get two Richardson
estimates

Il ≈
4

3
I

(
h

2

)
− 1

3
I (h)

and

Im ≈
4

3
I

(
h

4

)
− 1

3
I

(
h

2

)
These can be similarly combined to give a better estimate

I ≈ 16

15
Im −

1

15
Il

This has error O
(
h6
)
!

We can repeat this with two O
(
h6
)

estimates to get an even
better estimate

I ≈ 64

63
Im −

1

63
Il +O

(
h8
)

Extending this idea leads to the Romberg integration algorithm!
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