Numerical Differentiation
and
Integration

Ananda Dasgupta

PH3105
Autumn Senmester 2017



Numerical Differentiation

f'(x) = lim fixt h) — F(x)

h—0 h



Numerical Differentiation

F(x) = ,')i_rpo f(x+ h/))— f(x)

Of course, we can not take the limit as h — 0 numerically!



Numerical Differentiation

F(x) = ’!i_r>n0 f(x+ h/))— f(x)

Of course, we can not take the limit as h — 0 numerically!
We can use the approximation

F(x) ~ f(x+ hi)1— f(x)




Numerical Differentiation

F(x) = i!i_rPO f(x+ h/))— f(x)

Of course, we can not take the limit as h — 0 numerically!
We can use the approximation

F(x) ~ f(x+ hi)1— f(x)

- the forward difference formulal!



Numerical Differentiation

F(x) = i[i_fpo f(x+ h/))— f(x)

Of course, we can not take the limit as h — 0 numerically!
We can use the approximation

f(x+ h) —f(x)
h

f'(x) ~
- the forward difference formulal!

We could also use the backward difference formula:

f,(X) ~ f(X) — ;(X — h)




Numerical Differentiation

F(x) = i[i_fpo f(x+ h/))— f(x)

Of course, we can not take the limit as h — 0 numerically!
We can use the approximation

f(x+ h) —f(x)
h

f'(x) =~
- the forward difference formulal!

We could also use the backward difference formula:

f,(X) ~ f(X) — Z(X — h)

or even the central difference formula:

F(x) ~ f(x+h)2—hf(x— h)




Numerical Differentiation

F(x) = i[i_fpo f(x+ h/))— f(x)

Of course, we can not take the limit as h — 0 numerically!
We can use the approximation

f(x+ h) —f(x)
h

f'(x) =~
- the forward difference formulal!
We could also use the backward difference formula:
f(x)—f(x—h)
h

f'(x) ~

or even the central difference formula:

F(x) ~ f(x+h)2—hf(x— h)

We expect these approximations to improve as h becomes smaller!
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f(x) = exp(x) f'(0) =1

For h=0.1
calculated error
foward 1.0517 0.0517
backward 0.9516 0.0484
central 1.0017 0.0017
For h =0.01
calculated error

foward 1.00501667 0.00501667
backward 0.9950166 0.00498337
central 1.00001667 0.00001667

e Central difference does much better than the other two!
e |t improves at a better rate with smaller h as well!
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Numerical Differentiation : the math behind it!

A smooth function can be expanded in a Taylor series :

2 4

At ) = £+ A1) + )+ )+ 20

f(iv)(x) -

f(x + h) = f(x) + hf'(x) + O (h?)

Solving for f'(x) :
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The error in the forward difference formula is O(h)

Cutting down h by a factor of 10, reduces the error by the same
factor!

Backward difference exhibits similar behavior!
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2 4 .
Flx+h) = F(x) + hf'(x) + %f”(x) + —f’”( )+ %f('v)(x) +

! h2 1 h 11 v
Fx = h) = F() = hF/(x) + 5:£7(x) = 570 + —f( )(x) -
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f(x+ h) — f(x — h) = 2hf'(x) + h;f’”(x) +0 (h)
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e cutting down h by a factor of 10, reduces the error by a factor of
100!
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Numerical Differentiation : the math behind it!

Can we do better?

f(x + h) — f(x — h) = 2hf'(x) + h;f"’(x) +0 (h)

! 8h3 " 5
f(x +2h) — f(x — 2h) = 4hf (x)+7f (x)+ 0O ()

Eliminate f”'(x)!

8(f(x+ h) — f(x — h))—(f(x +2h) — f(x — 2h)) = 12hf'(x)+O (h°)

So

8(F(x + h) — f(x — h)) — (F(x +2h) — F(x — 2h))
12h

F(x) = +0 (h*)

This is the so called 5-point stencil formula for the first
derivative.
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Smaller h makes for better accuracy

>>> from math import exp
>>>h =1.0
>>> for i in range(20):
print h,abs((exp(h)-1)/h-1.)
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1.0
0.1
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0.0001
1le-05
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1le-07
1e-08

0.718281828459
0.051709180756
0.00501670841679
0.000500166708385
5.0001667141e-05
5.00000696491e-06
4.99962183431e-07
4.94336800383e-08
6.07747119297e-09



Smaller h makes for better accuracy

Or does it?

>>> from math import exp
>>>h =1.0
>>> for i in range(20):
print h,abs((exp(h)-1)/h-1.)
h /= 10.

1.0
0.1
0.01
0.001
0.0001
1le-05
1le-06
1le-07
1e-08
1e-09
le-10
le-11
le-12
le-13
le-14
le-15
le-16

1 ~ 17

0.718281828459
0.051709180756
0.00501670841679
0.000500166708385
5.0001667141e-05
5.00000696491e-06
4.99962183431e-07
4.94336800383e-08
6.07747119297e-09
8.2740370777e-08
8.2740370777e-08
8.2740370777e-08
8.89005823408e-05
0.000799277837359
0.000799277837359
0.110223024625

1.0

1 N
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Higher order derivatives

4

F(x + h) = F(x) + hf'(x) + ’;f"(x) n hjf’”(x) W) () 4

3! 41

2 3 4 .
F(x — h) = F(x) — hf'(x) + %f”(x) e+ %f('v)(x) L

3!
Adding:

f(x + h) + f(x — h) = 2f (x) + h*f"(x) + O (h*)

f(x + h) + f(x — h) — 2f(x)

f(x) = 2

+0 ()



Integral as area :

b -
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Integral as area : The Riemann sum

/b f(x)dx = N“Lnooh [f(a)+f(a+h)+...+f(a+ N—1h)]

[m] = =
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Integral as area :

A

Rectangular approximation

a

/b f(x)dx ~ h[f(a)+ f(a+ h) +

.+ flat+ N—1h)

[m]

=

DA



Integral as area :

Rectangular approximation
A

b
/ Fx)dx ~ h[f + f +
a

...+fN_1],

DA



Integral as area :

The (composite) Trapezoidal rule

a

fo+fi FAH+F
oJ2rl+1+2

2

b

/abf(x)dxzh[

fn—1+ fn
+ 2

DA
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[t (g

=} F = £ DA



Integral as area :

The (composite) Trapezoidal rule

How can we do better?

DA
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Simpson's one-third rule

To estimate the are under the curve passing
through (—h, ), (0,f) and (+h, f}) we
replace the curve by a parabola

y = ap + aix + aox?

passing through these points.
fo = ao
£ f. = ao—alh+azh2
0
L = ao+31h+32h2
f- ao = fo
fi —f
T T
fr fr+f- —2f
2T T




Simpson’s one-third rule
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Simpson’s one-third rule

a = fo
fo—f
1 2h
fr+1£ —2f
dy =

2h?
h
Area : /

(ao + ai1x + azx2) dx
—h

+h
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Simpson’s one-third rule

a = fo
fo—f
1 2h
fr + £ —2f
dy =

2h?
h
Area : /

(ao + ai1x + azx2) dx
—h

2
2agh + §azh3

+h

«O» «F»r « =

« =

DA



Simpson's one-third rule

+h

a = fo
fL—f
AT Ty
fo+f —2f
ag = —

2h?

(ao + aix + 32X2) dx

2
280/7 + §a2h3
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Simpson's one-third rule

+h

a = fo
fL—f
AT Ty
fo+f —2f
ag = —

2h?

(ao + aix + 82X2) dx

2
280/7 + §a2h3

h <2fo+f++f3 _%)

h
3 (Fe 40+ 1)



The composite Simpson one-third rule
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The composite Simpson one-third rule

T TN

e

a

Divide interval from a to b into even number of pieces:

b—a

h=
2N

A 4



The composite Simpson one-third rule
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h
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The composite Simpson one-third rule

A

e

/

N

a

Area

h
g[(fo—i-4f1+f2)+(f2+4f3+f4)+---

A 4



The composite Simpson one-third rule

e

/

N

a

Area

h
o+ 4h+B)+ (h+4h+h)+ ... +(fw+4hy 1+ )]

A 4



The composite Simpson one-third rule

A

T T

A 4

h
~ 5[(f(a)+f(b))+4(f1+f3+...+fz/\/_l)+2(f2+f4+...+fz,\,_z)



Newton-Cotes Quadrature Formulae

b_
Trapezoidal rule ?a (fo+ f)
1 b—
Simpson’s 3 rule Ta (fo+4A + h)

b_
Simpson’s % rule Ta (o +3A+3HL+£f)

(b ay

2880
(b a)f

6480
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Can we do better?

» In the Trapezoidal Rule, we carry out two function evaluations.
» This gives us accurate results for linear functions.

> Is it possible to get accurate results for higher order
polynomials with just two function evaluations?

» Note that in the Trapezoidal rule, we have

1
/_1 f(x)dx = waf (x1) + waf (x2)

where wiy = wy =1, xy = —1 and x, = +1.

» Can we choose the weights wi, ws and points xi, x» to get
more accurate results?

> Yesl!!!
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Two point Gauss Quadrature

/_11 f(x)dx = wif (x1) + waf (x2)

We want this to be accurate up to cubic order!
wi+w = 2
wixy + woxp =

W1X12 + W2X22 =

S wiNn ©

W1x13 + ngg’ =

Four simultatneous nonlinear equations in four unknowns!!

V3

wr = wp =1, Xp = —X| = —

3



Two point Gauss Quadrature

1
/ f(x)dx = wif (x1) + waf (x2)
-1
We want this to be accurate up to cubic order!
wi+w = 2
wixy + woxp =

W1X12 + W2X22 =

S wiNn ©

W1x13 + ngg’ =

Four simultatneous nonlinear equations in four unknowns!!
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Two point Gauss Quadrature : arbitrary interval

1
/ F(x)dx ~ f (_\@) +f <ﬁ>
1 3 3
Fine, but what about )
/ f(x)dx?
a

b+a+b—a
X =
2 2 ¢

Try




Two point Gauss Quadrature : arbitrary interval

1
/ f(x)dx ~ f (—£> +f <\/—§>
1 3 3
Fine, but what about i
/ f(x)dx?

X_b+a+b—a
2 2

Try

u

~

2 2 6 2 6

_b-a [f<b+a_\/§(b—a)>+f<b+a+\@(b—a)

)



