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Stiffness

I Stiffness of an ODE can cause severe problems with its
numerical solution.

I Occurs mostly when an ODE has rapidly varying solutions.

I Becomes a bigger problem when the solution to an ODE has
both rapidly varying and slowly varying terms.
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A simple stiff ODE
I Consider the ODE (IVP)

dy

dt
= −15y , y (0) = 1

I It’s solution is simply

y (t) = e−15t

I The analytic solution dies down rapidly to 0.
I Am Euler solution to this is

yi+1 = yi + ẏih = yi (1− 15h)

I If h >
2

15
, then (1− 15h) < −1 : Euler solution oscillates

unboundedly

I
2

15
> h >

1

15
, then −1 < (1− 15h) < 0 : Euler solution

decreases to zero, but oscillates on both sides of it

I h <
1

15
, then 0 < (1− 15h) < 1 : Euler solution decreases

monotonically to zero - like the exact solution!
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A simple stiff ODE
The implicit Euler method

I Instead of the derivative at the beginning, take that at the
end!

I This means

yi+1 = yi + ẏi+1h = yi − 15yi+1h

I This is an implicit expression for yi+1 - since it occurs on both
sides of the equation.

I In this case, the solution is easy!

yi+1 =
yi

1 + 15h

I As can be easily seen, the solution decreases monotonically to
zero for any positive h.

I It is unconditionally stable!
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= yi − 15yi+1h

I This is an implicit expression for yi+1 - since it occurs on both
sides of the equation.

I In this case, the solution is easy!

yi+1 =
yi

1 + 15h

I As can be easily seen, the solution decreases monotonically to
zero for any positive h.

I It is unconditionally stable!



A simple stiff ODE
The implicit Euler method

I Instead of the derivative at the beginning, take that at the
end!

I This means
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A slighly more complicated example

I Consider the ODE

dy

dt
= −1000y + 3000− 2000e−t , y (0) = 0

I The exact solution is

y (t) = 3− 0.998e−1000t − 2.002e−t

I The exact solution is initially dominated by the fast
exponential term e−1000t

I After a short period of time, the initial transient dies out and
the solution is dictated by the slow exponential.

I For this problem, the explicit Euler algorithm is

yi+1 = yi +
(
−1000yi + 3000− 2000e−ti

)
h

I While the implicit Euler algorithm is

yi+1 = yi +
(
−1000yi+1 + 3000− 2000e−ti+1

)
h
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Adams methods
I Aim : to determine yn ≡ y (xn), where y satisfies the IVP

dy

dx
= f (x , y) , y (x0) = y0

I At this stage we have already determined y0, y1, . . . yn−1.
I Can we exploit our knowledge of these prior values to derive

an accurate estimate for yn?
I Yes!

We have either the Adams-Bashforth methods:

yn = yn−1 + h (β1f (xn−1, yn−1) + β2f (xn−2, yn−2)

+ . . . βk f (xn−k , yn−k))

or the Adams-Moulton methods

yn = yn−1 + h (β0f (xn, yn) + β1f (xn−1, yn−1)

+β2f (xn−2, yn−2) + . . . βk f (xn−k , yn−k))

The former are explicit methods, while the latter are implicit.
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The Adams methods

Determining the coefficients
Rewrite

yn = yn−1 + h (β0f (xn, yn) + β1f (xn−1, yn−1)

+β2f (xn−2, yn−2) + . . .+ βk f (xn−k , yn−k))

as

y (xn)− y (xn−1)− h
(
β0y

′ (xn) + β1y
′ (xn−1)

+β2y
′ (xn−2) + . . .+ βky

′ (xn−k)
)

= 0

Using backwards Taylor series, we have

hy ′ (xn)− h2

2
y ′′ (xn) +

h3

3!
y ′′′ (xn)− h4

4!
y IV (xn) + . . .

−hβ0y ′ (xn)− hβ1

(
y ′ (xn)− hy ′′ (xn) +

h2

2!
y ′′′ (xn)

)
+ . . . = 0
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The Adams methods
This is of the form

C1hy
′ (xn) + C2h

2y ′′ (xn) + . . . ckh
ky (k) (xn)

with

C1 = 1− β0 − β1 − β2 − β3 − β4 . . .

C2 = −1

2
+ (β1 + 2β2 + 3β3 + 4β4 + . . .)

C3 = +
1

6
− 1

2
(β1 + 4β2 + 9β3 + 16β4 + . . .)

C4 = − 1

24
+

1

6
(β1 + 8β2 + 27β3 + 64β4 + . . .)

For an order p must have

C1 = C2 = . . . = Cp = 0
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C3 = +
1

6
− 1

2
(β1 + 4β2 + 9β3 + 16β4 + . . .)

C4 = − 1

24
+
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6
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The Adams methods

I For Adams-Bashforth β0 = 0.

I For k = 2, we have β3 =β4 = 0

I The remaining coefficients β1 and β2, obey

β1 + β2 = 1

β1 + 2β2 =
1

2

I Which gives β1 =
3

2
, and β2 = −1

2
.

I To get the 4th order Adams-Bashford method, we have to
solve

C1 = C2 = C3 = C4 = 0

I This gives β1 =
55

24
, β2 = −59

24
, β3 =

37

24
, β4 = −3
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The Adams methods

I For Adams-Moulton, we allow β0 6= 0.

I For k = 1, we can obtain a method accurate up to h2 by
chosing β0 and β1 so that C1 = C2 = 0.

I This leads to β0 = β1 =
1

2
I For k = 3, we can get a solution accurate up to h4by solving

C1 = C2 = C3 = C4 = 0, alongh with β4 = 0.

I This gives

β0 =
3

8
, β1 =

19

24
, β2 = − 5

24
, β3 =

1

24



Using the Adams methods

I There are many ways of using the Adams methods.

I They are often used in tandem - in a predictor-corrector
approach.

I We first use the Adams-Bashforth approach to predict yn:

y∗n = yn−1 + h
k∗∑
i=1

β∗i f (xn−i , yn−i )

(we are using * to denote parameters for the Adams-Bashforth
version)

I We follow this up with an Adams-Moulton step to correct the
yn:

yn = yn+1 + hβ0f (xn, y
∗
n ) + h

k∑
i=1

βi f (xn−i , yn−i )

I Typically we use k∗ = k + 1



Using the Adams methods

I There are many ways of using the Adams methods.

I They are often used in tandem - in a predictor-corrector
approach.

I We first use the Adams-Bashforth approach to predict yn:

y∗n = yn−1 + h
k∗∑
i=1

β∗i f (xn−i , yn−i )

(we are using * to denote parameters for the Adams-Bashforth
version)

I We follow this up with an Adams-Moulton step to correct the
yn:

yn = yn+1 + hβ0f (xn, y
∗
n ) + h

k∑
i=1

βi f (xn−i , yn−i )

I Typically we use k∗ = k + 1



Using the Adams methods

I There are many ways of using the Adams methods.

I They are often used in tandem - in a predictor-corrector
approach.

I We first use the Adams-Bashforth approach to predict yn:

y∗n = yn−1 + h
k∗∑
i=1

β∗i f (xn−i , yn−i )

(we are using * to denote parameters for the Adams-Bashforth
version)

I We follow this up with an Adams-Moulton step to correct the
yn:

yn = yn+1 + hβ0f (xn, y
∗
n ) + h

k∑
i=1

βi f (xn−i , yn−i )

I Typically we use k∗ = k + 1



Using the Adams methods

I There are many ways of using the Adams methods.

I They are often used in tandem - in a predictor-corrector
approach.

I We first use the Adams-Bashforth approach to predict yn:

y∗n = yn−1 + h
k∗∑
i=1

β∗i f (xn−i , yn−i )

(we are using * to denote parameters for the Adams-Bashforth
version)

I We follow this up with an Adams-Moulton step to correct the
yn:

yn = yn+1 + hβ0f (xn, y
∗
n ) + h

k∑
i=1

βi f (xn−i , yn−i )

I Typically we use k∗ = k + 1



Using the Adams methods

I But ... how do we start?

I This approach requires k values y0, y1, . . . , yk−1 to start !

I One approach could be to use an appropriate order RK
method to get these.

I There are other methods as well.


