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The Heat equation in 1D
The general IBVP is given by

I The PDE
ut = kuxx + q (x , t)

I The Initial Condition

u (x , 0) = f (x)

I The boundary conditions

a1u (0, t) + a2ux (0, t) = g1 (t)

and
b1u (c, t) + b2ux (c, t) = g2 (t)

In what follows we will solve the simpler case q (x , t) = 0
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The finite difference scheme

I We begin with a discretization of space-time

uni ≡ u (xi , tn) = u (x0 + i∆x , t0 + n∆t)

I We use finite difference approximations for the partial
derivatives

ut (xi , tn) = lim
δt→0

u (xi , tn + δt)− u (xi , tn)

δt
≈

un+1
i − uni

∆t

and

ux (xi , tn) ≈
uni+1 − uni

∆x

I We also need approximations for higher derivatives, e.g

uxx (xi , tn) ≈
uni+1 − 2uni + uni−1

(∆x)2
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The finite difference scheme for the heat equation
I The PDE ut = kuxx becomes

un+1
i − uni

∆t
= k

[
uni+1 − 2uni + uni−1

(∆x)2

]

I This yields an explicit formula for un+1
i in terms of the

“known” quantities uni , u
n
i±1 :

un+1
i =

k∆t

(∆x)2
(
uni+1 + uni−1

)
+

(
1− 2

k∆t

(∆x)2

)
uni , i = 1, 2, . . . ,N−1

I Note that the values u0i can be obtained from the initial
conditions u (x , 0) = f (x) : u0i = f (xi )

I The extreme values un+1
0 and un+1

N can be found using

a1u
n+1
0 + a2

un+1
1 − un+1

0

∆t
= g1 (tn+1)

b1u
n+1
N + b2

un+1
N − un+1

N−1
∆t

= g2 (tn+1)
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The finite difference scheme for the heat equation
The implicit version

I We can get an implicit equation for un+1
i by replacing the RHS

of ut = kuxx by the finite difference approximation at tn+1

I This gives

un+1
i =

k∆t

(∆x)2
(
un+1
i+1 + un+1

i−1
)
− 2

k∆t

(∆x)2
un+1
i + uni

I This leads to a set of simultaneous linear equations

−µun+1
i+1 + (1 + 2µ) un+1

i − µun+1
i−1 = uni , i = 1, 2, . . .N − 1

where µ =
k∆t

(∆x)2

I The extreme values follow from the BCs once again.

I These have to be solved for all the ui s at t = tn+1.

I The equations are sparse and so they can be solved efficiently.
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The finite difference scheme for the heat equation
Crank-Nicolson algorithm

I What if, instead of

un+1
i − uni

∆t
= k

[
uni+1 − 2uni + uni−1

(∆x)2

]

I and
un+1
i − uni

∆t
= k
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un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2

]

I we took
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∆t
=

k

2

[
uni+1 − 2uni + uni−1

(∆x)2
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un+1
i+1 − 2un+1

i + un+1
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I This is the Crank-Nicolson algorithm.

I This, of course, is also an implicit algorithm.
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Stability

I Consider the IBVP

ut = kuxx , u (x , 0) = f (x) , u (0, t) = u (L, t) = 0

I On physical grounds, we expect any solution to decrease to 0
over time.

I The explicit finite difference algorithm

un+1
i =

k∆t

(∆x)2
(
uni+1 + uni−1

)
+

(
1− 2

k∆t

(∆x)2

)
uni , i = 1, 2, . . . ,N−1

I can be written in a matrix form u(n+1) = Au(n) where
u(n) =

(
un1 , un2 , . . . , unN−1

)T
I and thus u(n) = Anu(0)

I For u(n) to decay to zero, all the eigenvalues of A must be
smaller than 1 in magnitude.
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Stability
I The (N − 1)× (N − 1) dimensional matrix A is

A =



1− 2µ µ 0
µ 1− 2µ µ

0 µ 1− 2µ
. . .

. . .
. . .

. . .
. . .

µ 1− 2µ µ
µ 1− 2µ


where µ =

k∆t

(∆x)2
.

I To find its eigenvalues we must solve DN−1 (λ) = 0 where
Dn (λ) is the determinant of the n× n tridigonal matrix whose
diagonal elements are 2α = 1− 2µ− λ and all the
sub-diagonal elements are µ.

I The determinant obeys the recursion relation

Dn = 2αDn−1 − µ2Dn−2

I subject to D1 = 2α, D2 = 4α2 − µ2 (or, equivalently, D0 = 1)
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Stability
The implicit algorithm

I The algorithm

un+1
i − uni

∆t
= k

[
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2

]

I Can be rewritten in the matrix form Au(k+1) = u(k) + b where

A =



1 + 2µ −µ 0
−µ 1 + 2µ −µ

0 −µ 1 + 2µ
. . .

. . .
. . .

. . .

−µ 1 + 2µ −µ
0 −µ 1 + 2µ


b =



α
0
...
...
0
β


I To analyze stability, consider the case α = β = 0, so that

u(k) = A−ku(0)

I For stability, we need ρ
(
A−1

)
< 1
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Stability
The implicit algorithm

I The eigenvalues of A are 1 + 2µ

(
1− cos

(
lπ

N

))

I Thus, those of A−1are

1

1 + 2µ

(
1− cos

(
lπ

N

))

I It is obvious that the denominator is always greater than 1

I The algorithm is unconditionally stable.

I So, by the way, is the Crank-Nicolson algorithm!
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