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I. INTROUCTION

The Lienard-Wiechart potentials have already been derived. In the relativistically covariant form they were written
as:

Aµ(x) =
µ0

4π
qc

[
Ũµ(τ)

Ũν(τ)[r − w̃(τ)]ν

]
τ=τ0

(1)

We now write these potentials in the non-covariant form(as was derived in class).We have already seen that the motion
of the charge satisfies the condition:-

r0 − w̃0(τ0) = |r− w̃(τ0)| = R (2)

This implies

V.(r − w̃(τ0) = Ũ0[r0 − w̃0(τ0]− Ũ.[r− w̃(τ0)]

= γcR− γŨ.nR
= γcR(1− β.n) (3)

where n is the unitvector in the direction r− w̃(τ) and β = Ũ(τ)/c. Hence, in the relativistically non-covariant form,
this can be written as

Φ(x, t) =
1

4πε0

[
e

(1− β.n)R

]
τ0

(4)

A(x,t) =
µ0

4π

[
eβ

(1− β.n)R

]
τ0

(5)

II. DERIVING THE ELECTROMAGNETIC FIELDS

The electromagnetic fields Fαβ(x) can be calculated directly from eq.(1).However,in this case the calculations
become far simpler if we go back to the integral form of eq.(1)

Aµ =
µ0

2π
qc

∫
dτŨµθ(r0 − w̃0(τ))δ

(
(r − w̃(τ))2

)
(6)

In order to determine the fields, we carry out a partial derivative with respect to the observation point x.Now,such
a differentiation when acting on the theta function would produce δ[r0 − w̃0(τ ] and so constrain the delta function
to be δ(−R2).There will be no contribution from this differentiation except ar R = 0. Excluding that point from
consideration we get

∂νAµ =
µ0

2π
qc

∫
dτŨµθ(r0 − w̃0(τ))∂νδ

(
(r − w̃(τ))2

)
(7)

In order to take the derivative we perform the following trick:

∂νδ[f ] = ∂νf.
d

df
δ[f ] = ∂νf.

dτ

df

d

dτ
δ[f ] (8)

where f is (r − w̃(τ))2.The differentiation would yield:

∂νδ[f ] = − (r − w̃)ν

Ũ .(r − w̃)
(9)



2

This result is inserted into eq.(7).After that an integration is performed taking the delta function as the first func-
tion.The result can be written down as follows:

∂νAµ =
µ0

2π
qc

∫
dτ

∂

∂τ
[
(r − w̃)νŨµ

Ũ .(r − w̃)
]θ(r0 − w̃0(τ))δ

(
(r − w̃(τ))2

)
(10)

In this integration, the derivative of the theta function doesn’t contribute.The form of this equation is the same as
that of eq.(6) with Ũµ being replaced by the derivative term. Now,the result of eq.(6) is written in eq.(1).Hence,we
can directly read off the result. The field strength tensor is

F νµ =
µ0

4π

[
qc

Ũ .(r − w̃)
∂

∂τ
[
(r − w̃)νŨµ − (r − w̃)µŨν

Ũ .(r − w̃)
]

]
(11)

The whole expression is evaluated at the retarded proper time τ0. In order to explicitly determine the electric and
magnetic fields as functions of the velocity and accelration,we need to use the following result:-

dŨ

dτ
= [cγ4β.β̇, cγ2β̇ + cγ4β(β.β̇)] (12)

Using this expression,we can write the electric and magnetic fields in their more familiar form as had been derived in
class:-

E(r,t) =
q

4πε0
R

(R.u)3
[(c2 − u2u−R× (u× a)] (13)

B(r,t =
1
c
n×E (14)

In the above

u = cn−U (15)
R = r − w̃ (16)

III. CONCLUSION

The Lienard-Wiechert potentials play a pivotal role in the analysis of power radiated by a moving charge.This
method avoids the lengthy and cumbersome approach of Vector Calculus and shows a very elegant way of arriving at
the Lienard-Wiechert potentials and also the fields arising from these potentials.
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