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1.1 Bifurcation

In the previous class, dependence of the dynamics of the system on initial con-
ditions was studied. Geometric approach helped us in extracting its qualitative
features for different types of initial conditions. But a system’s dynamics not
only depends on initial conditions specified. It also depends upon parameters.
They are variables that characterize the system (and therefore, are part of gov-
erning differential or difference equation) and stay constant during system’s
time-evolution. The qualitative structure of flow can change as parameters are
varied. In this aspect, even one-dimensional systems, which don’t exhibit any
oscillations, offers valuable lessons. We would find that fixed points can be
created or destroyed, or their stabilities can change as parameters are varied.

The qualitative changes in the dynamics as parameters are changed are called
bifurcations, and the parameter values at which they occur are called bifur-
cation points.

1.1.1 Saddle-node Bifurcation

If you are looking for a mechanism by which fixed points are created and de-
stroyed, saddle-node bifurcation would do it for you. Its two prototypical ex-
amples are

ẋ = r + x2, ẋ = r − x2 (1.1)

where r is a parameter, which may be positive, negative or zero.
For the first equation, when r is negative, there are two fixed points, one

stable and one unstable. For r = 0, there is one half-stable fixed point, and for
r > 0, there is no fixed point. Moreover, for r ≤ 0, we note that fixed point x∗

satisfies r + x2. We can depict this graphically as follows.
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Figure 1.1: fixed points for different r

x

r

unstable

stable

Figure 1.2: Bifurcation diagram for ẋ = r + x2

Similarly, for the second equation, we can see that it has no fixed points for
r < 0, one half-stable fixed point for r = 0, and two fixed points(one stable and
one unstable) for r > 0. Moreover, for r ≥ 0 we note that fixed point x∗ satisfies
r − x2 = 0. We can depict this graphically as follows.
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Figure 1.3: Bifurcation diagram for ẋ = r − x2

There are various name for saddle-node bifurcation– fold bifurcation, turning-
point bifurcation and blue sky bifurcation.
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Figure 1.4: Geomterical method for finding fixed points for ẋ = r − x− e−x

Example

ẋ = r − x− e−x (1.2)

Using geometric approach, one finds that for r < rc, there are no fixed points
and two for r > rc, where rc is the bifurcation point. For r = rc, there is one
half-stable fixed point. Using tangency condition, we find that rc = 1.

Normal forms

Comparing equation (1.2) with our protypical examples, we suspect that it’s the
old wine in the new bottle. Indeed, this is the case as the following calculation
shows.

ẋ = r − x− e−x

= r − x− [1− x+
x2

2
+ · · · ]

w r − 1− x2

2
, x� 1 (1.3)

The change of variables can recast the above equation into our old friend Ẋ =
R−X2, where X = αx. On solving for α and R, we get r−1 = 2R and x = 2X.

The above example shows why we say the equations ẋ = r+x2 or ẋ = r−x2
are “prototypical”. In a certain sense, they are representative of all saddle-node
bifurcations. Conventionally, they are known as normal forms for the saddle
node-bifurcation. In general, recipe for finding the bifurcation point(rc) would
be to solve for rc satisfying

• f(xc, rc) = 0

• ∂f

∂r
(xc, rc) = 0

where xc = x∗
∣∣∣∣
r=rc

.
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Using Taylor expansion, one can see that why saddle node-bifurcations typi-
cally have these algebraic forms. Let’s examine the behavior of ẋ = f(x, r) near
the bifurcation point (xc, rc).

ẋ = f(x, r)

= f(rc, xc) + (x− xc)
∂f

∂x

∣∣∣∣
xc,rc

+ (r − rc)
∂f

∂r

∣∣∣∣
xc,rc

+ (x− xc)2
1

2

∂2f

∂x2

∣∣∣∣
xc,rc

+ · · ·

= (r − rc)
∂f

∂r

∣∣∣∣
xc,rc

+ (x− xc)2
1

2

∂2f

∂x2

∣∣∣∣
xc,rc

+ · · ·

' a(r − rc) + b(x− xc)2, (x− xc)� 1

where a=
∂f

∂r

∣∣∣∣
xc,rc

, b=
1

2

∂2f

∂x2

∣∣∣∣
xc,rc

In the above, we have used the conditions for bifurcation point.

1.1.2 Transcritical Bifurcation

Here the number of fixed points remains fixed as the parameter is changed but
their nature might change. The normal form for a transcritical bifurcation is

ẋ = rx− x2 (1.4)
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Figure 1.5: Fixed points for different r

Zero remains a fixed point for all values of r. For r < 0, there is an unstable
fixed point at x∗ = r and a stable fixed point at x∗ = 0. For r = 0, there is
no fixed point except the one half-stable sitting at origin. For r > 0, the origin
has become unstable, and x∗ = r is now stable. We note that fixed point (x∗)
satisfies x = 0 and x = r for all values of r. Thus, graphically, we get figure(1.6)

We obtain similar diagram for first-order phase transition plot of gibbs free
energy per unit mass (g) as a function of temperature. We find that there is a
kink in the diagram. The underlying physics can be explained using Transcritical
Bifurcation. Liquid has a lower entropy than gas. Since, liquid’s g rises above
than that of gas after transition temperature(Tc), substance transits from liquid
state to gaseous. The gaseous state becomes more stable after Tc due to lower
g. (Note that g remains continous)
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Figure 1.6: Bifurcation diagram for Transcritical Bifurcation
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Figure 1.7: First order phase transition

1.1.3 Pitchfork Bifurcation

Similar to transcritical bifurcation, here also a point remains fixed as parameter
is varied. But what sets it apart is that new fixed points appear suddenly in
addition to the fixed fixed point.

Supercritical Pitchfork Bifurcation

The normal form of the supercritical pitchfork bifurcation is

ẋ = rx− x3 (1.5)

Now since, the above equation is symmetric under x→ −x, the solutions would
be odd as plotted below for different values of r.

For all values of r, origin is the fixed point. For r < 0, it is the only fixed
point, and it is stable. When r = 0, it is still stable but the derivative goes to
zero at origin. As a result, the decay is much slower. Critical slowing down
in physics literature shows the same phenomenon. For r > 0, origin becomes
unstable, which is more than compensated by appearance of two stable fixed
points on either sides of origin. We also note that fixed point x∗ satisfies x = 0
for all values of r. For r > 0, it also satisfies x = ±

√
r. Thus, graphically we

obtain
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Figure 1.8: fixed points for different r
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Figure 1.9: Bifurcation diagram for Supercritical Bifurcation

1.2 Uniqueness of solution

Let’s try to find the solution to ẋ = xn, n < 1 starting from x0 = 0. Newly
learned geometric approach tells us that the solution is trivially x(t)=0 as x=0
is a fixed point. If you are skeptic enough not to accept it, and want to see it
for yourself using analytic method, you would be rewarded.∫

x−ndx =

∫
dt

x1−n

1− n
= t, ∵ x(0) = 0, n < 1

x = [(1− n)t]1/1−n (1.6)

So, we find that there are at least two solutions for the given initial condition!
The uniqueness of trajectories in the phase space (which was argued earlier as
the reason for promoting time as one of the dimensions of the phase-space for
non-autonomous systems) has broken down.

To deal with such pathological cases, we ask for help from Picard’s Theorem,
which says an initial value problem

ẋ = f(x), x(0) = x0 (1.7)

it would have unique solution on some time interval (−τ, τ) about t=0, if f ′(x)
is continuous on an open interval R of the x-axis, and x0 ∈ R
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In the above example, derivative of f(x) = xn, n < 1 is not continuous at
x = 0, and thus, uniqueness is not guaranteed.

Now once we have the recipe for identifying the problematic cases, how do
we understand them? As pointed out by Strogatz, we would find that non-
uniqueness is sometimes not that bad. It may be obvious and natural in some
cases. He talks about a leaky bucket. Physics can uniquely predict how much
time it takes for the bucket to empty given the initial level of water in it.
However, by seeing a puddle beneath such an empty bucket, it is not possible
for even Sherlock Holmes to tell when the bucket was full. For all you know,
Strogatz says, it could have emptied a minute ago, ten minutes ago, or whatever.
(Here we are ignoring evaporation rate.)
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