Ordinary Differential Equations
Part 1

Ananda Dasgupta

PH3105, Autumn Semester 2017

ODEs in science

ODEs in science

» ODEs are among the most important mathematical structures
in science.

ODEs in science

» ODEs are among the most important mathematical structures
in science.
» Dynamical systems in physics are described by second order

equations of motion
d?’x dx
— =F —, t
e (X’ dt’)

ODEs in science

» ODEs are among the most important mathematical structures
in science.
» Dynamical systems in physics are described by second order

equations of motion
d?’x dx
— =F —, t
e (X’ dt’)

» This can be recast as two coupled first order equations

& _ p
d m
@

da F(X’%’t>

ODEs in science

» ODEs are among the most important mathematical structures
in science.
» Dynamical systems in physics are described by second order

equations of motion
d?’x dx
— =F —, t
e (X’ dt’)

» This can be recast as two coupled first order equations

dx p
? T m
p p
& = Flom)
» More generally
. OH
a = ap;
. oH
pi = -

ODEs in science

» ODEs abound in other scientific disciplines as well!

ODEs in science

» ODEs abound in other scientific disciplines as well!

> In biology, for example, we have the famous predator-prey
model

ODEs in science

» ODEs abound in other scientific disciplines as well!

> In biology, for example, we have the famous predator-prey
model

» also known as the Lotka-Volterra model

ODEs in science

» ODEs abound in other scientific disciplines as well!

> In biology, for example, we have the famous predator-prey
model

» also known as the Lotka-Volterra model

> In this prey population x and predator population y obeys

%
dt
dy
dr Yy =y

= ax — Bxy

ODEs in science

» ODEs abound in other scientific disciplines as well!

> In biology, for example, we have the famous predator-prey
model

» also known as the Lotka-Volterra model

> In this prey population x and predator population y obeys

dx

E:ax—ﬁxy
Yy
dr Yy =y

> Reaction rates in chemistry : for example the rate of the
reaction 2Hs + 2NO — N, + 2H,0

d d
& M) = —k[Hz] [NOJ? = £ [NO]

The initial value problem

First order differential equations

First order differential equations
» First order differential equation (Initial Value Problem):

dy _

i f(y,t) subject to y (to) = yo

First order differential equations

» First order differential equation (Initial Value Problem):

d
di; =f(y,t) subject to y (to) = yo

> The Euler algorithm :
y(t+h) =y (t)+hf(y(t),1)

First order differential equations

» First order differential equation (Initial Value Problem):
dy

== f(y,t) subject to y (to) = yo

> The Euler algorithm :
y(t+h) =y (t)+hf(y(t),1)
> or more concisely

Ynt1 =Yn+ hf (}/m t,,)
where t, = ty + nh, y, = y (t,).

First order differential equations
» First order differential equation (Initial Value Problem):
dy

== f(y,t) subject to y (to) = yo

> The Euler algorithm :
y(t+h) =y (t)+hf(y(t),1)
> or more concisely
Yn+1 = Yn + hf (Ym tn)

where t, = ty + nh, y, = y (t,).
> Local error (error per step) is O (h?).

First order differential equations

» First order differential equation (Initial Value Problem):
dy

== f(y,t) subject to y (to) = yo

The Euler algorithm :
y(t+h) =y (t)+hf(y(t),1)

> or more concisely

v

Ynt1 =Yn+ hf (Ym tn)

where t, = ty + nh, y, = y (t,).
Local error (error per step) is O (h?).
Global error in this method is O (h).

vy

First order differential equations

» First order differential equation (Initial Value Problem):
dy

== f(y,t) subject to y (to) = yo

> The Euler algorithm :
y(t+h) =y (t)+hf(y(t),1)

> or more concisely

Ynt1 =Yn+ hf (Ym tn)

where t, = ty + nh, y, = y (t,).
> Local error (error per step) is O (h?).
» Global error in this method is O (h).
» For a system of first order ODEs

dy; .
%:f;(yl,...,yn;t), i=1,2,...n
we have

yi(t+h) =y (t) + hfi (1 (8), ..., ya (t) 1)

Improved integration methods

Improved integration methods

» The Euler algorithm uses the derivative at time t, as an
approximation for the rate of change over the entire interval
from t, to t, + h.

Improved integration methods

» The Euler algorithm uses the derivative at time t, as an
approximation for the rate of change over the entire interval
from t, to t, + h.

» Wouldn't it be better if we used the derivative at the midpoint
tn+ h/27

Improved integration methods

» The Euler algorithm uses the derivative at time t, as an
approximation for the rate of change over the entire interval
from t, to t, + h.

» Wouldn't it be better if we used the derivative at the midpoint
tn+ h/27

» Easy to do if the derivative f (y, t) = f (t) depends only on t.

Improved integration methods

» The Euler algorithm uses the derivative at time t, as an
approximation for the rate of change over the entire interval
from t, to t, + h.

» Wouldn't it be better if we used the derivative at the midpoint
tn+ h/27

» Easy to do if the derivative f (y, t) = f (t) depends only on t.

» Then

h
Ynt1 = Y (ta + h) = y (t;) + hf <tn+ 2)

Improved integration methods

» The Euler algorithm uses the derivative at time t, as an
approximation for the rate of change over the entire interval
from t, to t, + h.

» Wouldn't it be better if we used the derivative at the midpoint
th + h/27

» Easy to do if the derivative f (y, t) = f (t) depends only on t.

» Then A

Ynt1 =y (tn + h) = y (tn) + hf <tn + 2)

» This is better:

RHS = y (t,) + h <f(tn) + gf(t,,) +0 (h2)>

2
(ta) + hy (1) + 27 (1) + O (A7)

=y
=y (ta+h)+ O (K

Improved integration methods

>

The Euler algorithm uses the derivative at time t, as an
approximation for the rate of change over the entire interval
from t, to t, + h.

Wouldn't it be better if we used the derivative at the midpoint
tn+ h/27

Easy to do if the derivative f (y,t) = f (t) depends only on t.
Then

h
Ynt1 = Y (ta + h) = y (t;) + hf <tn+2>

This is better:
h .
RHS =y (t)) + h <f(tn) + Ef(t,,) +0 (h2)>

2
=y (tn) + hy (ta) + %y(tn) +0(F)

y
S
Local error O (h%),

Improved integration methods

>

The Euler algorithm uses the derivative at time t, as an
approximation for the rate of change over the entire interval
from t, to t, + h.

Wouldn't it be better if we used the derivative at the midpoint
tn+ h/27

Easy to do if the derivative f (y,t) = f (t) depends only on t.
Then

h
Yor1 =y (ta + h) =y (tn) + hf <tn + 2)
This is better:
h.
RHS =y (t,) + h <f(t,,) + Ef(t”) +0 (h2)>

2
(ta) + hy (1) + 27 (1) + O (A7)

=y
=y (ta+ h)+ O ()
Local error O (h*), global error O (h?).

Improved integration methods

» The Euler algorithm uses the derivative at time t, as an
approximation for the rate of change over the entire interval
from t, to t, + h.

» Wouldn't it be better if we used the derivative at the midpoint
tn+ h/27

» Easy to do if the derivative f (y, t) = f (t) depends only on t.

» Then

h
Ynt1 = Y (ta + h) = y (t;) + hf <tn+2>

» This is better:
h.
RHS =y (t,) + h <f(t,,) + Ef(t”) +0 (h2)>

t) by () 2 (60) 4 O ()

ty + h) + O (h?)

y(
y(
» Local error O (h3) global error O (h?).
» What if f (y, t) depends explicitly on y (as it usually would)?

The Midpoint Euler method (explicit version)
» Slope at beginning : p, = f (yn, tn)

The Midpoint Euler method (explicit version)

» Slope at beginning : p, = f (yn, tn)
> Approximate f (y (t, + %) ,t,+ 2) by

h h
q”:f yn+§pnatn+§

The Midpoint Euler method (explicit version)
» Slope at beginning : p, = f (yn, tn)
» Approximate f (y (t,, + g) ,th + g) by

h h
qn=f }/nJFipna tn+§

» Taylor series in several variables says that

h [Of
n:f ~ | 5
an=r+3

or
8

+
8_)/ pn

of
ot

o°f O
ayat Pn T a2

+0 (k)

(Yn,tn)

The Midpoint Euler method (explicit version)
» Slope at beginning : p, = f (yn, tn)

> Approximate f (y (t, + %) ,t,+ 2) by

h h
qn=f Yn+§pna thFi

» Taylor series in several variables says that

dn = > 8ypn ot

2 2 2 2
+% <gy£ ph + 28(2/(; pn + g;) o o ()
But
y(t)="f(y.1)
. of . of
v =5y+5

}'/(t)—&'% LA i
“ay2” T atay” T ayY T ayar” T o

The Midpoint Euler method (explicit version)
» Slope at beginning : p, = f (yn, tn)

> Approximate f (y (t, + %) ,t,+ 2) by

h h
qn=f Yn+§pna thFi

» Taylor series in several variables says that

dn = > 8ypn ot

h? (0°f O%f O%f
— | = 2 nt = 3
"8 <ay2 Pr 2 ayae Pt 8t2> ey 7O
But
Yn = f(ynvtn):pn
, oo o, ofl _of o
Oy ot (ymt) Oy ot (Yot

0*f O%f of . O%f
yn - -y

Dy P + Bydt Pn + @Yn + el o)

The Midpoint Euler method (explicit version)

» Slope at beginning : p, = f (yn, tn)
> Approximate f (y (t, + %) ,t,+ 2) by
h h
q”:f yn+§pnatn+§

» Taylor series in several variables says that

. h. h /... of .
Qn:yn—l-yn—l—(y,,—) +O(h3)
(vnstn)

2 8 @yn
But
Yn = f (_Vna tn) = Pn
. 5f.+8f 0fp+8f
Yn = [Y T 457 = 5 PnT 57
ay at (}’nytn) 6)/ at (Yn,tn)
0*f 5 . OPf of . O°f
yn -

dy? Py + ayiat Pn + @Yn + Bl o)

The Midpoint Euler method (explicit version)

v

Slope at beginning : p, = f (yn, tn)
Approximate f (y (t, + 2),t, + 2) by

v

h h
qn=f }/nJFipna tn+§

v

Taylor series in several variables says that

. h .. h /... of ..
Qn:yn—i-yn—i-(y,,—yn) +O(h3)
2 8 ay (ymst)

v

On the other hand,
2 h3

. h
yn+1Ey(tn+h) = yn+hyn Iyn+3|yn+0(h4)

The Midpoint Euler method (explicit version)

v

Slope at beginning : p, = f (yn, tn)
Approximate f (y (t, + 2),t, + 2) by

v

h h
qn=f }/nJFipna tn+§

v

Taylor series in several variables says that

. h .. h /... of ..
Qn:yn—i-yn—i-(y,,—yn) +O(h3)
2 8 ay (ymst)

v

On the other hand,
2 h3

yn+1Ey(tn+h) = yn+hyn Iyn+3|yn+0(h4)

= yn+ hg,

h3 (of . > 4
+—(Y,+3— + O (h
24 8y (Yntn) ()

The Midpoint Euler method (explicit version)

v

Slope at beginning : p, = f (yn, tn)
Approximate f (y (t, + 2),t, + 2) by

v

h h
qn=f Yn+§pna thFi

v

Taylor series in several variables says that

. h. h /... of ..
Qn:yn—i-yn—i-(y,,—yn) +O(h3)
2 8 ay (ymst)

» On the other hand,
2 h3
Yor1 =y (ta+h) = yo+ hy,+ IYn+3|yn+O(h4)
= Yn+ hqn
h3 of ..
+57 (y +3 - > + 0 (h*)
24 8y (}’nytn)

v

The midpoint method has a local error of O (h3) - global
error O (h?).

Generalization : the Runge-Kutta method

Generalization : the Runge-Kutta method

> Instead of the derivative at midpoint, we could use

+ 1 1
Pn . n S o ta) &+ 5F (o + hpn to +)

- aka the modified Euler method.

Generalization : the Runge-Kutta method

> Instead of the derivative at midpoint, we could use

+ 1 1
Pn . n S o ta) &+ 5F (o + hpn to +)

- aka the modified Euler method.

» A more general approximation

ﬁlpn + 52%

where p, = f (yn, tn) = yn and q = f (yn + ahpp, t, + ah).

Generalization : the Runge-Kutta method

> Instead of the derivative at midpoint, we could use

Pn + Gn
2

1 1
= Ef(yn tn) + Ef(yn_‘_ hpna th + h)

- aka the modified Euler method.

» A more general approximation

ﬁan + 52%

where p, = f (yn, tn) = yn and q = f (yn + ahpp, t, + ah).
» Taylor series says

242

Gn = Potah(fyyn+fe),)+ —

(G/ypr% =+ 26/tpn + ftt) (yn,tn)

Generalization : the Runge-Kutta method

> Instead of the derivative at midpoint, we could use

Pn + Gn
2

1 1
= Ef(yn tn) + Ef(yn_‘_ hpna th + h)

- aka the modified Euler method.

» A more general approximation

ﬁan + 52%

where p, = f (yn, tn) = yn and q = f (yn + ahpp, t, + ah).
» Taylor series says

242

Gn = Potah(fyyn+fe),)+ —

2p2

2

(G/ypr% =+ 26/tpn + ftt) (yn,tn)

. . «
= Yo+ ahy,+

[V 0= f3nly,0 + O (H)

Generalization : the Runge-Kutta method

Generalization : the Runge-Kutta method

» The approximation

y(ta+h) = yn+ h(Bipn+ B2qn)

Generalization : the Runge-Kutta method

» The approximation
y(tn+h) = yo+h(Bipn+ B20n)
2

(1 By~ Ba) b+ (1 208%) '

R or... .
+€ y — 3052,82 (yn - f;’yn)(ymt,,)] + O (h4)

Generalization : the Runge-Kutta method

» The approximation
y (tn + h) = Ynt h(ﬁlpn + 52qn)
2

(1 By~ Ba) b+ (1 208%) '
3

+€ y — 3a2,32(yn - f;’yn)(ymt,,)] + O (h4)

> Minimizing error requires

Bri+B = 1
2a6, = 1

giving a local error of O (h3).

Generalization : the Runge-Kutta method

» The approximation
y (tn + h) = Ynt h(ﬁlpn + 52qn)
2

(1 By~ Ba) b+ (1 208%) '

h
+€ y - 3(12,82 (yn - f;/yn)(ymtn)] + O (h4)
> Minimizing error requires
fr+p =1
2a6, = 1

giving a local error of O (h3).
> Possibilities :

Generalization : the Runge-Kutta method

» The approximation
y (tn + h) = Ynt h(ﬁlpn + 52qn)
2

(1 By~ Ba) b+ (1 208%) '

h
+€ y - 3(12,82 (yn - f;/yn)(ymtn)] + O (h4)
> Minimizing error requires
fr+p =1
2a6, = 1

giving a local error of O (h3).
> Possibilities :

» a= 1,81 =0,3, =1 - the midpoint formula.

Generalization : the Runge-Kutta method

» The approximation
y (tn + h) = Ynt h(ﬁlpn + 62qn)
2

(1 By~ Ba) b+ (1 208%) '

.. oo i} 4
+€ Y =3« /62 (yn - f;/}/n)(ymtn)] + 0 (h)
> Minimizing error requires
fr+p =1
208, = 1

giving a local error of O (h3).
> Possibilities :
= %751 =0, 2 =1 - the midpoint formula.
»a=1,0=0= % - the corrected Euler method, aka Heun's
method.

Generalization : the Runge-Kutta method

» The approximation
y (tn + h) = Ynt h(ﬁlpn + 62qn)
2

(1 By~ Ba) b+ (1 208%) '

.. oo i} 4
+€ Y =3« /62 (yn - f;/}/n)(ymtn)] + 0 (h)
> Minimizing error requires
fr+p =1
208, = 1

giving a local error of O (h3).
> Possibilities :
= %751 =0, 2 =1 - the midpoint formula.
»a=1,0=0= % - the corrected Euler method, aka Heun's

method.
» a= 3B, =1 B =32 - Ralstone’s method.

The 4th order Runge-Kutta algorithm

The 4th order Runge-Kutta algorithm

» Approximate the derivative in the interval (t,, t, + h) by the
weighted average
1

6 (pn +2qn + 21, + Sn)

The 4th order Runge-Kutta algorithm

» Approximate the derivative in the interval (t,, t, + h) by the
weighted average

1
6 (pn +2qp + 2 + Sn)

» The approximants are

Pn = f()/natn)

qn = f<yn+hpn,tn+h>
2 2

rn = f(yn—khqmtn—i-h)
2 2

sn = f(yn+hr,th+ h)

The 4th order Runge-Kutta algorithm
» Approximate the derivative in the interval (t,, t, + h) by the
weighted average

1
6 (pn +2qp + 2 + Sn)

» The approximants are

Pn = f()/natn)

an = f<)/n+hpnatn+h>
2 2

fn = f<yn+hqmtn+h>
2 2

sn = f(yn+hr,th+ h)

» Thus

h
Ynr1 R yn + 6 (pn + 2qn +2r, + sn)

The 4th order Runge-Kutta algorithm

» Approximate the derivative in the interval (t,, t, + h) by the
weighted average

1
6 (pn +2qp + 2 + Sn)

» The approximants are

Pn = f()/natn)

an = f<)/n+hpnatn+h>
2 2

fn = f<yn+hqmtn+h>
2 2

sn = f(yn+hr,th+ h)

» Thus

h
Ynr1 R yn + 6 (pn + 2qn +2r, + sn)

» This has a local error of O (h5) and global error of O (h4).

The 4th order Runge-Kutta algorithm

» Approximate the derivative in the interval (t,, t, + h) by the
weighted average

1
6 (pn +2qp + 2 + Sn)

» The approximants are

pn = f()/natn)

an = f<)/n+hpnatn+h>
2 2

fn = f<yn+hqmtn+h>
2 2

sn = f(yn+hr,th+ h)

» Thus

h
Ynr1 R yn + 6 (pn + 2qn +2r, + sn)

» This has a local error of O (h5) and global error of O (h4).
» Both simple and accurate - arguably the most widely used
method.

How big should the step size be?

How big should the step size be?

» The local error in RK4 is O (h5).

How big should the step size be?

» The local error in RK4 is O (h5).

» How big must h be for a desired accuracy €?

How big should the step size be?

» The local error in RK4 is O (h5).
» How big must h be for a desired accuracy €?

» One approach - the step size can be changed depending on
the error at each step.

How big should the step size be?

v

The local error in RK4 is O (h5).

How big must h be for a desired accuracy €?

v

v

One approach - the step size can be changed depending on
the error at each step.

v

But ... how to estimate the error?

How big should the step size be?

» The local error in RK4 is O (h5).
» How big must h be for a desired accuracy €?

» One approach - the step size can be changed depending on
the error at each step.

» But ... how to estimate the error?

» Use one RK4 step with step-size h and two RK4 steps with
step-size & to get two estimates for y (t, + h) - Y1) and y(2),
respectively.

How big should the step size be?

» The local error in RK4 is O (h5).
» How big must h be for a desired accuracy €?

» One approach - the step size can be changed depending on
the error at each step.

» But ... how to estimate the error?

» Use one RK4 step with step-size h and two RK4 steps with
step-size & to get two estimates for y (t, + h) - Y1) and y(2),
respectively.

> The difference A = y(2) — y(1) is an estimate for the error.

How big should the step size be?

» The local error in RK4 is O (h5).
» How big must h be for a desired accuracy €?

» One approach - the step size can be changed depending on
the error at each step.

» But ... how to estimate the error?

» Use one RK4 step with step-size h and two RK4 steps with
step-size & to get two estimates for y (t, + h) - Y1) and y(2),
respectively.

> The difference A = y(2) — y(1) is an estimate for the error.

» In fact, this also yields a better estimate for y (t, + h),
namely y(2) + %!

How big should the step size be?

How big should the step size be?
> If |A]| <€, accept the step.

How big should the step size be?

> If |A]| <€, accept the step.
» If |A| > ¢, change the step-size to

, <6> 1/5
A

and repeat.

How big should the step size be?

> If |A]| <€, accept the step.
» If |A| > ¢, change the step-size to

h(c >1/5
A
and repeat.

» Warning : guard against the step-size becoming too small!

How big should the step size be?

> If |A]| <€, accept the step.
» If |A| > ¢, change the step-size to

h(c >1/5
A
and repeat.

» Warning : guard against the step-size becoming too small!
» Once the step size decreases, it stays small - may make the
method very slow.

How big should the step size be?

> If |A]| <€, accept the step.
If |A] > €, change the step-size to

h(c >1/5
A
and repeat.

Warning : guard against the step-size becoming too small!
Once the step size decreases, it stays small - may make the
method very slow.

A modification by Press et al - at each step,

v

vy

v

How big should the step size be?

If |A] < €, accept the step.
If |A] > €, change the step-size to

h(c >1/5
A
and repeat.

Warning : guard against the step-size becoming too small!
Once the step size decreases, it stays small - may make the
method very slow.
A modification by Press et al - at each step,

» accept the result if |A] < e.

vy

vy

v

How big should the step size be?

If |A] < €, accept the step.
If |A] > €, change the step-size to

h(c >1/5
A
and repeat.

Warning : guard against the step-size becoming too small!
Once the step size decreases, it stays small - may make the
method very slow.

A modification by Press et al - at each step,

» accept the result if |A] < e.
» In each step , define the new step-size as

n
€
Rh ()
A
where R ~ 0.9, and

{0.25 where A > ¢
7’] =

vy

vy

v

0.20 where A < ¢

Second order ODEs : The Runge-Kutta-Nystrom method

Second order ODEs : The Runge-Kutta-Nystrom method

For the second order equation

y="~f(y,y,t)

Second order ODEs : The Runge-Kutta-Nystrom method

For the second order equation

y="~f(y,y,t)

we Ccan use

) h
Yne1 = Yn+t h <}/n+ § [An + B, + Cn]>

) . 1
Ynr1 = Ynt 5 [An + 2Bn + 2Cn + Dn]

Second order ODEs : The Runge-Kutta-Nystrom method

For the second order equation

y="~f(y,y,t)

we Ccan use

) h
Yne1 = Yn+t h <)/n+ § [An + B, + Cn]>

) . 1
Ynr1 = Ynt 5 [An + 2Bn + 2Cn + Dn]

where
h)
An - Ef(ynaynatn)
B, = > f <Yn+/8n’)/n+Anatn+ 2> , where (3, = 2 <yf7+ 2)
h : h
C, = —=f (yn+,8n7}/n+ Bn, tn +)
2 2
h
Dn = Ef(}/n‘F(Sn,)./n—i-QCn,tn“‘h)a Where(sn:h(_)./n‘i'cn)

Second order ODEs : The Runge-Kutta-Nystrom method

For the second order equation

y="~f(y,y,t)

we Ccan use

) h
Yne1 = Yn+t h <)/n+ § [An + B, + Cn]>

) . 1
Ynr1 = Ynt 5 [An + 2Bn + 2Cn + Dn]

where
h)
An - Ef(ynaynatn)
B, = > f <Yn+/8n’)/n+Anatn+ 2> , where (3, = 2 <yf7+ 2)
h : h
C, = —=f (yn+,8n7}/n+ Bn, tn +)
2 2
h
Dn = Ef(}/n‘F(Sn,)./n—i-QCn,tn“‘h)a Where(sn:h(_)./n‘i'cn)

o~ 0 BN\ - N o~ /1 A\

System of equations

v

A system of differential equations

Vi) =fiv,..ymt), i=12,...,n

can be handled by the RK4

However care has to be used to evaluate all the derivatives
together.

The n initial slopes ps1,...pamust be evaluated at the values
of y1,..., ysat the beginning of the interval

These values must be used to predict the values of all the y;
at the middle of the interval to get the g1,...,qn

and so on ...

Using numpy helps greatly here!

