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Numerical Differentiation

f ′(x) ≡ lim
h→0

f (x + h)− f (x)

h

Of course, we can not take the limit as h→ 0 numerically!
We can use the approximation

f ′(x) ≈ f (x + h)− f (x)

h
- the forward difference formula!
We could also use the backward difference formula:

f ′(x) ≈ f (x)− f (x − h)

h

or even the central difference formula:

f ′(x) ≈ f (x + h)− f (x − h)

2h

We expect these approximations to improve as h becomes smaller!
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Numerical Differentiation : an example

f (x) = exp(x)

f ′(0) = 1

For h = 0.1

calculated error
foward 1.0517 0.0517
backward 0.9516 0.0484
central 1.0017 0.0017

For h = 0.01

calculated error
foward 1.00501667 0.00501667
backward 0.9950166 0.00498337
central 1.00001667 0.00001667

• Central difference does much better than the other two!
• It improves at a better rate with smaller h as well!
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Numerical Differentiation : the math behind it!

A smooth function can be expanded in a Taylor series :

f (x + h) = f (x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) +

h4

4!
f (iv)(x) + . . .

so
f (x + h) = f (x) + hf ′(x) +O

(
h2
)

Solving for f ′(x) :

f ′(x) =
f (x + h)− f (x)

h
+O(h)

The error in the forward difference formula is O(h)
Cutting down h by a factor of 10, reduces the error by the same
factor!
Backward difference exhibits similar behavior!
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Numerical Differentiation : the math behind it!
Why is central difference better?

f (x + h) = f (x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) +

h4

4!
f (iv)(x) + . . .

f (x − h) = f (x)− hf ′(x) +
h2

2!
f ′′(x)− h3

3!
f ′′′(x) +

h4

4!
f (iv)(x)− . . .

Subtracting,

f (x + h)− f (x − h) = 2hf ′(x) +
h3

3
f ′′′(x) +O

(
h5
)

f ′(x) =
f (x + h)− f (x − h)

2h
+O

(
h2
)

• cutting down h by a factor of 10, reduces the error by a factor of
100!
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Numerical Differentiation : the math behind it!
Can we do better?

f (x + h)− f (x − h) = 2hf ′(x) +
h3

3
f ′′′(x) +O

(
h5
)

f (x + 2h)− f (x − 2h) = 4hf ′(x) +
8h3

3
f ′′′(x) +O

(
h5
)

Eliminate f ′′′(x)!

8 (f (x + h)− f (x − h))−(f (x + 2h)− f (x − 2h)) = 12hf ′(x)+O
(
h5
)

So

f ′(x) =
8 (f (x + h)− f (x − h))− (f (x + 2h)− f (x − 2h))

12h
+O

(
h4
)

This is the so called 5-point stencil formula for the first
derivative.
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Smaller h makes for better accuracy

Or does it?

>>> from math import exp
>>> h = 1.0
>>> for i in range(20):
... print h,abs((exp(h)-1)/h-1.)
... h /= 10.
...

1.0 0.718281828459
0.1 0.051709180756
0.01 0.00501670841679
0.001 0.000500166708385
0.0001 5.0001667141e-05
1e-05 5.00000696491e-06
1e-06 4.99962183431e-07
1e-07 4.94336800383e-08
1e-08 6.07747119297e-09

1e-09 8.2740370777e-08
1e-10 8.2740370777e-08
1e-11 8.2740370777e-08
1e-12 8.89005823408e-05
1e-13 0.000799277837359
1e-14 0.000799277837359
1e-15 0.110223024625
1e-16 1.0
1e-17 1.0
1e-18 1.0
1e-19 1.0
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Higher order derivatives

f (x + h) = f (x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) +

h4

4!
f (iv)(x) + . . .

f (x − h) = f (x)− hf ′(x) +
h2

2!
f ′′(x)− h3

3!
f ′′′(x) +

h4

4!
f (iv)(x)− . . .

Adding:

f (x + h) + f (x − h) = 2f (x) + h2f ′′(x) +O
(
h4
)

f ′′(x) =
f (x + h) + f (x − h)− 2f (x)

h2
+O

(
h2
)
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Integral as area :

a b∫ b

a
f (x)dx = lim

N→∞
h
N−1∑
i=0

f (a + ih), h =
b − a

N



Integral as area : The Riemann sum

a b

∫ b

a
f (x)dx = lim

N→∞
h
[
f (a) + f (a + h) + . . .+ f (a + N − 1h)

]
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[
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Integral as area : Rectangular approximation

a b

∫ b

a
f (x)dx ≈ h [f0 + f1 + . . .+ fN−1] , fi ≡ f

(
a + i − 1h

)



Integral as area : The (composite) Trapezoidal rule

a b∫ b

a
f (x)dx ≈ h

[
f0 + f1

2
+

f1 + f2
2

+ . . .+
fN−1 + fN

2

]



Integral as area : The (composite) Trapezoidal rule

a b∫ b

a
f (x)dx ≈ h

[
f (a) + f (b)

2
+ (f1 + f2 + . . .+ fN−1)

]



Integral as area : The (composite) Trapezoidal rule

a b
How can we do better?



Simpson’s one-third rule

−h

f−

+h

f+

0

f0

To estimate the are under the curve passing
through (−h, f−), (0, f0) and (+h, f+)

we
replace the curve by a parabola

y = a0 + a1x + a2x
2

passing through these points.

f0 = a0

f− = a0 − a1h + a2h
2

f+ = a0 + a1h + a2h
2

a0 = f0

a1 =
f+ − f−

2h

a2 =
f+ + f− − 2f0

2h2



Simpson’s one-third rule

−h

f−

+h

f+

0

f0

To estimate the are under the curve passing
through (−h, f−), (0, f0) and (+h, f+) we
replace the curve by a parabola

y = a0 + a1x + a2x
2

passing through these points.

f0 = a0

f− = a0 − a1h + a2h
2

f+ = a0 + a1h + a2h
2

a0 = f0

a1 =
f+ − f−

2h

a2 =
f+ + f− − 2f0

2h2



Simpson’s one-third rule

−h

f−

+h

f+

0

f0

To estimate the are under the curve passing
through (−h, f−), (0, f0) and (+h, f+) we
replace the curve by a parabola

y = a0 + a1x + a2x
2

passing through these points.

f0 = a0

f− = a0 − a1h + a2h
2

f+ = a0 + a1h + a2h
2

a0 = f0

a1 =
f+ − f−

2h

a2 =
f+ + f− − 2f0

2h2



Simpson’s one-third rule

−h

f−

+h

f+

0

f0

To estimate the are under the curve passing
through (−h, f−), (0, f0) and (+h, f+) we
replace the curve by a parabola

y = a0 + a1x + a2x
2

passing through these points.

f0 = a0

f− = a0 − a1h + a2h
2

f+ = a0 + a1h + a2h
2

a0 = f0

a1 =
f+ − f−

2h

a2 =
f+ + f− − 2f0

2h2



Simpson’s one-third rule

−h

f−

+h

f+

0

f0

To estimate the are under the curve passing
through (−h, f−), (0, f0) and (+h, f+) we
replace the curve by a parabola

y = a0 + a1x + a2x
2

passing through these points.

f0 = a0

f− = a0 − a1h + a2h
2

f+ = a0 + a1h + a2h
2

a0 = f0

a1 =
f+ − f−

2h

a2 =
f+ + f− − 2f0

2h2



Simpson’s one-third rule

−h

f−

+h

f+

0

f0

To estimate the are under the curve passing
through (−h, f−), (0, f0) and (+h, f+) we
replace the curve by a parabola

y = a0 + a1x + a2x
2

passing through these points.

f0 = a0

f− = a0 − a1h + a2h
2

f+ = a0 + a1h + a2h
2

a0 = f0

a1 =
f+ − f−

2h

a2 =
f+ + f− − 2f0

2h2



Simpson’s one-third rule

−h

f−

+h

f+

0

f0

a0 = f0

a1 =
f+ − f−

2h

a2 =
f+ + f− − 2f0

2h2

Area :

∫ h

−h

(
a0 + a1x + a2x

2
)
dx

= 2a0h +
2

3
a2h

3

= h

(
2f0 +

f+ + f− − 2f0
3

)
=

h

3
(f+ + 4f0 + f−)



Simpson’s one-third rule

−h

f−

+h

f+

0

f0

a0 = f0

a1 =
f+ − f−

2h

a2 =
f+ + f− − 2f0

2h2

Area :

∫ h

−h

(
a0 + a1x + a2x

2
)
dx

= 2a0h +
2

3
a2h

3

= h

(
2f0 +

f+ + f− − 2f0
3

)
=

h

3
(f+ + 4f0 + f−)



Simpson’s one-third rule

−h

f−

+h

f+

0

f0

a0 = f0

a1 =
f+ − f−

2h

a2 =
f+ + f− − 2f0

2h2

Area :

∫ h

−h

(
a0 + a1x + a2x

2
)
dx

= 2a0h +
2

3
a2h

3

= h

(
2f0 +

f+ + f− − 2f0
3

)
=

h

3
(f+ + 4f0 + f−)



Simpson’s one-third rule

−h

f−

+h

f+

0

f0

a0 = f0

a1 =
f+ − f−

2h

a2 =
f+ + f− − 2f0

2h2

Area :

∫ h

−h

(
a0 + a1x + a2x

2
)
dx

= 2a0h +
2

3
a2h

3

= h

(
2f0 +

f+ + f− − 2f0
3

)

=
h

3
(f+ + 4f0 + f−)



Simpson’s one-third rule

−h

f−

+h

f+

0

f0

a0 = f0

a1 =
f+ − f−

2h

a2 =
f+ + f− − 2f0

2h2

Area :

∫ h

−h

(
a0 + a1x + a2x

2
)
dx

= 2a0h +
2

3
a2h

3

= h

(
2f0 +

f+ + f− − 2f0
3

)
=

h

3
(f+ + 4f0 + f−)



The composite Simpson one-third rule

a b



The composite Simpson one-third rule

a b

Divide interval from a to b into even number of pieces:

h =
b − a

2N



The composite Simpson one-third rule

a b

Area

h

3
[(f0 + 4f1 + f2) +

(f2 + 4f3 + f4) +

. . .

+ (f2N + 4f2N−1 + f2N)

]



The composite Simpson one-third rule

a b

Area

h

3
[(f0 + 4f1 + f2) + (f2 + 4f3 + f4) + . . .

+ (f2N + 4f2N−1 + f2N)

]



The composite Simpson one-third rule

a b

Area

h

3
[(f0 + 4f1 + f2) + (f2 + 4f3 + f4) + . . . + (f2N + 4f2N−1 + f2N) ]



The composite Simpson one-third rule

a b

∫ b
a f (x)dx

≈ h

3
[(f (a) + f (b)) + 4 (f1 + f3 + . . .+ f2N−1) + 2 (f2 + f4 + . . .+ f2N−2)]



Newton-Cotes Quadrature Formulae

Trapezoidal rule
b − a

2
(f0 + f1) −(b − a)3

12
f (2)(ξ)

Simpson’s
1

3
rule

b − a

6
(f0 + 4f1 + f2) −(b − a)5

2880
f (4)(ξ)

Simpson’s
3

8
rule

b − a

8
(f0 + 3f1 + 3f2 + f3) −(b − a)5

6480
f (4)(ξ)



Can we do better?

I In the Trapezoidal Rule, we carry out two function evaluations.

I This gives us accurate results for linear functions.

I Is it possible to get accurate results for higher order
polynomials with just two function evaluations?

I Note that in the Trapezoidal rule, we have∫ 1

−1
f (x)dx ≈ w1f (x1) + w2f (x2)

where w1 = w2 = 1, x1 = −1 and x2 = +1.

I Can we choose the weights w1,w2 and points x1, x2 to get
more accurate results?

I Yes!!!
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Two point Gauss Quadrature∫ 1

−1
f (x)dx ≈ w1f (x1) + w2f (x2)

We want this to be accurate up to cubic order!

w1 + w2 = 2

w1x1 + w2x2 = 0

w1x
2
1 + w2x

2
2 =

2

3
w1x

3
1 + w2x

3
2 = 0

Four simultatneous nonlinear equations in four unknowns!!

w1 = w2 = 1, x2 = −x1 =

√
3

3∫ 1

−1
f (x)dx ≈ f

(
−
√

3

3

)
+ f

(√
3

3

)
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Two point Gauss Quadrature : arbitrary interval

∫ 1

−1
f (x)dx ≈ f

(
−
√

3

3

)
+ f

(√
3

3

)

Fine, but what about ∫ b

a
f (x)dx?

Try

x =
b + a

2
+

b − a

2
u

≈ b − a

2

[
f

(
b + a

2
−
√

3(b − a)

6

)
+ f

(
b + a

2
+

√
3(b − a)

6

)]
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