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» Stiffness of an ODE can cause severe problems with its
numerical solution.

» Occurs mostly when an ODE has rapidly varying solutions.

> Becomes a bigger problem when the solution to an ODE has
both rapidly varying and slowly varying terms.
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A simple stiff ODE

» Consider the ODE (IVP)

dy

- =1
0 5y, y(0)

> It's solution is simply
y(t)=e

> The analytic solution dies down rapidly to 0.
» Am Euler solution to this is

Yit1 =Yi+ yih =y (1 — 15h)

2
> Ifh> 5 then (1 — 15h) < —1 : Euler solution oscillates

unboundedly

2 1
> Te > h> 5 then —1 < (1 —15h) < 0 : Euler solution
decreases to zero, but oscillates on both sides of it

1 .
» h< 15 then 0 < (1 — 15h) < 1 : Euler solution decreases
monotonically to zero - like the exact solution!
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A simple stiff ODE

The implicit Euler method

>

Instead of the derivative at the beginning, take that at the
end!

This means

Yit1 = Yi+Yiy1th=y;i — 15yi 1h

This is an implicit expression for y; 11 - since it occurs on both
sides of the equation.

In this case, the solution is easy!

I /]
YL = 1 155

As can be easily seen, the solution decreases monotonically to
zero for any positive h.

It is unconditionally stable!
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A slighly more complicated example
» Consider the ODE

d
d% = —1000y + 3000 — 2000,  y(0) =0

» The exact solution is
y (t) =3 —0.998e 1000t _ 2 pp2e*

» The exact solution is initially dominated by the fast
exponential term e 1000t

» After a short period of time, the initial transient dies out and
the solution is dictated by the slow exponential.

» For this problem, the explicit Euler algorithm is
Yiv1 =Yi + (—1000y,- + 3000 — 2000e’t") h
» While the implicit Euler algorithm is

Yis1=Yi + (—1000y,-+1 + 3000 — 2000e7ti+1) h
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» Aim : to determine y, = y (x,), where y satisfies the VP

d
T=flxy), v =x

> At this stage we have already determined yg, y1, ... yn—1-

» Can we exploit our knowledge of these prior values to derive
an accurate estimate for y,?

> Yes!

We have either the Adams-Bashforth methods:
Yn = Yn-1+ h (51f (Xn—la Yn—l) + 627‘— (Xn—2> }/n—2)
+ .o Bif (Xn—ks Yn—k))

or the Adams-Moulton methods

Yn = Yn-1+h (BOf (Xna)/n) + Bif (Xn—la)/n—l)
+B2f (Xn—2, Yn—2) + - - . Bkf (Xn—ks Yn—k))

The former are explicit methods, while the latter are implicit.
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The Adams methods

Determining the coefficients
Rewrite

Yn = Yn-1+ h(BOf (Xn,)/n) + p1if (anla_ynfl)
+B2f (Xn—2,¥n—-2) + -+ + Bkf (Xn—k, Yn—k))
as
y (Xn) -y (anl) —h (60)// (Xn) + ﬁly/ (anl)
‘|‘B2y/ (an2) +...+ 5/()// (Xn—k)) =0
Using backwards Taylor series, we have

h2 " h3 " h4 v
E}/ (xn) + ﬁy (xn) — EY (Xn) + - ..
2

—hBoy’ (xa) — h1 <y’ (x0) = by (x0) + oy (x,,)) +...=0

hy’ (xn) —

2!
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The Adams methods

This is of the form
Cihy’ (xa) + Goh?y" (xa) + - . . ckch*y () (x,)
with
G=1-Po—bP1—B2—PF3—[a-..
C2Z*E+(51+252+3ﬁ3+454+...)

2
1 1
C3:+6—f(ﬁl+462+963+1654+...)
1
G=-t% (51+852+2753+6454+ )

For an order p must have

G=C=...=C,=0
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The Adams methods

» For Adams-Bashforth 5y = 0.
» For k =2, we have 83 =38, =0
» The remaining coefficients 51 and (5, obey

Pr+pB=1
B1+262 =

N~

1
> Which gives g1 = g and 5, = —5

» To get the 4th order Adams-Bashford method, we have to
solve
G=G=G=0G=0

59 37

il _ —_3
24753 45184 8-

55
» This gives 1 = o2’ B = — >



The Adams methods

» For Adams-Moulton, we allow [y # 0.

» For k =1, we can obtain a method accurate up to h? by
chosing g and (81 so that G; = G, = 0.

1
» This leads to By = 1 = 5

» For k = 3, we can get a solution accurate up to h*by solving
G=0G=0G=0G=0, anngh with B4 =0.
> This gives

3 19 5 1
60_§>Bl_ﬂaﬁ2__ﬂ7ﬁ3_ﬂ
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» There are many ways of using the Adams methods.

» They are often used in tandem - in a predictor-corrector
approach.

> We first use the Adams-Bashforth approach to predict y,:
k*
Yp = Y1+ hZﬁ;‘f (Xn—i, Yn—i)
i=1
(we are using * to denote parameters for the Adams-Bashforth
version)
» We follow this up with an Adams-Moulton step to correct the
Yn:

k
Yn=Yn+1+ hBOf(Xnvys) + hZ/Bif(Xn—iaYn—i)
i=1

> Typically we use k* =k +1



Using the Adams methods

» But ... how do we start?
» This approach requires k values yg, y1,...,Yk—1 to start !
» One approach could be to use an appropriate order RK

method to get these.

There are other methods as well.

v



