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Let w (x) be a non-negative function on the interval (a, b). We
assume further that

b
1. The integral / w (x) |x|" dx exists and is finite for all n > 0.

CIf / g (x) dx = 0 for some non-negative g (x), then

Such a functlon is called a weight function.

Examples
1 w(x)=1, a<x<b
1
2. w(x) = ——, -1<x<1
W= =
3. w(x)=e"%, 0<x<o0
4. w(x):e_XZ, —00 < x < 00
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Inner product

We define the Euclidean norm (or the 2-norm) by

|\f|\2—\// )P dx = /(. F)

This obviously obeys the properties
> ||f]l, =0iff f(x) =0in (a, b)

> ||af]], = |al||f]|, for all scalars «

The Cauchy-Scwarz inequality
vi,ge Cla b,  |(Ff.8)l <|Ifll>llgll,

allows us to show that the Euclidean norm obeys the triangle
inequality
I + gl < |Ifll2 + llgll
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Legendre polynomials

For w(x) =1 on (—1,1) define

Pa() = i o [(2 = 1)']

= 2npl dxn
Then
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2
'Dna 'Dn =
( ) 2n+1

60 () = 1/ 2P )
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Theorem
Let {¢,(x)|n > 0} be an orthogonal family of polynomials on
(a, b)with weight function w (x). If f (x) is a polynomial of degree

m we have
m f(bn
V=2 (b ™)

Corollary
Let f (x) be a polynomial of degree < m — 1. Then

(fa ¢m) =0
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Thus, ¢, (x)must have n roots xi, ..., x, in (a, b) and each of this
must be a simple root,i.e. ¢}, (x;) # 0.

On(x) = Ap (x - xf")) (x - xz(")> . (x — x,(,")>

= A,x"+ B,x"" 4 ...

Theorem
Triple Recursion Relation
Forn>1

(bn—i-l (X) - (anX + bn) ¢n (X) - Cn¢n—1 (X)

A B B
where a, = /ZH, b, = an {A"H — A"} and
n n+1 n

co — An+1An71 (any gbn)
5 A% (¢n71a¢n41)
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Sometimes, we need to interpolate both values and derivatives!
We are seeking a 2n — ldegree polynomial satisfying

P(Xi):)/i, p,(Xi):yl{a i:1>27"'7n

We need to find 2n polynomials hy, ... hy, 711, ... h,, each of degree
2n — 1 satisfying

and

Then
Hn () = S [yibi (x) + yihi ()]
i=1
is the Hermite interpolating polynomial.
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Hermite interpolation

We already have a set on n — 1 degree polynomials L; (x) that
satisfy L;j(x;) = d;. Let us try the 2n — 1 degree polynomial

hi (x) = (ax + b) [L; (X))

Then 3
o (x) = a[Li (x)]> + 2 (ax + b) L: (x) Ly (x)

Demanding h; (x;) = 0 leads to
axi+b=20
Demanding A’ (x;) = &; leads to
a+2(ax+b)Li(x)=1

This leads to
hi (x) = (x = %) [Li (x))?
Similarly
hi (x) = (1= 2L} () (x = X)) [Li (<))
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Hermite interpolation

Uniqueness

Let G, (x) be another polynomial of degree 2n — 1 that
interpolates the same values and derivatives.

Consider R (x) = G (x) — Hp (x)
Then R (x) is at most of degree 2n — 1

But it must have double roots at xi, ..., x,(Since
R(xi) = R'(xi) = 0)

Thus R (x)must be identically zero!

The error can be shown to be
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Gauss quadrature

Recall that the Gauss quadrature formula is

1 n
/ f(x)dx~ Z w;f (x;)
-1 i=1

where the freedom of choice of the n weights w; and the n nodes
X; is expolited to get an expression that is correct for all
polynomials up to degree 2n — 1.

As we have already seen, in principle we can find the w; and x;
from the 2n equations
forj=1,3,...,2n—1
Z Wixi =4 5
= forJ:2,4,...,2n—2

J+1

This is a set of non-linear equations - not only are they difficult to
solve, the existence of solutions for general n is not even clear a
priori.
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Let {¢n (x)|n > 0} be a family of orthogonal polynomials on (a, b)
with respet to the weight function w (x).

Theorem

For each n > 1, there is a unique numerical integration formula of
degree of precision 2n — 1. Assuming f (x)to be 2n times
continuously differentiable on [a, b] , this formula is

b
/a X) dx = Z W,I Aq;”(’;;”)) f(2n (77)

for some n € (a, b). Here, the nodes are the roots of ¢, (x), and

W= — an (¢n, ¢n)
! ¢ (%) Pnt1 (Xj)
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Proof - an outline

Consider the Hermite interpolating polynomial for f (x) where the
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Gauss quadrature

Proof - an outline

Consider the Hermite interpolating polynomial for f (x) where the
nodes are the n roots of ¢, (x) in (a, b).

n

f(x)m Ha(x) =Y [f (xi) b (x) + £ (x;) i (x)

i=1

() = 1)~ () = GO “ ), e (o

W () = (x — 1) . (x — x) :Aiqsn(x)
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Gauss quadrature

b n b
/,,:Zf(x,-)/ W(X)h;(X)dX—i—Zf’(X;)/ w (x) hj (x) dx
i=1 g

hi (x) = (x — xi) [Li ()]
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Gauss quadrature

Recall that
) — v, (X) _ ¢n (X)
L’( ) (x = x;) V" (x;) (x = xi) ¢, (xi)
and thus bn (X)
h; (X) = (ZS% (Xi) L; (X)

_




Gauss quadrature

hi (x) = (x — xi) [Li ()]

Recall that
L= (e = G 4G
Thus /abw(x) hi (x) dx = qﬁ’ntx;) /abw(x) b (x) Li (x)dx =0

since degree L; (x) = n— 1.
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b
a

I = f(x) | w(x)hi(x)dx
21 |
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n b n
b= f(x,-)/ w (x) hi (x) dx = > wif (x)
i=1 a i=1
with

b
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where
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Gauss quadrature
n b n
b= f(x,-)/ w (x) hi (x) dx = > wif (x)
i=1 a i=1
with

W;:/abw(x)h,-(x)dx

where
hi (x) = (1= 2L (x) (x — x7)) [Li ()]

We can rewrite

b
wi = / w () [ ()2 dx > 0

All the weights are positive. After some manipulation, we get the
expression for the weights noted above.
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Richardson extrapolation

Consider the composite trapezoidal estimate of an integral

b
P :/ F(x) dx = I (h) + E (h)
where h = b—,T is the step size.
We will get a better estimate of fy if we could estimate E (h)!
Evaluating this integral for two different step-sizes gives

I (h1) + E (h1) = I (h2) + E (h2)

Now, we know A
—a
E ~ — h2fl/

E(h) _ h? E(h1) E(h2)  E(h2)— E(h)
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Richardson extrapolation

Consider the composite trapezoidal estimate of an integral

b
b:/fuyu:um+5w)
where h = b—,T is the step size.
We will get a better estimate of fy if we could estimate E (h)!
Evaluating this integral for two different step-sizes gives

I (h1) + E (h1) = I (h2) + E (h2)

Now, we know A
—a
E ~ — h2fl/

E(m) _m _ E(m)_ E(h) _ E(ho) —E(h) _ I(h)—1(h)
E(h) b hi hs hs — hi hs — hi
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Richardson extrapolation

A better estimate for Iy would be

o= 1(h) + E(ha) = 1 (ko) + h”_h [ () — 1 (h2)]

It can be shown that this estimate has an error O (h*)!

In particular, we often use
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Richardson extrapolation
The next step
Using three step sizes h, g and g, we can get two Richardson

estimates A A )

4 (h 1 (h
w=3(3)-3(3)

These can be similarly combined to give a better estimate

16 1
5m 15l

and

| ~

This has error O (h°)!

We can repeat this with two O (h6) estimates to get an even
better estimate

64/ 1
63" 63
Extendine this idea leads to the Rombere intecration alcorithm!

| ~ L +0(h)



