PH3105 Problem Set 8

One of the methods for solving an eigenvalue equation is the so called shooting
method. Let me illustrate this with an example that tries to find the first few
eigenvalues for the one dimensional Schrédinger equation
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We will begin with the harmonic potential V (z) = Fmw?z?. Let us first rewrite

the equation
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in a dimensionless form more suitable for numerical computation. A simple re-
scaling of the variable x leads to the equation
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where the eigenvalue A is related to the energy by A = T Note that the value

of A will be quantized to the familiar values of 2n + 1, n € Z once we impose the
boundary conditions ¥ — 0 as x — +oo. We can’t do a numerical integration from
x — —oo all the way to x — +00. So, we will stick to slightly different boundary
conditions : ¥ — 0 as © — £L, where L is sufficiently large. Indeed if we chose
L so large that the energy eigenfunctions for the exact problem are very small for
|z| > L, then the results we will get for A will come close to the exact ones. In the
following we will take L = 5 - as we will see, this gives us quite accurate results for
the quite a few of the lower eigenvalues.

In order to solve this we start by discretizing (0.3) by using the approximation
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to get (using the familiar notation v¢,, = ¢ (x,), x, = —L + nh
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which can be rewritten to yield
(0.4) Y1 = [2— B (A —22)] ¥n — Yp1

This allows us to calculate 1,11 from any two preceding values of .




To start the solution then, we will need the values of ¥y and and 1 - all subsequent
values will follow (for a particular value of ). In this case, v is already known
1o = ¢ (—L) = 0. What about ¢, ? The answer is that it (almost) does not matter.
Since (0.3) is linear, if ¢ (z) is a solution, so is any multiple. We will take ¢; = 1.0
(Can you figure out why I said (almost) a while ago?). Of course, if you used any
value for A, you will not get ¢ (+L) = 0. The correct values of \ are the ones that
make ¢ (+L) vanish. It is as if you were aiming at the target (in this case, getting
¥ (L) = 0) and adjusting your aim (the value of \) until you get as close as you
need - hence the name “shooting method”.
Let us define a python function called psiAtL() which does just what its name
suggests, starting from ¢y = 0 and ¢; = 1, it calculates the value of ¢ (+L)
def psiAtL(lam):
p0, pl = 0.0,1.0
x = -L+h
while x<=+L:
pO,pl = pl, (2-h**2* (lam-x**2))pl-p0
x += h
return pl
To find the eigenvalues - all we have to do next is solve for the roots of this function
using, say, the bisection method. One word of warning - this is a very steep function
of \ - so your stopping criterion should be making the bracketing interval sufficiently
small - as opposed to trying to make |i) (+L)| very small.

Q 1) Write a program that uses the shooting method to determine the lowest five
eigenvalues of (0.3)

Q 2) Modify the program slightly to find the eigenvalues of an anharmonic oscillator
with potential

V(z) = 2% + ax*

Use your program to plot the variation of the energy eigenvalue versus the parameter
afor at least the three lowest eigenvalues (a ranging from 0 to 1).

Q 3) Find the lowest three eigenvalues for the potential



While the method outlined above works to some extent, the integration routine
outlined in (0.4) is of limited accuracy. We will now study a more accurate algorithm
called the Numerov algorithm which takes advantage of the particular structure of
the Schrédinger equation (0.1) (it is linear and there is no term involving the first
derivative). We first write the equation in a slightly more convenient form

(0-5) Y (x) + K (2) 1) () =0

where k2 (z) = 271_7;1 (B -V ().

From the Taylor series one can easily show that
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We can differentiate (0.5) twice to obtain
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so that we can write (0.5) in the form
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Finally we approximate [k2 (z) ¢ (x)] " by
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and rearrange to get an estimate for ¥, 41 which is accurate up to O (h%) locally.
This is the Numerov algorithm.

4) Use the Numerov algorithm to solve for the lowest four eigenvalues of the har-
monic oscillator.

Q 5) The Morse potential
v (33) - D (6—2(1(3:—1-0) _ e—a(z—wo))

where D and a are constants, is one of the very few potentials for which the
Schrodinger equation can be solved analytically. Show that for an appropriate
change of variables, the equation can be written in the form (0.5) with

E* (z) =\ —p? (e_2£ —e ")

Use the shooting method with the Numerov algorithm to find the first eight eigen-
values of the Morse potential.

Q 6) We can of course write (0.5) in the form
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of coupled first order differential equations. We can solve these using RK4 and then
apply the shooting method. Solve Q5 using this method.



