
PH3105 Problem Set 2

A major problem in numerical computation is that of �nding the limit of a

sequence, provided it exists. Since the �sum� of an in�nite series S =
∑∞
n=0 tn is

really the limit of the sequence formed by the partial sums SN =
∑N
n=0 tn, N =

0, 1, 2, . . . summing up a series is essentially the same problem. One can not

really generate all terms in an in�nite sequence (or sum up all terms in an

in�nite series) in a numerical computation, and so one may resort to calculating

a very large number of terms of the sequence and hope that (after the initial

few terms) the �nal terms will be pretty close to the limit. However, this idea

often works badly in practice.

As an example, let us consider the sum

S = 1 − 1

2
+

1

3
− 1

4
+

1

5
− . . . =

∞∑
n=0

(−1)
n

n+ 1
(1)

This is an alternating series (the terms come with alternating + and - signs),

where the terms decrease monotonically in magnitude. It is a standard result

in mathematics that such a series always convergesa. Indeed the �sum� of this

series is easily seenb to be ln 2 = 0.6931471805599453. If you look at the �rst

few partial sums you get

S0 = 1.0, S1 = 0.5, S2 = 0.833333333333, S3 = 0.583333333333, S4 = 0.783333333333

S5 = 0.616666666667, S6 = 0.759523809524, S7 = 0.634523809524, S8 = 0.745634920635, S9 = 0.645634920635

etc. This shows that although the series may converge, it does so rather slowly.

Indeed it is easy to see that in such monotone alternating series, the truncation

error (the gap between the truncated sum SN and the actual sum S) is bounded

by the magnitude of the �rst term that you dropc. This shows that to sum up

the series to three decimal places, you must sum up at least the �rst thousand

terms. To get six �gure accuracy requires a whopping million terms! Obviously

this method needs to be improved if it is to become a practical one.

aIt is easy to see by rewriting the sum as
(
1− 1

2

)
+
(
1
3
− 1

4

)
+ . . . and 1 −

(
1
2
− 1

3

)
−(

1
4
− 1

5

)
− . . . that the sum has to lie between 0 and 1

bRecall that ln (1 + x) = x− x2

2
+ x3

3
− . . .

cThe proof is very similar to that of the convergence in the �rst footnote.

1

Q 1) The python command

ts = [(-1)**i/(i+1) for i in range(20)]

generates the �rst 20 terms in the in�nite series for ln 2. Write a program that

will print out the �rst twenty partial sums S0, S1, . . . S19 of this series.

Q 2) Use the python function sum() which takes a list of numbers as its input

and returns the sum of all the entries to write a single line of python code that

you can write in the python interpreter that will sum up the series to a million

terms. Check that your answer does have the desired accuracy.

While a direct sum of the series seems to be impractical, the partial sums that

I have noted down before (as well as the ones that you will calculate using your

program in Q1 above reveal a rather striking property of the partial sum. This

is that they are alternately larger and smaller than the �nal limit (S0 = 1 is

larger than ln 2, S1 = 0.5 is smaller, S2 is larger, and so on).

n

Sn

ln 2

0 1 2 3 4 5 6 7 8 9

This suggests a possible method to get to the answer faster. If we replace S0 by

the average of S0 and S1, S1 by the average of S1 and S2, and so on down the

line, we will get a new sequence that converges to the same sum, only does so

faster.

2

It is obvious from the graph below (note that the scale on the vertical axis has

been expanded) that this sequence is a marked improvement over the previous

one as far as convergence is concerned. In fact the 6th term in this sequence is

already accurate to two decimal places (something that would have taken the

original sequence a hundred terms!

n

Sn

ln 2

0 1 2 3 4 5 6 7 8 9
0.5

1.0

So, we have found a transformed sequence - one that converges to the same

limit as the earlier one - but does so faster. The process of changing the original

sequence SN to the new improved one S′N is our �rst example of a convergence

accelerating transform (CAT).

In this case, the �rst six terms of the transformed sequence S′N gives us two �gure

accuracy. Can we do better? It turns out that we can! The new sequence also

shares the property of taking larger and smaller values than the limit alternately

- which means that we can repeat the transformation - this time giving the �rst

8 terms of another sequence that converges to the limit even faster. All we have

to do to get a much better result is keep on repeating this transform

S(i+1)
n ≡ 1

2

(
S(i)
n + S

(i)
n+1

)
(2)

named, after its discoverer, the Euler transform. In this equation, the super-

�x (i) or (i+ 1) is the number of successive generations, the su�xes as usual

standing for the sequence index. The original sequence is denoted here by S
(0)
n .

Of course, if you start with a �nite number, say 10, terms in the �rst sequence,

you can only repeat this process 9 times. But at the end, the one term that you

will be left with is quite an accurate estimate for ln 2! In fact, it is accurate by

about 1 part in 105 - something that would have taken 105 terms if the original

sequence were used!

3

Q 3) The program EulerCAT.py carries out the procedure described above.

It asks the user for the number of terms to use in the original series, creates

a list of partial sums, and then repeatedly applies the Euler CAT as long as

the sequence has more than one term left. The �nal term that is left at the

end of the process is our estimate for the sum. The program can be shortened

considerably by using the numpy array object. Rewrite the program using this.

Q 4) The Euler CAT can be used for any alternating decreasing series. Use your

program to sum the two series

1 − 1

2
+

1

4
− 1

8
+

1

16
− ...

and

1 − 1

3
+

1

5
− 1

7
+

1

9
− . . .

In each case start with ten terms of the original series and comment on how

accurate your �nal answer is. (The �rst series obviously sums to 2
3 , while the

second one's sum is π
4).

So far, we seem to have a wonderfully good way of summing up series. However,

note that our method would completely break down for series like

ζ (2) ≡ 1 +
1

22
+

1

32
+

1

42
+ . . . =

∞∑
n=1

1

n2
(3)

This is also a convergent series, but here the partial sums approach the limit

monotonically from below. This means that averaging two successive terms

takes you further away from the limit than the last term that you use, making

the transformed series converge even more slowly!

n

Sn ζ(2)

0 1 2 3 4 5 6 7 8 9

4

In order to understand what needs to be done to accelerate this kind of series,

let us �rst return to the example of the series for ln 2. Let us look closely at

any two successive terms Sn and Sn+1. The actual sum of the series, S, lies

somewhere in between. We can write S as

S = Sn + gn∆Sn

where ∆Sn ≡ Sn+1 − Sn and gn is a number between 0 and 1, whose interpre-

tation you can see in the �gure below.

n

Sn

S

Sn

Sn+1

gn

Note that since this merely de�nes gn through

gn =
S − Sn
∆Sn

(4)

this can always be done! In this language we can see that what we had really

done in the Euler method is pretend that the sum S is exactly half way on the

line joining the points (n, Sn) and (n+ 1, Sn+1), i.e., the assumption gn = 1
2 . Of

course, since gn isn't really 1
2 , assuming this does not really sum the series, but

the estimate Sn + 1
2∆Sn gives us the n-th term of a new series that coinverges

better.

In order to go beyond the Euler CAT, we must give up the model gn = 1
2 . The

next simplest model for gn that we can think of is that gn is a constant, but not

necessarily 1
2 . Using ∆gn = 0, we can reqrite (4) to the form

∆

(
S

Sn

)
= ∆

(
Sn

∆Sn

)
, or S =

∆ (Sn/∆Sn)

∆ (1/∆Sn)

5

After a bit of algebra you can rewrite this expression (work this out using the

result ∆
(
an
bn

)
= (∆an)bn−an(∆bn)

bnbn+1
which is rather easy to prove itself) as

S = Sn − (∆Sn)
2

∆2Sn

Of course, once again, the model gn = constant is not exact, so that the value

of S we get above is not the exact sum. However, we may reasonably expect

this to lead to the n−th term of a a new (hopefully improved) sequence! This

gives birth to the famous ∆2 transform of Aitken

S(i+1)
n = S(i)

n −

(
∆S

(i)
n

)2

∆2S
(i)
n

(5)

Note that while the restriction that gn must lie in between 0 and 1 is perfectly

reasonable for alternating series, it is not correct for monotone series. However

the assumption that gn is a constant, while not exact, can be approximately

valid even for the latter. Thus the ∆2 transform can be used to accelerate

such monotone convergent sequences. Note also that each time this transform

is carried out, the number of terms in the next sequence decreases by 2. We

can repeat this transform over and over again, as long as the sequence has more

than two terms left. When we stop, the last term of the last sequence that we

obtain should be a very good estimate for the limit.

Q 5) Write a program that will use the Aitken ∆2 transform to sum up ζ (2).

The exact value of ζ (2) is π2

6 . Determine how many signi�cant digits can be

obtained correctly by starting from the �rst ten partial sums.

Q 6) As you may guess, the transformation based on ∆2gn = 0 (we no longer

model gnas a constant, but assume that ∆gn is nearly so) is also quite powerful.

This reads, obviously

S(i+1)
n =

∆2
(
S

(i)
n /∆S

(i)
n

)
∆2 (1/∆Sn)

Write a program to implement this algorithm and use it to estimate how accurate

an answer you get for all the example series in this problem set.

6

