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1 Lecture 1 : July 29, 2016

In this course we shall discuss two broad topics : Topology (a study of the notion
of continuity generalized to abstract spaces) and Differential Geometry (a study
of the notions of differential and integral calculus generalized to abstract spaces),
in roughly that order. Topology can be thought to be a kind of “rubber-sheet
geometry”. You can view a subset of the space under consideration as an object
and continuously deform its “shape”. However, all these deformed shapes are
identified to be one and the same as far as topology is concerned. For example,
on a 2-dimensional sheet (R2), a circle can be continuously deformed to a square,
or any closed loop for that matter. All these closed loops are considered to be
the same object in topology. In this course we shall try to make sense of this
seemingly abstruse introduction.

1.1 Definition : Topological Spaces :

A topological space is an ordered pair, (X,T ), where X is a set and T ⊆ 2X
1with the following properties :

(i) ∅, X ∈ T

(ii) Given O1,O2 ∈ T , we must have O1 ∩ O2 ∈ T .

(iii) Given a countable set {O1,O2, . . .} ⊂ T , ∪
i
Oi ∈ T .

Then,
T is called a topology on X, and

elements of T are called open sets in this topology.
(1)

Note : The defining property (ii) can be used recursively to prove that, for
a finite k ∈ N, {O1,O2, . . . ,Ok} ⊂ T =⇒ O1 ∩ O2 ∩ . . . ∩ Ok ∈ T . Thus, (ii)
and (iii) are often pronounced in words as the following : a finite intersection
of open sets is open, and an arbitrary union of open sets is open.

1.2 An example :

Take X = R2. Define d : R2 × R2 → R+ 2such that x ≡ (x1, x2) , y ≡ (y1, y2) ∈
R2 =⇒ d (x, y) =

√
(x1 − y1)

2
+ (x2 − y2)

2
. The function d is the Euclidean

metric on R2 and d (x, y) is the Euclidean distance between x and y. We shall
learn more about metrics and distances soon. We define open balls and closed
balls in R2 using this metric.

1.2.1 Definition : Open Ball in R2 :

For δ > 0, and x ∈ R2, Bδ (x) =
{
y ∈ R2 : d (x, y) < δ

}
is defined to be the

open ball of radius δ centered at x. Bδ (x) is also known as the δ-neighborhood
of x.

12X stands for the power set of X.
2R+ ≡ {x ∈ R : x ≥ 0}
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1.2.2 Definition : Closed Ball in R2 :

For δ > 0, and x ∈ R2, Bδ (x) =
{
y ∈ R2 : d (x, y) ≤ δ

}
is defined to be the

closed ball of radius δ centered at x.

Clearly, an open ball does not contain its boundary whereas a closed ball
does. We shall make this statement more precise when we define interior points,
exterior points and boundary points. Now consider T = collection of all open
balls in R2. Is

(
R2,T

)
a topological space? Let’s find out.

(i) ∅ ∈ T since Bδ=0 (x) = ∅. Also, X = R2 ∈ T is obvious.

(ii) Let O1,O2 ∈ T , hence both are open balls. Either O1 ∩ O2 = ∅ ∈ T , or
O1 ∩ O2 6= ∅, in which case O1 ∩ O2 /∈ T in general, because non-empty
intersection of two open balls is not necessarily an open ball. This can be
seen readily by drawing a diagram.

(iii) For the same reason as above, union of two open balls is not an open ball
unless one of the open balls is contained in the other.

Clearly, the collection of all open balls is not a topology on R2. To remedy the
problem, we define open sets.

1.2.3 Definition : Open Set in R2:

A subset U ⊆ R2 is defined to be an open set if ∀x ∈ U , ∃δ > 0 : Bδ (x) ⊆ U .
i.e., given any element x in U , we should be able to find a δ > 0 small enough
for Bδ (x) to fit entirely inside U .

1.2.4 Definition : Closed Set in R2:

A subset C ⊆ R2 is defined to be a closed set if its complement Cc is open in
R2.
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1.2.5 Theorem :

An open ball (in R2) is an open set (in R2).
Proof : The proof of this theorem can easily be done geometrically. However,
we won’t write down a proof now because we shall very soon prove a much more
general result (valid for all metric spaces) of which this theorem is a special case.

1.2.6 Theorem :

T =
{
O : O is an open subset of R2

}
is a topology on R2. This is called the

Euclidean topology on R2, denoted by TEuclidean.
Proof : ∅ ∈ T is vacuously3 true. R2 ∈ T is trivially true, since it is the
entire set and nothing can lie outside it. Now, let U1,U2 ∈ T and x ∈ U1 ∩ U2.
=⇒ ∃δ1, δ2 > 0, such that Bδ1 (x) ⊆ U1 and Bδ2 (x) ⊆ U2. Clearly, if δ1 < δ2
then Bδ1 (x) ⊂ Bδ2 (x) ⊆ U2. Therefore, Bδ1 (x) ⊂ U1 ∩ U2. Similarly, if δ2 < δ1
then Bδ2 (x) ⊂ U1 ∩ U2. Thus, U1 ∩ U2 ∈ T . Again, let Ui ∈ T , where i
belongs to some index set, and x ∈∪

i
Ui. =⇒ ∃j : x ∈ Uj . Since Uj is open

(by hypothesis), ∴ ∃δ > 0 : Bδ (x) ⊆ Uj ⊆∪
i
Ui. So, Bδ (x) ⊆∪

i
Ui and, since

x ∈∪
i
Ui is arbitrary, ∪

i
Ui ∈ T . This completes the proof that T is a topology

on R2.
Note : The second defining property of a topology is that finite intersections

of open sets be open. This property has been shown to hold in the example
given above. One might wonder if T from our given example is “overqualified”
as a topology, meaning, if it also satisfies “arbitrary intersection of open sets is
open”. The answer to that is a resounding no. We shall prove it in the next
class by providing an example where the intersection of an infinite collection of
open subsets of R2 is not open.

3We cannot find a point in ∅ that does not have any δ-neighborhood entirely inside ∅ simply
because there are no points in ∅.
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2 Lecture 2 : August 2, 2016

We shall start today by defining a few concepts from point set topology.

2.1 Point Set Topology on R2:

2.1.1 Definition : Interior Point :

A point x ∈ R2 is called an interior point of A ⊆ R2 if ∃δ > 0 such that
Bδ (x) ⊆ A.

2.1.2 Definition : Exterior Point :

A point x ∈ R2 is called an exterior point of A ⊆ R2 if ∃δ > 0 such that
Bδ (x) ∩A = ∅.

2.1.3 Definition : Boundary Point :

A point x ∈ R2 is called a boundary point of A ⊆ R2 if ∀δ > 0, Bδ (x) ∩ A 6=
∅ 6= Bδ (x) ∩Ac.
Note that the definition above does not force a boundary point of a set to be
included in the set.

2.1.4 Theorem :

Given R2 and its topology T , the collection of all open sets in R2, where open
and closed sets are defined with the help of the Euclidean metric, the following
are true.

(a) A set O ⊆ R2 is open iff all its points are interior points of O.

(b) An open set O ⊆ R2 contains none of its boundary points.

(c) A closed set C ⊆ R2 contains all its boundary points.

(d) ∅ and R2 are both open and closed. Such sets are called Clopen sets.

(e) A set may be neither open nor closed.

Proof : This will be your exercise. All these results are special cases of more
general results valid in general metric spaces.

2.2 The example we promised to give last time :

Towards the end of the last class, we stated that arbitrary intersection of open
sets in R2 is not open. Today we shall prove that claim with an example. Con-

sider the (countable) collection of open balls
{
B1 (x) , B 1

2
(x) , . . . , B 1

n
(x) , . . .

}
in R2. We claim that

∞
∩
n=1

B 1
n

(x) = {x}, which is not an open set. We shall
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prove the claim by contradiction. First, it is easily seen that x ∈ B 1
n

(x)∀n ∈ N

and thus x ∈
∞
∩
n=1

B 1
n

(x). Assume that y ∈
∞
∩
n=1

B 1
n

(x) and y 6= x. ∵ y 6=
x, d (x, y) > 0. Therefore, we can find a large enough n ∈ N such that n > 1

d(x,y)

and thus d (x, y) > 1
n . So, y /∈ B 1

n
(x). Thus, y /∈

∞
∩
n=1

B 1
n

(x), a contradiction.

Hence
∞
∩
n=1

B 1
n

(x) = {x}.
Now recall the way we proved that intersection of two open sets in R2 is open.

For any element x in the intersection, there exist δ1,2 such that the balls Bδ1 (x)
and Bδ2 (x) fit entirely inside the two open sets respectively. Then we choose
δ to be the smaller of δ1,2 so that Bδ (x) fits entirely inside the intersection.
As long as we are talking about any element in the intersection of a finitely
many open sets, the smallest δ can be chosen to prove that the open ball Bδ
lies entirely inside the intersection, thus making the intersection an open set.
In the above example, we have infinitely many open balls centered at x, with
radii

{
1, 1

2 ,
1
3 , . . . ,

1
n , . . .

}
. This set does not have a minimum, it has an infimum

which is 0. Although all elements of this set of radii are positive, the infimum
is non-positive (zero). This makes all the difference from the finite case!

2.3 Some examples of topology :

We have gleaned a lot of information from the first example of topology we
encountered :

(
R2,TEuclidean

)
. Let us study some more examples.

2.3.1 Example 2 :

Let X be any set and T = {∅, X}. Obviously, ∅ ∈ T , X ∈ T . Also, ∅∩X = ∅ ∈
T , ∅∪∅ = ∅ ∈ T , ∅∪X = X ∪X = X ∈ T . Hence, the finite intersections and
arbitrary unions belong to T . Therefore, (X,T ) is a topological space. This
T is special in the sense that it has the bare minimum belongings to qualify as
a topology, and has a special name. It is called the indiscrete topology.

2.3.2 Example 3 :

Let X be any set and T = 2X . This T is a topology (prove it). It is also
special in the sense that it contains everything and hence trivially qualifies as a
topology. It is called the discrete topology.

The two examples above are very special, and trivial too. Any set X can
accommodate both these topologies. A topological structure which is different
from these two is therefore called a non-trivial topology. The first example of a
topological space encountered in the class,

(
R2,TEuclidean

)
, is non-trivial.

2.3.3 Example 4 :

Let X = {a, b, c}. T = {∅, {a, b, c} , {a} , {b, c}} is a topology on X (check!).
T = {∅, {a, b, c} , {a} , {b}} is not a topology on X (check!). As a homework
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exercise, list all the possible topologies on X.
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3 Lecture 3 : August 4, 2016

3.1 Continuity :

3.1.1 Definition : Real, Continuous functions :

Let f : R→ R and a ∈ R. f is said to be continuous at a if ∀ε > 0, ∃δ > 0 such
that |x− a| < δ =⇒ |f (x)− f (a) | < ε.
A function f : R→ R is called continuous if it is continuous at a ∀a ∈ R.

3.1.2 Theorem :

If f : R → R is continuous at a then ∃δ > 0 such that f (x) is bounded for
x ∈ (a− δ, a+ δ).
Proof : f : R→ R is continuous at a. Hence, ∃δ > 0 such that |x−a| < δ =⇒
|f (x) − f (a) | < 1 (follows from the definition of continuity by taking ε = 1).
For x ∈ (a− δ, a+ δ), |f (x) | = |f (x)−f (a)+f (a) | ≤ |f (x)−f (a) |+|f (a) | ≤
1 + |f (a) | ≡M . Therefore, M serves as a bound for f (x) in the interval.

3.1.3 Theorem :

Let f : R→ R and g : R→ R be continuous at a. Then

(a) f ± g is continuous at a.

(b) f.g is continuous at a.

(c) f
g is continuous at a, provided g (a) 6= 0.

Proof : We shall prove only the first two results. You should complete the rest
of the proof.

(a) Let ε > 0 be given. ∵ f, g are continuous at a, therefore ∃δ1,2 > 0 such that
|x−a| < δ1 =⇒ |f (x)−f (a) | < ε

2 , and |x−a| < δ2 =⇒ |g (x)−g (a) | <
ε
2 . Choose δ = min {δ1, δ2}. |x− a| < δ =⇒ | (f ± g) (x)− (f ± g) (a) | =
| (f (x)− f (a))±(g (x)− g (a)) | ≤ |f (x)−f (a) |+|g (x)−g (a) | < ε

2 + ε
2 =

ε. Hence, (f ± g) is continuous at a.
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(b) | (f.g) (x)−(f.g) (a) | = |f (x) g (x)−f (a) g (a) | = |f (x) g (x)−f (a) g (x)+
f (a) g (x)−f (a) g (a) | ≤ |g (x) ||f (x)−f (a) |+|f (a) ||g (x)−g (a) |. Since
g is continuous at a, by theorem (3.1.2), ∃δ′ > 0 : |x − a| < δ

′
=⇒

|g (x) | < M
′
, for some M

′ ∈ R. Choose M = max
{
M
′
, |f (a) |

}
. Now,

∃δ1,2 > 0 such that |x− a| < δ1 =⇒ |f (x)− f (a) | < ε
2M and |x− a| <

δ2 =⇒ |g (x)−g (a) | < ε
2M . Choose δ = min {δ1, δ2}. Therefore, |x−a| <

δ =⇒ |g (x) ||f (x)− f (a) |+ |f (a) ||g (x)− g (a) | ≤ M ε
2M +M ε

2M = ε.
Thus, f.g is continuous at a.

3.1.4 Theorem :

If f : R → R is continuous at a and g : R → R is continuous at f (a), then
g ◦ f : R→ R is continuous at a.
Proof : This proof is left as an exercise.

In this entire discussion on continuity, we have made use of the modulus
function on the real numbers. A careful inspection reveals that we have not
really used the definition of this function which goes as

|.| : R→ R+ : |x| =
{

x if x ≥ 0
−x if x < 0

(2)

We have only used the following properties of the modulus function, valid for
all x, y ∈ R :

(i) |x| ≥ 0 with |x| = 0 iff x = 0
(ii) |x+ y| ≤ |x|+ |y| (3)

These are the properties of distance on the real line. If we want to move away
from the real line and define notions of continuity on more general and abstract
spaces, we have to define a general notion of distance on an abstract set. It
turns out that choosing three properties to define a distance gives rise to a nice
structure, known as Metric space. These properties are not too restrictive so
as to limit the number of examples, nor are they too lenient to give rise to any
interesting structure. This optimum set of properties is stated in the definition
of a metric function.

3.2 Metric Spaces :

3.2.1 Definition : Metric Space :

Given a set M , a map d : M ×M → R is called a metric on M if

(a) d (x, y) ≥ 0∀x, y ∈M , with d (x, y) = 0 iff x = y. (positivity)

(b) d (x, y) = d (y, x)∀x, y ∈M . (symmetry)

(c) d (x, y) ≤ d (x, z) + d (z, y)∀x, y, z ∈M . (triangle inequality)
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Then, the ordered pair (M,d) is called a metric space.
The term “distance” is used interchangeably with the term metric. Note

that any function satisfying the above properties qualifies as a metric function
no matter what the numerical values of the function are. This makes it possible
to define many metric functions on the same set. This also makes it necessary
to mention both the set and the metric function when we talk about a metric
space. However, some sets come with “usual” metrics (e.g., the usual metric
on Rn is the Euclidean metric), and if we do not explicitly mention the metric
function for these sets then it is to be understood that they are equipped with
their usual metrics.

Now, as promised, we shall define and study continuity of functions defined
on general metric spaces.

3.2.2 Definition : Continuity of a function between metric spaces :

Let (M1, d1) and (M2, d2) be two metric spaces. Then f : M1 →M2 is continu-
ous at a ∈M1 if ∀ε > 0,∃δ > 0 such that d1 (x, a) < δ =⇒ d2 (f (x) , f (a)) < ε.

3.2.3 Examples of Metric Spaces :

(i) (R, |x− y|) : This of course is the example on which we modeled our
definition of a metric space.

(ii)
(
R2, d2

)
, where d2 (x, y) =

√
(x1 − y1)

2
+ (x2 − y2)

2
. d2 is the Euclidean

metric on R2. The first example of topology that we encountered was
constructed using this metric. You should be able to check that d2 qualifies
as a metric, i.e., it satisfies the defining properties of a metric function.
We shall not prove it here because we shall prove the more general result
for the Euclidean metric on Rn.

(iii)
(
R2, d1

)
where d1 (x, y) = |x1 − y1| + |x2 − y2|. This is popularly known

as the taxicab metric, or the Manhattan metric because this measure of
distance between two points follows the rectangular grid plan of streets
and avenues of Manhattan, New York. You should prove that d1 qualifies
as a metric.

(iv)
(
R2, d∞

)
where d∞ (x, y) = max {|x1 − y1|, |x2 − y2|}. Prove that d∞ is a

metric.
In fact, infinitely many metrics can be conjured up on R2 : dp (x, y) =

(|x1 − y1|p + |x2 − y2|p)
1
p , with p ∈ [1,∞). One can show that dp defined

this way, with p < 1 (p 6= 0), does not satisfy the triangle inequality, and
hence is not a metric. Also, the metrics dp have obvious extensions to Rn
(can you prove it?).

(v) The discrete metric : Let M be a set and d0 : M ×M → R+ such that,
for x, y ∈M

d0 (x, y) =

{
1 if x 6= y
0 if x = y

(4)

11



Again, it is left to you to prove that it is a metric. The discrete metric, as
the name suggests, has an intimate connection with the discrete topology.
We shall understand that connection soon when we learn how a metric
induces a topology on a set. This is a metric that can be defined on any
set M whatsoever. Hence, technically, every set can be made into a metric
space. However, this metric gives rise to a mundane structure where the
notion of “closeness” (in the usual sense) between points is lost.
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4 Lecture 4 : August 5, 2016

Today we shall start by proving the following theorem.

4.1 Theorem :

(Rn, d2), where d2 (x, y) =

√
n∑
i=1

(xi − yi)2
for x, y ∈ Rn, is a metric space.

Proof : We note that d2 is both positive and symmetric with d2 (x, y) = 0 ⇐⇒
x = y. In order to prove that d2 also satisfies the triangle inequality, we need
to prove the following :

4.1.1 Cauchy-Schwarz inequality in Rn :(
n∑
i=1

xiyi

)2

≤

(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
(5)

Proof : For x, y ∈ Rn,
n∑
i=1

(xi − λyi)2 ≥ 0 =⇒
n∑
i=1

x2
i −

(
2

n∑
i=1

xiyi

)
λ +(

n∑
i=1

y2
i

)
λ2 ≥ 0. This is a quadratic in λ. We shall complete the square now :

(
n∑
i=1

y2
i

)λ2 − 2λ

n∑
i=1

xiyi

n∑
i=1

y2
i

+


n∑
i=1

xiyi

n∑
i=1

y2
i


2

−


n∑
i=1

xiyi

n∑
i=1

y2
i


2

+

n∑
i=1

x2
i

n∑
i=1

y2
i

 ≥ 0

=⇒

(
n∑
i=1

y2
i

)
λ−

n∑
i=1

xiyi

n∑
i=1

y2
i


2

+

n∑
i=1

x2
i

n∑
i=1

y2
i

−

(
n∑
i=1

xiyi

)2

(
n∑
i=1

y2
i

)2

 ≥ 0

∴

n∑
i=1

x2
i

n∑
i=1

y2
i

−

(
n∑
i=1

xiyi

)2

(
n∑
i=1

y2
i

)2 ≥ 0,∵

λ−
n∑
i=1

xiyi

n∑
i=1

y2
i


2

≥ 0

Therefore,

(
n∑
i=1

xiyi

)2

≤
(

n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
. The equality in the Cauchy-

Schwarz inequality holds iff xi = λyi∀i, that is iff x = λy.
Now,

d2
2 (x, y) =

n∑
i=1

((xi − zi) + (zi − yi))2
= d2

2 (x, z)+d2
2 (z, y)+2

n∑
i=1

(xi − zi) (zi − yi)
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Due to Cauchy-Schwarz inequality,

n∑
i=1

(xi − zi) (zi − yi) ≤

√√√√( n∑
i=1

(xi − zi) (zi − yi)

)2

≤
√
d2

2 (x, z) .d2
2 (z, y)

Hence,

d2
2 (x, y) ≤ d2

2 (x, z) + d2
2 (z, y) + 2d2 (x, z) d2 (z, y) = (d2 (x, z) + d2 (z, y))

2

Since x 7→
√
x is a monotonically increasing function on R+, this completes the

proof of triangle inequality for d2.

4.2 Metric Space Topology :

4.2.1 Definition : Open ball in a metric space :

Given a metric space (M,d), an open ball in M of radius δ centered at x is

defined as the set B
(d)
δ (x) = {y ∈M : d (x, y) < δ}.

4.2.2 Examples of open balls :

Following is a list of examples of open balls in different metric spaces. While
the set is the same (R2), different metrics are chosen, as a result of which we
get different metric spaces and different shapes of open balls in the following
examples. The shapes are drawn in a figure below.

(i) (M,d) =
(
R2, d1

)
. B

(d1)
δ (x) =

{
y ∈ R2 : |x1 − y1|+ |x2 − y2| < δ

}
.

(ii) (M,d) =
(
R2, d2

)
. B

(d2)
δ (x) =

{
y ∈ R2 : d2 (x, y) < δ

}
.

(iii) (M,d) =
(
R2, d∞

)
. B

(d∞)
δ (x) =

{
y ∈ R2 : d∞ (x, y) < δ

}
.

(iv) (M,d) =
(
R2, dk

)
with k ∈ [1,∞). B

(dk)
δ (x) =

{
y ∈ R2 : dk (x, y) < δ

}
.

(v) (M,d) =
(
R2, d0

)
. B

(d0)
δ (x) =

{
y ∈ R2 : d0 (x, y) < δ

}
= {x}, the single-

ton set consisting of only x.
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4.2.3 Definition : Interior, exterior and boundary points :

Given a metric space (M,d), x ∈M and A ⊆M ,

• x is called an interior point of A if ∃δ > 0 : B
(d)
δ (x) ⊆ A.

• x is called an exterior point of A if ∃δ > 0 : B
(d)
δ (x) ∩A = ∅.

• x is called a boundary point of A if ∀δ > 0 : B
(d)
δ (x)∩A 6= ∅ 6= B

(d)
δ (x)∩

Ac.

4.2.4 Definition : Open set in a metric space :

Given a metric space (M,d), a set O ⊆M is called d-open (or just open, if the
metric d is unambiguously specified) if all its points are interior points.

4.2.5 Theorem :

In a metric space (M,d),

(i) a finite intersection of open sets is open.

(ii) an arbitrary union of open sets is open.

Proof : Try yourself.
With this theorem, we have the following definition :

4.2.6 Definition : Metric space topology :

For an arbitrary metric space (M,d), T = the collection of all open sets in M ,
is a topology on M . The topological space (M,T ) is known as a metric space
topology.

Note : We just saw that a metric induces a topology on a set. That seems to
suggest that the topological structure is a consequence of the metric structure
defined on the set. Then why do we define topology as an abstract concept
(recall definition (1.1)) independent of the metric that induces it? The answer
is the following. An arbitrary metric space has a lot of interesting structures
(properties) (e.g., notions of continuity of functions) which would continue to
exist (be true) if one threw away the “metric-structure” while keeping the prop-
erties of open sets intact. This prompts mathematicians to define topology as
an independent concept and construct examples of topologies that are not nec-
essarily induced by a metric. There are plenty of such examples, and one can
study notions of continuous functions on those abstract topological spaces.

Finally, convince yourself that the discrete metric defined on an arbitrary
set X induces the discrete topology on X.
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4.2.7 Definition : Closed set in a metric space :

For an arbitrary metric space (M,d), a set C ⊆M is called closed if Cc ≡M\C
is open in M .

Note : ∅ and M are closed in M . These are the trivial examples of closed
sets that belong in every topological space. We shall soon see that, if a topology
also has non-trivial closed sets in it (as an element of the topology T ), then
that says something interesting about the topology.

4.2.8 Definition : Clopen sets in a metric space :

Given a metric space (M,d), a set A ⊆ M is called clopen if it is both closed
and open. Trivial examples of clopen sets are ∅ and M .

4.2.9 Theorem :

Given a metric space (M,d),

(i) A closed set in M contains all its boundary points.

(ii) An arbitrary intersection of closed sets in M is closed.

(iii) A finite union of closed sets in M is closed.

Proof : Left as an exercise.
To pave the way for the next lecture, let us declare a few notational conven-

tions. Let f : A→ B and U ⊂ A, V ⊂ B. Then,

f (U) ≡ {f (x) : x ∈ U} , and f−1 (V ) ≡ {x ∈ A : f (x) ∈ V } (6)

Notice that the set f−1 (V ) is well-defined irrespective of whether f is invertible
or not.

4.2.10 Theorem :

Let f : A→ B, and X ⊆ Y ⊆ A. Then, f (X) ⊆ f (Y ) ⊆ B.
Proof : This proof is easy and left as an exercise. This theorem tells us that
functions preserve inclusion of sets.
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5 Lecture 5 : August 9, 2016

5.1 Continuity :

Today, we shall discuss continuity of functions on metric spaces and generalize
the concept to topological spaces where the notion of distance may or may not
be defined. Let us start by recalling the definition of a continuous function
between two metric spaces. In the rest of the notes, we shall talk about open
(closed) sets without explicitly mentioning if they are open (closed) according
to a metric (as is the case in a metric space topology) or by definition (as is the
case in a general topology). It should be clear from the context.

Definition 3.2.2 : Continuity of a function between metric spaces :

Let (M1, d1) and (M2, d2) be two metric spaces. Then f : M1 →M2 is continu-
ous at a ∈M1 if ∀ε > 0,∃δ > 0 such that d1 (x, a) < δ =⇒ d2 (f (x) , f (a)) < ε.
If f is continuous at all a ∈M1 then f is said to be continuous.

This leads to the following theorem.

5.1.1 Theorem :

Let (M1, d1) and (M2, d2) be two metric spaces, f : M1 → M2 and a ∈ M1.
Then the following are equivalent :

(i) f is continuous at a.

(ii) ∀ε > 0,∃δ > 0 such that x ∈ B(d1)
δ (a) =⇒ f (x) ∈ B(d2)

ε (f (a)).

(iii) ∀ε > 0,∃δ > 0 such that f
(
B

(d1)
δ (a)

)
⊆ B(d2)

ε (f (a)).

(iv) ∀ε > 0,∃δ > 0 such that B
(d1)
δ (a) ⊆ f−1

(
B

(d2)
ε (f (a))

)
.

Proof : The proof is easy and left as an exercise. You should try to supplement
an analytical proof with figures on R2 to understand these results geometrically.

The most important consequence of this theorem is that the definition (3.2.2),
of continuity of f at a ∈ M1, could be replaced by any one of the statements
(ii), (iii) and (iv) of the above theorem. That is to say, e.g., that the following
definition would be equivalent to definition (3.2.2) :

5.1.2 Definition (alternative, and equivalent) : Continuity of a func-
tion between metric spaces :

Let (M1, d1) and (M2, d2) be two metric spaces. Then f : M1 → M2 is contin-

uous at a ∈M1 if ∀ε > 0,∃δ > 0 such that B
(d1)
δ (a) ⊆ f−1

(
B

(d2)
ε (f (a))

)
.

Had we taken this as our definition of continuity (at a point), the (3.2.2)
would have followed as a consequence and it would have been termed a theorem.
Which one of the four equivalent statements to take as definition is a matter of
taste.
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5.1.3 Theorem :

Let (M1, d1) and (M2, d2) be two metric spaces. A function f : M1 → M2 is
continuous if, and only if, for any open set V ⊆ M2, the set f−1 (V ) ⊆ M1 is
open in M1.

Note : We notice that theorem (5.1.3) and the statements (iii) and (iv) of the-
orem (5.1.1) have no explicit mention of the word “distance” whatsoever;
each is a statement about open balls and open sets! You might protest
that these statements are implicitly metric-dependent because open balls
and open sets in metric spaces are defined using the metric, and I will
concede. However, if we put on the shoes of a mathematician from the
pre-topology era, we shall instantly recognize that these statements, de-
void of any explicit mention of the metric, can be used to define the
concept of a continuous function in general topological spaces where met-
rics might not have been defined but open sets have been defined. On our
quest to generalize the notion of continuity, we shall do just that. Seen in
this light, this theorem is of extreme importance.

Upshot : This is a plain old theorem as far as the theory of metric spaces is
concerned. But in topological spaces where the notion of distance is not
defined (and not relevant too), this statement encodes how continuous
functions are defined.

Proof : (only if, or =⇒ ) : Let V ⊆ M2 be open, f be continuous. If
f−1 (V ) = ∅, then there is nothing to prove since ∅ is open in M1. Otherwise,

let a ∈ f−1 (V ). This implies that f (a) ∈ V , hence, ∃ε > 0 : B
(d2)
ε (f (a)) ⊆

V =⇒ f−1
(
B

(d2)
ε (f (a))

)
⊆ f−1 (V ). Since f is continuous at a, by theorem

(5.1.1), ∃δ > 0 : B
(d1)
δ (a) ⊆ f−1

(
B

(d2)
ε (f (a))

)
. Combining the two,

∀ε > 0,∃δ > 0 : B
(d1)
δ (a) ⊆ f−1

(
B(d2)
ε (f (a))

)
⊆ f−1 (V )

Hence, a is an interior point of f−1 (V ) and a ∈ f−1 (V ) is arbitrary. So every
point of f−1 (V ) is an interior point, thus f−1 (V ) is an open set of M1 (by
definition (4.2.4)).

(if, or ⇐= ) : Left as an exercise.

5.1.4 Definition : Continuous functions between two topological
spaces :

Let (X1,T1) and (X2,T2) be two topological spaces and f : X1 → X2. Then,
f is said to be a continuous function if ∀V ∈ T2, f

−1 (V ) ∈ T1.
Thus, we have arrived at the much coveted definition of continuity of a

function between two general topological spaces. This definition refers to two
topologies T1,2 and not the metrics which may or may not have induced these
topologies on X1,2 respectively. Therefore, we have the following result :
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5.1.5 Theorem :

Let X1, X2 be two sets, d
(1)
1 , d

(2)
1 be two metrics defined on X1 inducing the same

topology T1 on X1 and d
(1)
2 , d

(2)
2 be two metrics defined on X2 inducing the same

topology T2 on X2. Let f : X1 → X2. Then the following are equivalent :

(i) f is continuous when viewed as a function from the metric space
(
X1, d

(1)
1

)
to the metric space

(
X2, d

(1)
2

)
.

(ii) f is continuous when viewed as a function from the metric space
(
X1, d

(1)
1

)
to the metric space

(
X2, d

(2)
2

)
.

(iii) f is continuous when viewed as a function from the metric space
(
X1, d

(2)
1

)
to the metric space

(
X2, d

(1)
2

)
.

(iv) f is continuous when viewed as a function from the metric space
(
X1, d

(2)
1

)
to the metric space

(
X2, d

(2)
2

)
.

Proof : Trivial, and left as an exercise.

Example : Consider the two metrics d1 and d2 on R2. An open ball with
respect to d1 looks like a diamond, an open ball with respect to d2 looks
like a disc. We have already drawn the diagrams before. Clearly, a d1-
open ball is not a d2-open ball and vice versa. However, every
d1-open ball is a d2-open set and every d2-open ball is a d1-open
set. You can prove it analytically. The geometric proof is even nicer! It
hinges upon the fact that you can always draw a diamond inside a circle
and vice versa. An immediate consequence is the fact that every d1-open
set is a d2-open set and vice versa. Leaving the details of the proofs to
you, let me introduce a piece of terminology. If ρ1 and ρ2 are two different
metrics defined on the same set X and every ρ2-open set is also ρ1-open,
then ρ1 is said to be a finer metric than ρ2, while ρ2 is said to be coarser
than ρ1. The bad thing about this terminology is that mathematicians
have not reached a consensus on it. One school of mathematicians uses the
finer/coarser classification in the way we mentioned here, another school
of mathematicians uses the terms in the exact opposite sense : they say
that ρ1 is coarser than ρ2 if every ρ2-open set is also ρ1-open. Both the
schools have justifiable arguments for their respective cases, so we shall
not take sides. The good thing is that this terminology will hardly be of
any use to us. Moreover, for the given metrics d1 and d2 on R2, we do
not need this classification because every d1-open set is a d2-open set and
vice versa. Therefore, neither one is finer or coarser than the other, no
matter which school of mathematicians is talking about it. Such metrics,
which give rise to the same open sets (and hence the same metric space
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topologies), are said to be topologically equivalent metrics4. This
example should not lead you to believe that all metrics defined on a given
set are necessarily topologically equivalent. Consider the metric d0, aka
the discrete metric, on R2. Any subset of R2 is d0-open. It is not a secret
that not all subsets of R2 are d2-open. So, d0 and d2 are not topologically
equivalent metrics. Now, having defined topologically equivalent metrics,
the theorem above tells us that a function f on R2 is d1-continuous iff it
is d2-continuous.

5.1.6 Theorem (Example of a topology that cannot be induced by a
metric) :

Let X be a non-empty set with at least two elements. {∅, X}, the indiscrete
topology on X, is not induced by any metric on X.
Proof : Firstly, if X be empty, then the only metric that can be defined on X
is the empty function and {∅} is the topology induced by this metric. This is
the indiscrete topology on ∅! Secondly, if X be a singleton set with x ∈ X, then
the only metric that can be defined on X is the zero function on X ×X. With
this metric, x is an interior point of {x} = X. Therefore, {∅, X} is the topology
induced by this metric. This is the indiscrete topology on {x}. This shows why
we need X to have at least two elements for this theorem to be valid.

Now, let d be any metric defined on X . Let x, y ∈ X and x 6= y. Therefore,

d (x, y) > 0. Choose ε = d(x,y)
2 . My claim is that B

(d)
ε (x) ∩ B(d)

ε (y) = ∅,
for otherwise, ∃p ∈ B

(d)
ε (x) ∩ B(d)

ε (y). Hence, d (x, p) < ε, d (p, y) < ε =⇒
d (x, p) + d (p, y) < 2ε = d (x, y), violating the 4-inequality of the metric d.

Therefore, there exist two mutually exclusive open sets, namely B
(d)
ε (x) and

B
(d)
ε (y), none of which is equal to either ∅ (because they contain x and y

respectively) orX (because they do not contain y and x respectively). Therefore,
the metric space topology induced on X by d cannot be {∅, X}. Since d was
supposed to be an arbitrary metric on X, therefore {∅, X} cannot possibly have
been induced by a metric on X.

Note : This property, that two different elements of X can be separated in
two different compartments (open sets), is the second Hausdorff property.
This is a defining property of a “separable or Hausdorff space” and is often
articulated as : “two distinct elements can be housed off ”, which is a pun
on the name of Felix Hausdorff, the Polish mathematician after whom it is
named. We shall soon learn what a Hausdorff aka separable space is. Then
it will be transparent that a metric space is always Hausdorff. What we
have proven in the theorem above is that an indiscrete topological space
(X, {∅, X}) (with at least two elements in X) cannot be a Hausdorff space,
and hence, a metric space.

4In fact, all the metrics dk on Rn, for k ∈ [1,∞), are topologically equivalent to each other.
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6 Lecture 6 : August 11, 2016

So far we have stated many results that hold for special metric spaces such as(
R2, d2

)
, and we have not proven many of those in class. The excuse was that

those theorems hold for general metric spaces, not only for special ones such as(
R2, d2

)
, and we would soon prove the general results. Today we shall partly

fulfill that promise. We shall prove a few of these results, and you should be
able to prove the rest of them on your own after going through the proofs that
we will construct now.

6.1 Hausdorff Space :

6.1.1 Theorem :

Let (M,d) be a metric space and a ∈M . Then, an open ball B
(d)
r (a) is an open

set.
Proof : Obviously, B

(d)
r (a) is not empty because, at the very least, it contains

a. Therefore, let x ∈ B
(d)
r (a). Then by definition, d (x, a) < r. Let r

′
=

r − d (x, a) > 0. Now consider the open ball B
(d)

r′
(x). Let y ∈ B(d)

r′
(x). This

implies that d (x, y) < r
′
. Hence, d(y, a) ≤ d (y, x) + d (x, a) < r

′
+ d (x, a) = r.

∴ d (y, a) < r =⇒ y ∈ B(d)
r (a). Therefore, B

(d)

r′
(x) ⊆ B

(d)
r (a). ∵ x ∈ B(d)

r (a)

is arbitrary, therefore B
(d)
r (a) is an open set.

Note : When we stated this result for the special metric space
(
R2, d2

)
, we

observed that the proof follows trivially by drawing pictures of open balls.
For a general metric space, we are unable to draw pictures. However, the
“picture-proof” in R2 still serves as a guide in constructing the analytical
proof above.

6.1.2 Definition : Hausdorff Space :

A topological space (X,T ) is Hausdorff if ∀x, y ∈ X with x 6= y, ∃Ux, Uy ∈ T
with x ∈ Ux and y ∈ Uy such that Ux ∩ Uy = ∅. (If X has only one element
then (X,T ) is Hausdorff vacuously.)

6.1.3 Theorem :

Every metric space is Hausdorff.
Proof : Let (M,d) be a metric space, x, y ∈ M , and x 6= y. Therefore,

d (x, y) > 0. Take r = d(x,y)
2 .

Claim : B
(d)
r (x) ∩B(d)

r (y) = ∅.
Proof : (by contradiction) : Assume that B

(d)
r (x)∩B(d)

r (y) 6= ∅, and hence,

let z ∈ B
(d)
r (x) ∩ B(d)

r (y). So z ∈ B
(d)
r (x) =⇒ d (z, x) < r, and z ∈
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B
(d)
r (y) =⇒ d (z, y) < r. Thus, d (x, y) ≤ d (x, z) + d (z, y) < r + r = d (x, y),

=⇒ ⇐= 5. Therefore, B
(d)
r (x) ∩B(d)

r (y) = ∅
Therefore, the metric space topology on M is Hausdorff.

6.2 Equivalence of metrics :

6.2.1 Definition : Lipschitz Equivalent metrics :

Two metrics d, d
′

on the same set M are called Lipschitz equivalent if ∃h, k > 0
such that, ∀x, y ∈M , hd

′
(x, y) ≤ d (x, y) ≤ kd′ (x, y).

6.2.2 Theorem :

Lipschitz equivalence is an equivalence relation.
Proof : Let d, d

′
be two metrics defined on M such that ∃h, k > 0 for which

hd
′
(x, y) ≤ d (x, y) ≤ kd

′
(x, y) holds ∀x, y ∈ M . By definition, d, d

′
are Lip-

schitz equivalent and we write it as d ∼ d
′
. Now, hd

′
(x, y) ≤ d (x, y) =⇒

d
′
(x, y) ≤ 1

hd (x, y) and d (x, y) ≤ kd
′
(x, y) =⇒ d

′
(x, y) ≥ 1

kd (x, y). There-

fore, ∃h′ ≡ 1
k , k

′ ≡ 1
h > 0 such that h

′
d (x, y) ≤ d

′
(x, y) ≤ k

′
d (x, y). Thus,

d ∼ d
′

=⇒ d
′ ∼ d, implying ∼ is a symmetric relation. Now, d (x, y) ≤

d (x, y) ≤ d (x, y). Thus, for h = 1 = k, d ∼ d. Hence ∼ is a reflexive rela-
tion. Let d ∼ d

′
and d

′ ∼ d
′′
. Thus, ∃h, k, h′ , k′ > 0 such that, ∀x, y ∈ M ,

hd
′
(x, y) ≤ d (x, y) ≤ kd

′
(x, y) and h

′
d
′′

(x, y) ≤ d
′
(x, y) ≤ k

′
d
′′

(x, y). Thus,
d (x, y) ≥ hd

′
(x, y) ≥ hh

′
d
′′

(x, y) and d (x, y) ≤ kd
′
(x, y) ≤ kk

′
d
′′

(x, y).
Therefore, ∃h̃ ≡ hh

′
, k̃ ≡ kk

′
> 0 such that h̃d

′′
(x, y) ≤ d (x, y) ≤ k̃d

′′
(x, y).

Thus, d ∼ d′ and d
′ ∼ d′′ implies d ∼ d′′ . So ∼ is a transitive relation. Therefore

∼ is an equivalence relation.

6.2.3 Definition : Topologically Equivalent metrics :

Two metrics d, d
′

on M are said to be topologically equivalent if they give rise
to the same metric space topology on M .

6.2.4 Theorem :

If two metrics d, d
′

on M are Lipschitz equivalent, then they are topologically
equivalent.

Proof : Let a ∈M . Consider the d-open ballB
(d)
u (a), and let x ∈ B(d)

u (a). =⇒
d (x, a) < u. Since d, d

′
are Lipschitz equivalent, ∃h > 0 such that hd

′
(x, a) ≤

d (x, a) < u. Thus, d
′
(x, a) < u

h =⇒ x ∈ B

(
d
′)

u
h

(a). Therefore, B
(d)
u (a) ⊆

B

(
d
′)

u
h

(a). Similarly, one can show that B

(
d
′)

u
k

(a) ⊆ B(d)
u (a). Thus, B

(
d
′)

u
k

(a) ⊆

B
(d)
u (a) ⊆ B

(
d
′)

u
h

(a). This proves that every d-open ball is a d
′
-open set and

5This is the mathematical shorthand for the phrase “a contradiction”
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conversely. From this, you can easily show that every d-open set is d
′
-open

and conversely (prove it). That completes the proof that d, d
′

are topologically
equivalent.

Note : The converse of the above theorem is not true. That is, topological
equivalence does not imply Lipschitz equivalence. Can you find an ex-
ample of two metrics that are topologically equivalent but not Lipschitz
equivalent?

6.2.5 Theorem :

The metrics d1 and d∞ on Rn are Lipschitz equivalent.
Proof : Recall that, for x ≡ (x1, x2, . . . , xn) , y ≡ (y1, y2, . . . , yn) ∈ Rn,

d1 (x, y) =
n∑
i=1

|xi − yi|

d∞ (x, y) = max {|xi − yi| : i = 1 (1)n}

The notation i = 1 (1)n means i takes the values 1, n and every value in between
separated by 1. From the definitions, it is obvious that d1 (x, y) ≥ d∞ (x, y),
hence ∃k > 0 , namely k = 1, such that d∞ (x, y) ≤ kd1 (x, y). Also, d1 (x, y) ≤
nd∞ (x, y). Thus, ∃h > 0, namely h = 1

n , such that d∞ (x, y) ≥ hd1 (x, y).
Hence the proof.

Corollary : d1 and d∞ on Rn are topologically equivalent.

You shall prove in the first assignment that d2 and d∞ are Lipschitz equivalent
too. Since Lipschitz equivalence is an equivalence relation, therefore d1, d2, d∞
are all Lipschitz equivalent and hence topologically equivalent. In fact, all the
metrics dp on Rn, with p ∈ [1,∞) are Lipschitz, and hence topologically, equiv-
alent.

6.3 Continuity :

6.3.1 Theorem :

Let (M,d) ,
(
M
′
, d
′
)
,
(
M
′′
, d
′′
)

be metric spaces and f : M → M
′
, g : M

′ →
M
′′

be continuous. Then, g ◦ f : M →M
′′

is continuous.
Proof : Let V ⊆ M

′′
be open. Now, (g ◦ f)

−1
(V ) = f−1

(
g−1 (V )

)
. Since V

is open in M
′′

and g : M
′ → M

′′
is continuous, therefore g−1 (V ) is open in

M
′
. Since f : M → M

′
is continuous, therefore f−1

(
g−1 (V )

)
is open in M .

Therefore, (g ◦ f)
−1

(V ) is open in M . So g ◦ f is continuous.
This theorem is proof that learning advanced stuff pays off handsomely.

Just using the theorem (5.1.3) (which is used to define continuity in topological
spaces) twice gives us the result.
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7 Lecture 7 : August 12, 2016

Let us briefly summarize what we learned about topology so far. We began by
studying metric spaces (M,d) where the notion of distances is defined. Then

we defined an open ball B
(d)
δ (a) as a subset of M comprising all x ∈ M such

that d (x, a) < δ. Depending on the form of the metric function d, we obtained
different kinds of open balls. E.g., in R2, different choices of metrics give rise
to differently shaped open balls – discs, diamonds, squares and so on. The
collection of open balls of one kind was found to lack closure with respect to
arbitrary unions and finite intersection. For instance, arbitrary unions or finite
intersections of diamonds are not necessarily diamonds. This prompted us to
define an open set. This is a set which has the property that around each of
its elements one can fit an open ball, no matter how small that ball may be.
The collection of all such open sets was found to have closure with respect to
arbitrary union and finite intersection, and therefore it qualifies as a topology.

Today we shall learn about basis for a topology. Given a set X, a topology
on X is the collection of all open subsets of X. Usually, listing all the open
sets of X is quite the task. Very often, however, it is possible to list a smaller
collection of subsets of X, and then build the entire topology on X out of that
smaller collection. This is the idea of a basis.

7.1 Basis for a topology :

7.1.1 Definition : Basis for a topology :

Let X be a set. A collection B of subsets of X is called a basis for a topology
on X if

(i) ∀x ∈ X, ∃B ∈ B such that x ∈ B.

(ii) ∀B1, B2 ∈ B, if x ∈ B1 ∩ B2, then ∃B3 ∈ B such that x ∈ B3 and
B3 ⊆ B1 ∩B2.

The elements of B are known as basis elements.

Note : Note that we are not defining B to be a topology. The collection B is
not a topology in general. So, B1, B2 ∈ B ; B1 ∩B2 ∈ B. The defining
property (ii) demands that, for each x in the intersection of B1 and B2,
there must exist a set B3 in B such that x ∈ B3 and B3 ⊆ B1 ∩B2.

Given a basis, we should be able to construct a topology out of it.

7.1.2 Definition : Open sets in terms of a basis :

Given a basis B for a topology on X, a set U ⊆ X is said to be open in X if
∀x ∈ U , ∃B ∈ B such that x ∈ B and B ⊆ U .
Note : The basis elements qualify as open sets by this definition.
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7.1.3 Theorem :

The collection T of all open sets (as defined above in terms of a basis) is a
topology on X. This is called the topology generated by the basis B.
Proof : ∅ is open vacuously. And by defining property (i) of the definition
(7.1.1) of a basis, ∀x ∈ X, ∃B ∈ B such that x ∈ B, and obviously B ⊆ X.
Therefore, by definition (7.1.2) of open sets, X is open. Hence, ∅, X ∈ T .
Consider U = ∪

i
Ui where i belongs to some index set and Ui ∈ T . Let x ∈

U =⇒ ∃j : x ∈ Uj . ∵ Uj is open, ∴ ∃B ∈ B such that x ∈ B and B ⊆ Uj ⊆ U .
Thus, U is open and hence belongs to T . Now, let U1, U2 ∈ T and x ∈ U1∩U2.
U1, U2 being open, ∃B1, B2 ∈ B such that x ∈ B1 ⊆ U1 and x ∈ B2 ⊆ U2.
By property (ii) of the definition (7.1.1) of a basis, since x ∈ B1, B2, therefore
∃B3 ∈ B such that x ∈ B3 and B3 ⊆ B1 ∩ B2 ⊆ U1 ∩ U2. Therefore, by
definition (7.1.2), U1 ∩U2 is open and belongs to T . This completes the proof.

Note : Consider
(
R2, d2

)
. We could choose all open sets in R2 to form a

basis. However, since R2 is uncountably infinite, this basis would also be
uncountable. It turns out that we could choose a basis consisting of only
d2-open balls. This basis would also be uncountable, but it has “fewer”
elements in it (there are many kinds/degrees of infinity). This is a huge
economical gain and is a result of defining a basis. So the concept is useful.

7.1.4 Theorem :

Let X be a set and B be a basis for a topology on X. The topology T generated
by the basis B is the collection of sets formed by all possible unions of elements
of B.

Note : This is another way of arriving at the topology T generated by the
basis B. This theorem justifies the usage of the phrase “a basis generates
a topology”. The basis elements are building blocks, taking all possible
unions of them gives rise to the entire topology.

Proof : In theorem (7.1.3) we have established that the topology T generated
by a basis B is the collection of all open sets, where open sets are defined in
terms of the basis B in definition (7.1.2). Let T

′
be the collection of sets

obtained by taking all possible unions of elements of B. This theorem states
that T = T

′
. The usual way of proving equality of two sets is to show that

they are subsets of each other. Our approach would be the same. Let U ∈ T .
Therefore, by definition (7.1.2), ∀x ∈ U , ∃B ∈ B such that x ∈ B and B ⊆ U .
Therefore, for every x ∈ U , choose a Bx ∈ B such that x ∈ Bx ⊆ U . Therefore,
U = ∪

x∈U
Bx, a union of elements of B. Thus, T ⊂ T

′
. This completes half of

the proof. Proving the reverse inclusion is left as an exercise.

Corollary : Elements of a basis B are also elements of the topology T gener-
ated by B.

Proof : Trivial, and left as an exercise.
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7.2 Finer and Coarser topologies :

We previously talked about a somewhat confusing terminology that is used to
qualify one metric as finer/coarser than another. There is a related concept in
topology as well.

7.2.1 Definition : Finer and Coarser topologies :

Given two topologies T and T
′

defined on the same set X, T
′

is said to be finer
than T if T

′ ⊇ T (i.e., if every element (open set) of T is also an element
(open set) of T

′
). Equivalently, T is called coarser than T

′
. T

′
is called

strictly finer than T if T
′

is a proper superset of T and so on.
Having defined this terminology, an important question crops up. If we have

two bases B,B
′

generating T ,T
′

respectively, can we know which topology is
finer just by looking at these bases? We shall investigate it in the next class. Let
us finish today by citing an analogous example. Consider a truckload of pebbles.
The pebbles will serve as analogues of basis elements. We can put them into
sacks of different sizes. The sacks, containing unions of pebbles, represent open
sets. If someone were to smash the pebbles into smaller sizes, one will need
need new sacks with newer sizes to form all possible unions of pebbles. We shall
formalize this idea in the next class.
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8 Lecture 8 : August 16, 2016

In the previous class we introduced the idea of a basis for a topology and saw
how a basis generates a topology. You might have noticed that the way open
sets are defined in terms of a basis is exactly the way open sets were defined
in metric spaces. There is a clear analogy between open balls in metric spaces
and basis elements in topology. And, of course, the open sets in metric spaces
and those in topologies are analogously defined. Let us revisit the definition of
a basis once :

Given a set X, a basis B is a collection of subsets of X with the properties

(i) ∀x ∈ X, ∃Bx ∈ B such that x ∈ Bx.

(ii) ∀B1, B2 ∈ B, if x ∈ B1 ∩B2, then ∃B3 ∈ B such that x ∈ B3 ⊆ B1 ∩B2.

Then we define an open set in terms of this basis as a set U ⊆ X such that
∀x ∈ U , ∃Bx ∈ B with x ∈ Bx ⊆ U . The collection of all such open sets would
then generate the topology T . Without the property (i) in the definition of a
basis, X would not qualify as an open set, and hence T would not qualify as a
topology. Without property (ii), the intersection of two open sets would not be
open, and hence T would not qualify as a topology.

We also talked about finer and coarser topologies and promised to learn how
one can tell, just by looking at bases of two topologies, which one is finer than
the other.

8.1 Basis of a topology, finer/coarser topologies etc. :

8.1.1 Theorem :

Let T ,T
′

be two topologies on X generated by the bases B,B
′

respectively.
Then, T

′ ⊇ T , or T
′

is finer than T , iff, given B ∈ B, ∀x ∈ B ∃B′ ∈ B
′

such
that x ∈ B′ ⊆ B.
Proof : (only if, =⇒ ) : Suppose, T

′ ⊇ T . Let B ∈ B. Since B ∈ T ⊆ T
′
,

therefore, B ∈ T
′
. Since B

′
is a basis of T

′ 3 B, therefore, ∀x ∈ B, ∃B′ ∈ B
′

such that x ∈ B′ ⊆ B.
(if, ⇐= ) : Let U ∈ T and x ∈ U . Since B is a basis of T , ∃Bα ∈ B

such that U = ∪
α
Bα. Therefore, ∃Bx ∈ B such that x ∈ Bx. By hypothesis,

∃B′x ∈ B
′

such that x ∈ B′x ⊆ Bx. Since this is true for all x ∈ U , therefore
U ⊆ ∪

x∈U
B
′

x ∈ T
′
. We have shown that U ∈ T =⇒ U ∈ T

′
, thus, T

′ ⊇ T .

Q.E.D.

8.1.2 Example : Strictly finer/coarser topologies :

Consider X = R. Take all possible intervals (a, b), a, b ∈ R, with a < b. This
collection B = {(a, b)} forms a basis for a topology on R (verify!). This basis
generates the standard Euclidean topology on R. Now consider the collection
B
′

= {[a, b) : a, b ∈ R, a < b}. This collection forms a basis for a topology on
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R. It is obvious that the topologies generated by these two bases are not the
same – elements [a, b) of B

′
are not open sets of the standard topology on R.

However, every union of open intervals of the form (a, b) is also open in the
topology generated by B

′
.

Note : Given two topologies T ,T
′

on a set X, one of them does not always
have to be finer/coarser than the other.

8.1.3 Theorem :

If (X,TX) and (Y,TY ) be topological spaces with TX ,TY being the topologies
generated by the bases BX ,BY respectively, then BX × BY is a basis for a
topology on X × Y . The topology generated by BX ×BY on X × Y is said to
be the natural topology on X × Y .
Proof : Trivial, and left as an exercise!

The importance of the theorem above is that it gives us new topologies in
“higher” spaces by combining known topologies in the “lower” spaces.

8.1.4 Theorem : Subspace topology :

Let (X,T ) be a topological space and Y ⊂ X. Then, the collection TY =
{Y ∩ U : U ∈ T } is a topology on Y , called the subspace topology of (X,T ).
Proof : This proof is also easy and is left as an exercise.

8.1.5 Example : Subspace topology :

Consider X = R2 with the standard topology defined on it. Consider a closed
subset Y of R2 in the shape of a rectangle (see figure below). Y contains all its
boundary points.

Now, a typical open set of the subspace topology is drawn in the diagram.
The intersection of Y with an arbitrary open set U of R2 has some points of the
boundary included in it. This is open in the subspace topology, although it is
not open in the standard topology in R2.

We shall wrap up today by stating two results. The proofs will be left as
exercise.
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8.1.6 Theorem :

Let (X,T ) be a topological space and (Y,TY = {Y ∩ U : U ∈ T }) be its sub-
space topology. The open sets in TY are also open in T iff Y ∈ T .

8.1.7 Theorem :

Let B be a basis for a topology on X, and Y ⊂ X. Then the collection
BY = {B ∩ Y : B ∈ B} is a basis for a topology on Y . Also, the topology
generated by BY is the subspace topology TY described above.

We shall spend a little less than two more lecture hours on general topology.
One very important concept that we shall only scratch the surface of is that
of connectedness. A topological space is said to be connected if it has no non-
trivial clopen sets. To give an example of a disconnected space, let X = R2,
A,B ⊂ X such that A ∩ B = ∅. Let Y = A ∪ B. It is straightforward to see
that A,B are clopen in TY . Therefore, (Y,TY ) is a disconnected topological
space. The concept of connected and disconnected spaces has crucial bearings
on, among many other things, the continuity of functions, as will be evident in
the ninth problem of the first homework assignment.
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9 Lecture 9 : August 18, 2016

A gentle reminder : your first class test is scheduled tomorrow.
Today we shall study sequences and their convergence. We shall rapidly

go through some definitions and examples from elementary real analysis course
to jog our memory. Please brush up your knowledge of real analysis if it has
become rusty.

9.1 Sequences and their convergence (on the real line) :

What is 1+ 1
2 + 1

4 + 1
8 + 1

16 +. . .? Everyone in the class agrees that this expression
equals 2. The meaning of the “equation” 1 + 1

2 + 1
4 + 1

8 + 1
16 + . . . = 2 is that the

sequence of the partial sums
n∑
i=1

1
i converges to 2. It does not mean that adding

the infinitely many terms gives 2 simply because one cannot add infinitely many
terms. However, we are not always careful and often say that the “sum” is 2. It
should be common knowledge to all of you that the sequence

(
1, 1

2 ,
1
3 , . . . ,

1
n , . . .

)
converges to 0. However, the series 1 + 1

2 + 1
3 + 1

4 + 1
5 + . . . does not converge.

9.1.1 Definition : Sequence :

Let X be a set. A sequence in X is a map f : N→ X.
It should be clear from the definition that writing out “the first few terms”

does not specify a sequence. You need all the terms for that.

9.1.2 Definition : Convergence of a sequence of real numbers :

The sequence (a0, a1, a2, . . . , an, . . .) is said to converge to L if ∀ε > 0, ∃N ∈ N
such that n > N =⇒ |an−L| < ε. The sequence is then said to be convergent.

9.1.3 Theorem :

A convergent sequence of real numbers converges to a unique number. This
number is called the limit of the sequence.
Proof : You must have seen this proof in a real analysis course. So we shall
skip it.

Using less Greek and more English, what the definition of convergence says is
that, for a sequence to be convergent, one should be able to fit the entire “tail” of
the sequence inside an ε-ball centered at L after throwing away sufficiently many
terms from the “head”. How many terms need to be thrown away depends, in
general, on the value of ε.

There are lots of interesting examples of convergent and non-convergent
sequences and series of real numbers. For example, the series 1− 1

2 + 1
3 −

1
4 + . . .

converges to ln 2. By grouping the terms in two different ways, we observe that
1 − 1

2 + 1
3 −

1
4 + . . .=

(
1− 1

2

)
+
(

1
3 −

1
4

)
+ . . . > 1

2 and 1 − 1
2 + 1

3 −
1
4 + . . . =

1 −
(

1
2 −

1
3

)
−
(

1
4 −

1
5

)
− . . . < 1. The series x − x2

2 + x3

3 −
x4

4 + . . . converges,
provided x ∈ (−1, 1]. This is an example of a conditionally convergent sequence.
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Outside of its domain of convergence, it can be made to converge to any value
of our choosing by cleverly rearranging the terms!

Another very interesting aspect of convergent series is estimating the limit
from the partial sums and the errors associated with it. In a convergent series,
the successive terms eventually start to become smaller and smaller. Therefore,
the bound on the error is the first term we are dropping. Studying the error-
bounds is an interesting aside. Those who are interested may look up Aitken’s
42 transform.

9.2 Sequences in general topological spaces :

9.2.1 Definition : Convergence of a sequence in a general topological
space :

Let (X,T ) be a topological space and let (xn), n ∈ N, be a sequence in X.
Then x0 ∈ X is a limit of the sequence (xn) if, ∀U ∈ T : x0 ∈ U , ∃N ∈ N such
that n > N =⇒ xn ∈ U . If x0 is a limit of (xn) then we write (xn)→ x0.

9.2.2 Example :

Let X = {a, b, c}, T = {∅, X, {a, b} , {b, c} , {b}}. Now consider the sequence
(a, a, a, . . .), i.e., (xn : xn = a∀n ∈ N). Following the definition above, a is a
limit of this sequence, while b, c are not limits. Now consider the sequence
(b, b, b, . . .). Interestingly, a, b, c are all limits of this sequence according to the
definition! This is a deviation from what we know about sequences in R (or any
metric space for that matter). This example is enough evidence to conclude that
: Limit of a sequence in an arbitrary topological space does not have to be unique.
This is a landmark in our course. We learn that the generalization from metrics
to topology does throw new results at us. Had such a thing never happened,
then we would really be writing the same story in two different languages.

9.2.3 Theorem :

Let (X,T ) be a Hausdorff space. Then, every convergent sequence in X has a
unique limit.
Proof (by contradiction) : Let (xn) be a sequence in X, (xn) → a ∈ X,
(xn)→ b ∈ X anda 6= b. Since X is Hausdorff and a 6= b, therefore ∃Ua, Ub ∈ T
such that a ∈ Ua, b ∈ Ub and Ua ∩ Ub = ∅. So, after throwing away sufficiently
many terms from the head, the tail of the sequence should lie inside both Ua
and Ub (since both a, b are limits of the sequence and Ua and Ub are open sets
containing a and b respectively), although Ua ∩ Ub = ∅, a contradiction.

Note : The converse of the theorem above is not true in general. There are
topological spaces which are not Hausdorff, yet have unique limit for ev-
ery convergent sequence. These are the so called T1 spaces which are not
Hausdorff. In fact, there are several ways of defining separability in topol-
ogy. The defining property of a Hausdorff space is one such way. There
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exist other separability axioms as well. One of those axioms is used to
define what is known as a T1 space. A Hausdorff space as defined in these
lectures is known as a T2 space, and so on. It so happens that many T1

spaces are also T2. However, there are T1 spaces which are not T2. These
spaces, despite being non-Hausdorff, have unique limits for all convergent
sequences.

Food for thought :

Recall the definition of continuity of a function between two topological spaces.
Let (X,TX) and (Y,TY ) be topological spaces and f : X → Y . Then f is
defined to be continuous if, ∀V ∈ TY , f−1 (V ) ∈ TX . As a consequence of this
definition, the constant map f : x 7→ y0 ∈ Y is always continuous, no matter
what topology Y has. However, for U ∈ TX , f (U) = {y0} may not be in TY .
Had we defined continuity by demanding that ∀U ∈ TX , f (U) ∈ TY , then the
constant map would not be continuous for all topologies on Y . Now take the
four possible cases in which either of TX and TY can be one of the discrete or
the indiscrete topology. Now think of what kind of continuous functions one
can have in these four cases.
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10 Lecture 10 : August 23, 2016

We could deliberate on the issues of convergence of sequences and what bear-
ings they have on various characteristics of topological spaces. But that would
deviate us from our course. However, now that you have been initiated in the
discipline of general topology, you can pursue it on your own. Today we shall
discuss the final few bits of general topology that I think are essential for you
to know.

10.1 Compactness :

We shall now define the notion of compactness of a subset of X where (X,T ) is
a topological space. The definition of compactness in topology is abstract, and
does not evoke the intuitive feel we have for the word compactness. See it for
yourselves.

10.1.1 Definition : Open Cover :

Given a topological space (X,T ) and Y ⊆ X, the collection CY = {Ui : Ui ∈ T }
is called an open cover of Y if ∪

i
Ui ⊇ Y .

10.1.2 Example :

Let (X,T ) = (R,TEuclidean), Y = [0, 1]. Some open covers of Y are : {(−1, 2)},{
(−1, 1) ,

(
1
2 ,

3
2

)}
etc.

10.1.3 Definition : Subcover :

Given a topological space (X,T ), Y ⊆ X, and an open cover CY of Y , a
subcover is a subset (may or may not be proper) SY of CY such that SY is an
open cover of Y .

10.1.4 Definition : Compact subset :

Let (X,T ) be a topological space. Y ⊆ X is said to be a compact subset of X
if every open cover of Y has a finite subcover.

10.1.5 Example of a compact and a non-compact subset :

Let (X,T ) = (R,TEuclidean), Y = (0, 1). If we can find one open cover of Y
which does not contain any finite subcover, then we can conclude that Y is
non-compact. Consider the collection C =

{(
1
n , 1−

1
n

)
: n ∈ N \ {1, 2}

}
. This

is an open cover of Y . In fact, ∪
n∈N

(
1
n , 1−

1
n

)
= Y (prove it). Any finite subset

of C cannot be an open cover of Y . This can be proven by contradiction (do
it!). Thus, (0, 1) is a non-compact subset of R. On the other hand, Y

′
= [0, 1]

is a compact set (try to prove it. Hint : try proof by contradiction).
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10.1.6 The Heine-Borel Theorem :

On Rn (with the standard metric topology), a subset X ⊂ Rn is compact iff it
is closed and bounded.
Proof : Try yourself.

The above theorem is true for almost6 every metric space topology, not just
Rn. In fact, a compact subset X ⊆M , where (M,d) is a metric space which is
also a linear space, is traditionally defined thus : X is defined to be a compact
subset of M if X is closed and bounded. From the above theorem it is clear
that this definition is equivalent to the topological definition (10.1.4) for metric
space topologies. What is most important is the fact that this alternative (yet
equivalent) definition is intuitively more appealing than definition (10.1.4). In a
course on metric spaces, this is how compactness is traditionally defined. Then,
one proves the following result as a theorem : A subset X of M , where (M,d) is
a metric space, is compact iff every open cover of X has a finite subcover. And
then one identifies this as a result which can motivate the definition of compact
subsets in general topological spaces. Thus we “arrive at” the definition (10.1.4).

10.2 Homeomorphism :

10.2.1 Definition : Homeomorphism :

Let (X,T ),
(
Y,T

′
)

be two topological spaces. A function f : X → Y is called

a homeomorphism if

(i) f is a bijection, and

(ii) both f and f−1 are continuous maps.

Note that all the defining properties are to be checked in order to decide whether
a map is a homeomorphism or not. Let us show an example where the failure
to satisfy one criterion disqualifies a map from being a homeomorphism.

10.2.2 Example : A map which is not a homeomorphism :

Let X = R. Consider the two topologies T (the standard topology generated by
the basis {(a, b) : a, b ∈ R, a < b}) and Tl (the lower limit topology generated
by the basis {[a, b) : a, b ∈ R, a < b}) on R. We already saw these topologies
before (look up example (8.1.2)). We verified that Tl ⊃ T , i.e., Tl is strictly
finer than T . Let us write R and Rl in place of T and Tl respectively. Now,
consider the identity map f : Rl → R such that f : x 7→ x. f is obviously a
bijection. We shall first show thatf is continuous. Take a basis element (a, b)
in R. f−1 ((a, b)) = (a, b) ∈ Rl. From here it is easy to show that the pre-image
under f of every open set in R is also open in Rl (complete the proof). Now we
will show that f−1 : R→ Rl, which is the identity map itself, is not continuous.

6The Heine-Borel property holds for arbitrary metric spaces only under the condition that
the definition of compactness be modified with slightly stronger requirements.
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Take an open set [a, b) ∈ Rl.
(
f−1

)−1
([a, b)) = f ([a, b)) = [a, b) /∈ R. Thus,

f−1 is not continuous, and f is not a homeomorphism. We have managed to
show that even the identity map may not qualify as a homeomorphism because
the game here is of the topologies involved!

Existence of a homeomorphism between two topological spaces (X,T ) and(
Y,T

′
)

ensures that, for every U ∈ T , ∃f (U) ≡ V ∈ T
′
, and for every

V ∈ T
′
, ∃f−1 (V ) ≡ U ∈ T . For every open set in T , we have an open set in

T
′

and vice versa. Therefore, in a sense, the topologies T ,T
′

are identical. At
this point, go back to the first introductory paragraph of these notes and revisit
the idea of identifying topology with rubber sheet geometry. There we said that
a circle on a plane can be continuously deformed to any closed loop in a plane
and topology does not distinguish between all these different closed loops. The
meaning of that statement becomes clear now. The continuous deformations are
homeomorphisms that do not change the topological structure of the domain
set.

10.2.3 Definition : Homeomorphic topological spaces :

A topological space (X,T ) is said to be homeomorphic to another topological

space
(
Y,T

′
)

if ∃f : X → Y such that f is a homeomorphism.

10.2.4 Theorem :

“Is homeomorphic to” is an equivalence relation.
Proof : Left as an exercise.

As a consequence of the above theorem, homeomorphisms partition the en-
tire collection of topological spaces into equivalence classes7. This helps in
studying topology systematically. You study one topology from a homeomor-
phic class in detail and you know everything about the other member topologies
of that homeomorphic class. The program of studying topology boils down to
figuring out which topologies are homeomorphic to each other and which are
not.

However, there is a glitch in this program. To prove or establish that two
spaces are homeomorphic is easy. All you need is to construct one homeomor-
phism between the two topological spaces and the job is done. It might take
some hard work and/or inspired guesses to cook up the homeomorphism, but
it can be done if you are clever enough. However, if you try to construct a
homeomorphism between two spaces and fail a thousand times, that does not
imply that the two spaces are not homeomorphic. There is always the possi-
bility that you are not being clever enough. Thus, it is a tall order to prove
that two spaces are not homeomorphic. Burdened with this task, mathemati-
cians do the following. They try to find out some quantity or feature, known as
a topological invariant, which has the same value/realization for all topologies

7Refresh your concepts about how any equivalence relation on a set partitions the set into
mutually exclusive and exhaustive equivalence classes.
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belonging to a particular homeomorphic class. If we take one member from this
class and find out said topological invariant for that topology, then comparing
this value/realization of this invariant with other topologies helps us in deciding
whether the other topologies are also in this class or not. If a topology has a dif-
ferent value/realization of the invariant, then we are sure that it does not belong
to the same class. However, if it has the same value/realization of the invariant,
that does not necessarily imply that it is in the same class, because all we know
about the invariant is that it has the same value/realization for all topologies
in a given class. It might very well happen that two different homeomorphic
classes have the same value/realization of the said invariant8. Therefore, people
usually study a host of topological invariants such that they have more weapons
in their arsenal to prove non-homeomorphicity9 of two topologies. Of course,
even this might not be enough, as there is the possibility of two topologies yield-
ing the same set of values/realizations of all known topological invariants. In
such a case, we are in a soup. We either have to construct more invariants and
hope that one of them would differ in the two topologies, or we have to consider
the possibility that the two spaces in question are actually homeomorphic and
look for a homeomorphism between them.

The nice thing in physics is that studying a handful of very interesting
and important topological invariants is sufficient. We will study Homology
groups, Homotopy groups and Cohomology groups. Two topological
spaces for which these three match usually exhibit the same physics. We shall
see some examples soon, in which various kinds of defects in condensed matter
systems can be characterized by the homotopy groups of the order parameter
space.

We shall end today by revealing that the left hand side of the Euler char-
acteristic formula, V − E + F = 2, which is probably familiar to many of you,
is an example of a topological invariant. The content of this formula is that V ,
the number of vertices, E, the number of edges and F , the number of faces of a
regular polyhedron must be related via the constraint above. A consequence of
this formula is that there can be only 5 different regular10 (convex) polyhedra.
Another magical fact : every polyhedron made out of pentagonal and hexagonal
patches must have exactly 12 pentagonal patches (no matter what the shape of
the polyhedron is!). That is all for today. We shall start studying Homology,
Homotopy and Cohomology from the next class.

8Let us give an example. Dimensionality of a topological space happens to be a topological
invariant. Consider a disc D in R2 and another disc D0 in R2 with a hole at the center. These
sets have different topologies, but both have the same dimensionality, namely 2.

9This is a term I just made up. Hopefully you will understand what I mean by this.
10Another name for the regular (convex) polyhedra is Platonic bodies.
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11 Lecture 11 : August 26, 2016

You should be familiar with the basics of Group theory in order to study Homol-
ogy groups, Cohomology groups and Homotopy groups. We shall spend about
three lectures in rapidly going through the required concepts. We shall take the
fastest rout to the isomorphism theorems of group theory. These three lectures
will provide only the bare minimum and you are encouraged to study group
theory in detail on your own. Before doing that, let us give a brief overview of
what we are going to study in most of the future lectures.

11.1 Homotopy, Homology etc. - an overview :

The homotopy theory is a study of loops in a topological space. We define
what we mean by loops in general and contractible loops in particular, and
then examine what kind of loops a topological space can accommodate. Later
in the course we shall define differentiable manifolds as topological spaces with
the structure of differential calculus. One can study topological properties of
differentiable manifolds through simplices/simplexes (plural for simplex). A
simplex is an object “residing in” the topological space. It is rigorously defined
as a particular kind of subset of the space. The approach of studying topological
properties of a manifold through simplices is at the heart of Homology theory.

Simplices are, simply put, polyhedra. What makes the study of simplices so
useful is the fact that you cannot draw any odd simplex on any given topological
space. To be more precise, you cannot “cover” a topological space with any
arbitrary choice of simplices. So, the possible coverings of topological spaces by
simplices tell us something special about the spaces themselves. Suppose, you
want to draw a polyhedron with V vertices, E edges and F faces in R3. It is
a fact that, for all such polyhedra, χ ≡ V − E + F = 2. Similarly, if (X,T )
be homeomorphic to R3, then any polyhedron drawn on X would also have
the same value of χ. This is an example of a topological invariant. Although
we haven’t proved that χ really is a topological invariant, let us accept it at
the moment as a God-given doctrine. Let us see some more examples of this
doctrine in action.

A torus and a coffee mug (with a handle) are homeomorphic. You can
continuously deform one into another. Now, draw a triangular region on the
surface of a torus. A triangular simplex on a torus is a closed region with three
edges, the edges need not be straight lines. For this simplex, V = 3, E = 3,
F = 1, which yields χ = 1. If we draw a quadrilateral simplex, it would give
V = 4, E = 4, F = 1, with χ = 1 again. In fact, any simplex drawn on
any topological space homeomorphic to the torus (e.g., the coffee cup below –
picture courtesy : google images) will return the same value of χ, namely 1.
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Now consider R2 with its standard Euclidean topology. This space is not
homeomorphic to the torus which has a “hole” in it. However, any polyhedron
drawn on R2 also returns the same value χ = 1. This example highlights
what we mentioned earlier. A topological invariant is something which has the
same value or realization for all members of a given homeomorphic class, but
two different homeomorphic classes may end up returning the same value of
a given invariant. You might wonder what makes us sure that a torus is not
homeomorphic to R2 if χ, the only topological invariant we have studied so
far, has the same value on both these spaces. The answer to this is that the
Homotopies of these two spaces differ. You can draw non-contractible loops on
a torus (because of the presence of the hole) but not on R2.

Now, draw a triangular pyramid on R3. This polyhedron has V = 4, E = 6,
F = 4, and hence χ = 2. Finally, we meet the Euler’s formula, and realize
that this formula is just the statement that the topological invariant χ takes the
value 2 on spaces homeomorphic to R3.

An interesting aside : The Four Color Theorem :

Suppose that a cartographer decides to color the countries on his map in such
a way that two neighboring countries will be painted in different colors. Two
countries are defined to be neighbors if they share an edge (or boundary11).
How many colors will he need? It has been shown in a famous theorem that
, on S2 (the surface of a sphere in R3), four colors suffice12. Proof of the four
color theorem starts with χ.

Graphs with 3-vertices :

Let us consider graphs with only 3-vertices. A 3-vertex is a vertex at which
three edges meet. The simplest such graph on R2 is the following :

11Sharing a vertex (one common point) will not work.
12There is a book in the library with the title “Four Colors Suffice”. Give it a read, it’s

beautifully written.
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This graph has three faces, three edges and one vertex. Therefore, χ = 1.
Consider the graph

Here, V = 3, E = 6, F = 4, and hence χ = 1 once again. If one removes the
bold edge, this graph reduces to the previous one. V goes down by 2, E goes
down by 3 and F goes down by 1. Overall, the value of χ is preserved. We shall
see one more example and then start group theory.

This guy up here has V = 5, E = 10, F = 6, and hence χ = 1, again!

11.2 Group Theory

11.2.1 Definition : Group :

A group is an ordered pair (G, ∗) where G is a set and ∗ : G×G→ G with the
following properties :

(i) Associativity of group product : ∀a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(ii) Existence of Identity : ∃e ∈ G such that ∀g ∈ G, e ∗ g = g ∗ e = g.
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(iii) Existence of Inverse : ∀g ∈ G, ∃g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e.

Comments : Since ∗ is a map from G × G to G, therefore, by definition,
a ∗ b ∈ G ∀a, b ∈ G. This property is sometimes included in the definition
of a group, but frankly, it does not require a special mention once we write
∗ : G×G→ G. Functions that are defined on the Cartesian product of a
set S with itself are said to be binary operations. When the co-domain of
a binary operation ◦ on X is X itself, we say that X is closed under ◦, or
that ◦ has the property of closure. Therefore, ∗ is a binary operation on
G with closure. Notice that, the operation ∗ has not been fully defined in
that, given two members a, b of G, you do not know which exact member
of G a ∗ b is. All that is required of ∗ are the three defining properties.
Therefore, many different binary operations on various sets would exhibit
group structure. Usually, the binary operation ∗ of a group is termed group
multiplication, or simply multiplication, even though it may be something
entirely different from multiplication (of numbers or matrices etc.). For
instance, R the set of all real numbers forms a group under +, addition of
real numbers.
Also, the definition above is not minimal in the sense that one could define
a group with fewer defining properties and still end up with the same
structure. For example, associativity of group product, existence of a left
(right) identity and existence of a left (right) inverse are three properties
that are enough to define a group. With the minimal definition at hand,
one can prove that a left (right) identity is also a right (left) identity, and
that a left (right) inverse is also a right (left) inverse. You shall work
this out in the next assignment. However, the definition presented above
is the most convenient. If you are not in the habit of nitpicking about
minimalism in Mathematics, this should do fine.
A final comment about notations is in order. One should denote the
image of (a, b) ∈ G × G under ∗ by ∗ ((a, b)) as is the usual convention
with functions (f (x) rings a bell?). For convenience, we generally write
a ∗ b instead of ∗ ((a, b)). Very often we are so lazy that we omit the ∗
altogether and simply write ab in place of a ∗ b. It is assumed that it is
clear from the context which operation is being talked about.

11.2.2 Definition : Subgroup :

Given a group (G, ∗) and a subset H ⊆ G, (H, ∗�H) is called a subgroup of
(G, ∗), with ∗�H being the restriction of ∗ to H ×H, if (H, ∗�H) is a group in
its own right.

Comment : Let me break down the meaning of the notation ∗�H for those
of you who are not familiar with it. ∗ is a map whose domain is G × G.
Because H is a subset of G, H ×H ⊆ G×G. Therefore, we can define a
new function, denoted by ∗�H , with its domain being restricted to H ×H
and, ∀h1, h2 ∈ H, (h1) ∗�H (h2) ≡ h1 ∗ h2. As you might have already
guessed, the notation ∗�H×H would have been more appropriate, but we
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shall stick with our notation since it offers brevity. Sometimes, when
there is only one restriction which is of interest, people cut down on the
notation even further and simply write ∗�. And if you are being extremely
lazy (Physicists usually are), then you can simply write ∗ even though you
mean to write ∗�H , with the assumption that readers will decipher what
is being meant in the particular context. Now that we understand that
the domain of ∗� is H ×H, it is obvious that its co-domain can very well
be different from H (h1 ∗h2 does not have to lie inside H for an arbitrary
subset H of G). For H to qualify as a subgroup of G, it has to be a group
in its own right under ∗�, which means that ∗� has to have closure in H.
Therefore, checking closure for subgroups is a necessity. The rest of the
group properties should also be checked. However, there is a nice theorem
which makes it easy to check whether a subset of G is also a subgroup
(under the same group operation restricted to the subset) of G. We shall
state and prove it in the next class.

Notation : That H is a subgroup of G is denoted by H < G.13

Trivial Subgroups :

Every group (G, ∗) has two trivial subgroups : {e} and G. These are called
trivial subgroups because they satisfy all the defining properties of a subgroup
trivially.

11.2.3 Definition : Abelian Group :

A group (G, ∗) is said to be abelian (aka commutative) if ∗ is commutative, i.e.,
if g1 ∗ g2 = g2 ∗ g1 ∀g1, g2 ∈ G.

11.2.4 Definition : Finite and infinite groups :

A group (G, ∗) is said to be finite if there is a finite number of elements in G.
Otherwise, it is called an infinite group. An infinite group may be countable or
uncountable. We shall see many examples of each kind very soon.

11.2.5 Examples of group :

(i) (Z,+) : Z is the set of all integers and + is addition of integers. This is a
countably infinite group.

(ii) ({1,−1} , ∗) : Here, ∗ is ordinary multiplication. This is a finite group.

(iii) The group Z2 : This group is formed by the set {0, 1} and the operation
+ mod 2 (read addition modulo 2). The operation + mod 2 is defined as
the following : (a) + mod 2 (b) ≡ the remainder when (a+ b) is divided
by 2. Check that Z2, as defined above, is a (finite) group.

13We have started abusing notation. We do not write (G, ∗) all the time and replace it by
G.
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12 Lecture 12 : August 30, 2016

Let us start by stating and proving a few theorems.

12.1 Some basic theorems and examples from group the-
ory :

12.1.1 Theorem : Uniqueness of identity :

There is only one identity in a group (G, ∗).
Proof : Let e and e

′
both be identities of the group14 G. Since e is a left

identity, therefore e ∗ e′ = e
′
. Again, since e

′
is the right identity, therefore,

e ∗ e′ = e. Combining these two observations, e = e
′
.

12.1.2 Theorem : Inverse of a given element is unique :

Given a group (G, ∗), the inverse of an element g ∈ G is unique.
Proof : Let g ∈ G and let h, k ∈ G both be inverses of g. Since h is a left
inverse of g, therefore, (h ∗ g) ∗k = e ∗k = k. Again, since k is a right inverse of
g and ∗ is associative, therefore, (h ∗ g) ∗ k = h ∗ (g ∗ k) = h ∗ e = h. Combining
these two observations, h = k.

12.1.3 Theorem :

Given a group (G, ∗), and a, b ∈ G, (a ∗ b)−1
= b−1 ∗ a−1.

Proof : This proof is trivial.

(a ∗ b) ∗
(
b−1 ∗ a−1

)
= a ∗

(
b ∗
(
b−1 ∗ a−1

))
= a ∗

((
b ∗ b−1

)
∗ a−1

)
= a ∗

(
e ∗ a−1

)
= a ∗ a−1 = e

Similarly,
(
b−1 ∗ a−1

)
∗ (a ∗ b) = e. This completes the proof.

12.1.4 Theorem :

Given a group (G, ∗) with e being its identity element, e−1 = e.
Proof : The proof is so easy that it almost writes itself. Do it yourself.

12.2 D3 : The group of symmetries of an equilateral tri-
angle :

In this section, we shall talk about the group formed by the symmetry operations
of an equilateral triangle. The technical name for this group is D3, where D
stands for “dihedral” and 3 denotes that the group consists of symmetries of
a regular triangle. This is a prototype which shall serve as a template group

14This is an abuse of notations. We often use the phrase “a group G...”. However, G is not
a group, (G, ∗) is. But we write it anyway to cut down on the verbiage.
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on which we can illustrate the concepts of normal subgroups, cosets, quotient
groups etc.

The above figure illustrates what symmetries an equilateral triangle has. We
have three reflections a, b, c about the medians, rotations (anti-clockwise) in the
plane through an axis passing through the centroid (and perpendicular to the
plane) by 120◦ (d) and by 240◦ (f). And of course we have the identity e which
can also be viewed as rotation through 360◦. We also label the vertices with the
numbers 1, 2, 3 just to keep track of which vertex goes where after a symmetry
transformation. Apart from the labels, there is nothing that can be used to
tell them apart. Also note that flipping the triangle over is another possible
symmetry but we do not include it because, in this example, the triangle is
assumed to live in a 2-dimensional universe. Now convince yourselves that all
possible symmetries of the triangle have been listed.

12.2.1 D3 is a group :

The set of symmetry operations of an equilateral triangle is D3 = {e, a, b, c, d, f}.
We have said that these form a group. But what is the group operation? For
symmetries of any object or system, the obvious group operation is composition
of symmetry transformations. For instance, in this example, a ∗ b would corre-
spond to doing b first and then doing a. This is the order in which successive
transformations are written conventionally. The first operation to be done is
written to the extreme right, the second operation to its immediate left and so
on. It is obvious that

(a) composition of two symmetry transformations is another symmetry trans-
formation,

(b) composition of transformations is associative,

(c) there is an identity transformation which amounts to doing nothing, and,

(d) every symmetry transformation can be reversed, and this undoing is the
inverse (which is another symmetry transformation) of said transforma-
tion.
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Thus, under composition of transformations, D3 forms a group. We shall en-
counter many more examples of sets of transformations forming a group under
this obvious group operation – composition of transformations. Hence, for sets
of transformations, it is not necessary to explicitly mention the group operation
time and again. It is also not necessary to check that these form a group be-
cause they trivially do (as is evident from the above arguments which are pretty
general).

12.2.2 The multiplication table :

We shall now introduce the idea of a group multiplication table. To explicitly
define the group composition of D3, for example, we draw up a table whose
rows and columns are labeled by the group elements. Each group element has a
row (and a column) to itself and each row (and column) is labeled by a unique
group element. So this is a one-to-one correspondence between group elements
and rows/columns. In the cell lying at the intersection of the g1-row and the
g2-column (g1, g2 ∈ D3) we enter g1 ∗ g2. In this convention, the group element
labeling the column gets to act first and the element labeling the row acts
second. From the following diagram, we can easily construct the multiplication
table for D3.

The point labeled by e is a generic point inside the triangle. We label it by
e because, under the action of e, the point stays put in its original position.
Under reflection a, it moves to the point labeled by a and so on. Suppose that
you are asked what the resultant transformation b ∗ d is. All you have to do to
find the answer is start at the point labeled by d (this is where the point labeled
by e lands up upon the action of the rotation d), and then b-reflect that point.
So you end up at a. Therefore, b ∗ d = a. It is now a trivial exercise to write
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down the multiplication table.

e a b c d f

e e a b c d f
a a e f d c b
b b d e f a c
c c f d e b a
d d b c a f e
f f c a b e d

(7)

We shall make a couple of notable observations now.

(a) The row at the top and the column to the extreme left contain the labels.
We have labeled the rows and the columns in the same order e− a− b−
c − d − f for convenience. One is free to jumble up the order15. In the
body of table, where we enter the results of the group product, the first
row and the first column are a mere repetition of the labeling row and the
labeling column respectively. This is because e has been listed first in the
order of labeling. Therefore, one can (and one usually does) get rid of the
labeling altogether.

(b) Every row (column) contains all the elements of the group in some jumbled
order. Every group element appears exactly once in every row and column.
This is a prelude to the rearrangement theorem for finite groups which says
that all the rows (and columns) of the multiplication table of a finite group
are distinct permutations of the group elements.

12.2.3 D3 is isomorphic to S3 :

S3 is another 6-element group which we shall introduce now. Consider three
objects labeled by the numbers 1, 2, 3. We can consider their collection as the
3-tuple (1, 2, 3). There are 3! = 6 different permutations of these three distinct
objects. Consider the permutation P2 : (1, 2, 3)→ (1, 3, 2). We often write it as
P2 ((1, 2, 3)) = (1, 3, 2). A neater way of writing the permutations is as follows :

P2 : (1, 2, 3)→ (1, 3, 2) ≡
(

1 2 3
1 3 2

)
(8)

The top row on the right hand side is, of course, the elements of the tuple written
in order. The bottom row contains the images of the elements of the tuple under
the given permutation. In this notation, the permutation P3 : (1, 2, 3)→ (2, 1, 3)

will be written as

(
1 2 3
2 1 3

)
. The identity permutation is that permutation

which does not permute any symbol : P1 ≡
(

1 2 3
1 2 3

)
. Notice that the top

row of all permutations just lists the labels (or symbols) 1, 2, 3. There is no

15I don’t see why one would want to do that, but anyway, the freedom is there.

45



obligation to write the top row in the same order for every permutation. P2, for

instance, could be represented perfectly well by

(
2 1 3
3 1 2

)
. One just has to

be careful to write the image of an element right underneath the element itself.
That’s all. The composition of permutations is defined in the obvious way. For
instance, P2 ∗ P3 ((1, 2, 3)) = P2 (P3 ((1, 2, 3))). Thus,

P2 ∗ P3 ≡
(

1 2 3
3 1 2

)
≡ P6, say.

With the product of permutations defined this way, the set of all permutations
of three objects forms a group16. This group is conventionally called S3. Also,
try and write out the multiplication table for this group. Now, the grand claim
is that there exists a one-to-one correspondence between the elements of S3 and
the elements of D3 in the following sense. If P2 corresponds to a, P3 corresponds
to b, and f corresponds to P6, then a ∗ b = f should imply P2 ∗ P3 = P6 (now
you see why I have been labeling the permutations somewhat erratically : there
was a grand conspiracy behind it!). This is the idea of isomorphism which we
shall formalize later.

So we say that the groups D3 and S3 are isomorphic. This can be easily seen
from the figures drawn of the equilateral triangle. Each symmetry operation of
the equilateral triangle can also be seen as a permutation of the vertices which
are labeled by 1, 2 and 3.

As a final comment, let me stress that a group is an abstract structure.
Had I given you the set D3 = {e, a, b, c, d, f} and the multiplication table (7),
that would be sufficient to define and determine the group structure. The fact
that this group can be arrived at by considering the symmetry operations of an
equilateral triangle is a happy accident. This makes it easier for us to have an
intuitive feel about this group and its multiplication. In more esoteric examples,
it will not always be easy to visualize what the elements of G are, and what it
means to “multiply” two elements of G. This is the fundamental lesson of math-
ematics. Abstract ideas exist independently of concrete examples/realizations.
Concrete examples only help us make sense of the abstraction.

16You should check that this claim is true.
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13 Lecture 13 : September 1, 2016

13.1 More results and examples concerning groups :

13.1.1 The rearrangement theorem :

Every row (or column) of the multiplication table of a finite group is some
permutation of the elements of the group.
Proof : Suppose (G, ∗) is a finite group, g ∈ G. First of all, in the row labeled
by g in the multiplication table, there are as many entries as there are elements
in G. Now suppose that two of these entries are identical. This could happen iff,
for some h, k ∈ G, g∗h = g∗k. Since ∃g−1 ∈ G and since group multiplication is
associative, g−1 ∗ g ∗h = g−1 ∗ g ∗k, which implies h = k. Therefore, no element
repeats itself in any row. The proof for a column is similar. This proves that
the rows (columns) in the multiplication table are distinct permutations of the
elements of the group.

13.1.2 Theorem :

All groups with 2-elements have identical multiplication tables. The same is
true for 3-element groups.
Proof : Using the rearrangement theorem, there is only one consistent choice
of multiplication table for a 2-element group17 G = {e, a} :

e a

e e a
a a e

Similarly, the unique multiplication table for a 3-element group G = {e, a, b} is

e a b

e e a b
a a b e
b b e a

13.1.3 Theorem :

Let (G, ∗) be a group and g ∈ G. Then,
(
g−1

)−1
= g.

Proof : Since g−1 ∗ g = e = g ∗ g−1, it is obvious that g is an inverse of g−1.
And we showed earlier that inverses are unique. Q.E.D.

13.1.4 Theorem :

Let (G, ∗) be a group and H ⊆ G. Then18 (H, ∗) is a subgroup of (G, ∗) if,
∀h1, h2 ∈ H, h1 ∗ h−1

2 ∈ H.

17Notice : a group has no ∗! The group operation is conspicuously absent! That is the way
it is going to be. While working with a group (G, ∗), we shall simply refer to G as being the
group. ∗ will be present by being absent.

18Abuse of notation alert!
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Proof : Let H ⊆ G be such that, ∀h1, h2 ∈ H, h1 ∗ h−1
2 ∈ H. Consider

h ∈ H, and let h1 = h = h2. Therefore, by hypothesis, h ∗ h−1 = e ∈ H.
Thus, H contains the identity. Again, with h1 = e and h2 = h for arbitrary
h ∈ H, hypothesis implies e ∗ h−1 = h−1 ∈ H. Thus, for every h ∈ H, its
inverse is also in H. Associativity follows trivially since ∗ is associative in G.
Finally, we need to check closure. Let h, k ∈ H be arbitrary. From what we
have shown already, k−1 ∈ H. Taking h1 = h and h2 = k−1 in the hypothesis,

h ∗
(
k−1

)−1
= h ∗ k ∈ H. This completes the proof.

13.1.5 Examples : groups and subgroups :

Following is a list of some groups frequently encountered in Physics.

(i) GL (n,R) : The set of all n×n non-singular (and hence invertible) matri-
ces (n ∈ N) with real entries forms a group under the operation of matrix
multiplication. This group is called GL (n,R) or the general linear group.
The letter ’G’ stands for general and the letter ’L’ stands for linear (ma-
trices are a concise way of representing linear transformations on vector
spaces), n denotes the order of the square matrices and R signifies that the
entries are all real numbers. Mat (n,R), the set of all n× n real matrices
does not form a group under matrix multiplication since singular matrices
do not have a multiplicative inverse. However, Mat (n,R) forms a group
under addition of matrices.

(ii) SL (n,R) : The set of all n × n unideterminantal (aka unimodular) ma-
trices with real entries is a subgroup of GL (n,R). To see why, let A,B ∈
SL (n,R). Thus det (A) = 1 = det (B). Since det (B) = 1, there-
fore det

(
B−1

)
= 1 (implying B−1 ∈ SL (n,R)). Now, det

(
AB−1

)
=

det (A) .det
(
B−1

)
= 1, and henceAB−1 ∈ SL (n,R). By theorem (13.1.4),

SL (n,R) < GL (n,R).

(iii) O (n) : The set of all n×n orthogonal matrices is a subgroup of GL (n,R).
To see why, let O1, O2 ∈ O (n). Since O2 is orthogonal, so is O−1

2 : O−1
2 =

OT2 =⇒ O2 =
(
O−1

2

)−1
=
(
OT2
)−1

=
(
O−1

2

)T
. Now,

(
O1O

−1
2

)T
=(

O−1
2

)T
OT1 = O2O

−1
1 =

(
O1O

−1
2

)−1
. Therefore, O1O

−1
2 ∈ O (n). Thus,

O (n) < GL (n,R).

(iv) SO (n) : The set of all n×n unimodular orthogonal matrices under matrix
multiplications is a subgroup of O (n)(and hence of GL (n,R)). The proof
is similar to the two proofs furnished above and hinges on the fact that
determinant of two unimodular matrices is also 1. So, SO (n) < O (n) <
GL (n,R).

(v) GL (n,C) : The set of all non-singular n×n matrices with complex entries
forms a group under matrix multiplication. As you might have guessed,
GL (n,R) < GL (n,C). For the sake of being absolutely precise, let me
mention here that GL (n,R) is not even a subset of GL (n,C) since, by
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definition R * C. However, GL (n,R) is isomorphic19 to a subgroup of
GL (n,C) (which is made out of those matrices in GL (n,C) whose entries
have 0 as their imaginary part). But we don’t quibble about such nitty-
gritty and write GL (n,R) < GL (n,C).

(vi) U (n) : The set of all n × n unitary matrices is a subgroup of GL (n,C)
(check!). This is one of the most important groups for Physicists.

(vii) SU (n) : The set of all n×n unimodular unitary matrices forms a subgroup
of U (n). This group is also of supreme importance in Physics.

(viii) Our familiar groupD3 has the following subgroups : {e}, D3 = {e, a, b, c, d, f},
{e, a}, {e, b}, {e, c}, {e, d, f}. The first two subgroups are trivial subgroups
and the rest are non-trivial.

13.1.6 Definition : Order of a group :

The order of a group (G, ∗) is defined to be the cardinality of the set G.

13.2 Cosets and Lagrange’s theorem :

13.2.1 Definition : Left and Right Cosets :

Let (G, ∗) be a group and (H, ∗�H) be a subgroup of (G, ∗). For an arbitrary
g ∈ G, the left coset gH (of H) is defined as gH ≡ {g ∗ h : h ∈ H}. Similarly,
the right coset Hg is defined as Hg ≡ {h ∗ g : h ∈ H}.

13.2.2 Some results about cosets :

We shall now prove a bunch of results that will lead us to the famous Lagrange’s
theorem. In what follows, (G, ∗) is a group and (H, ∗�H) is its subgroup. We
shall state and prove results concerning left cosets. Each of these results are
also true for right cosets (the proofs can be mimicked with absolutely no effort).

(a) ∀g ∈ G, g ∈ gH.
Proof : e ∈ H since H is a subgroup. The way the coset gH is defined,
g ∗ e = g is one of its element.

(b) Let G be a finite group. The cardinality (number of elements) of gH is
equal to the cardinality of H.
Proof : Since G is finite, so is H. Let H = {h1, h2, . . . , hq}. Clearly,
the cardinality of H is q. gH consists of the elements ghi, i = 1 (1) q. If
ghi = ghj , then hi = hj (since we can multiply both sides by g−1 from
the left and multiplication is associative). Therefore, none of the elements
ghi repeats itself in the collection gH = {ghi : hi ∈ H}. Q.E.D.

19We shall define homomorphism and isomorphism soon and the meaning of this statement
will become transparent, hopefully.
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(c) ∀h ∈ H, hH = H.
Proof : The proof is trivial. This is a consequence of the closure of H
and the fact that h ∗ k = h ∗ l =⇒ k = l. Fill in the details of the proof.

(d) Let g, g
′ ∈ G. If g

′ ∈ gH then gH = g
′
H.

Proof : g
′ ∈ gH =⇒ ∃h ∈ H such that g

′
= gh. Therefore, g

′
H =

(gh)H = g (hH). This last step follows because of associativity of the
group multiplication. Finally, hH = H implies that g

′
H = gH.

(e) Let g ∈ G. The coset gH is said to be labeled by g. A given coset
can be labeled by any of its elements because of the property above :
g
′ ∈ gH =⇒ gH = g

′
H.

(f) Two left cosets of H are either disjoint or identical.
Proof : Let g1H and g2H be two cosets that are not disjoint. Let g ∈
g1H ∩ g2H (such a g exists because g1H ∩ g2H 6= ∅). From the result (d)
proven above, g ∈ g1H =⇒ gH = g1H and g ∈ g2H =⇒ gH = g2H.
Therefore, g1H = g2H.

(g) Cosets of H partition G.
Proof : Let g ∈ G be arbitrary. g ∈ gH (by property (a) above). Thus,
each element of G belongs to a coset of H. Also, two distinct cosets of
H are disjoint. Thus, cosets are a collection of mutually exclusive and
exhaustive subsets of G. Hence cosets of H partition G.

(h) Lagrange’s theorem : Let G be finite. The cardinality of H must divide
the cardinality of G.
Proof : We denote the cardinality of a set S by #S (many authors also
use |S|). Let there be p different cosets of H (obviously, p ∈ N). Each of
these cosets contain #H elements (by property (b) above). Since these
cosets are mutually disjoint and also exhaustive (every element of G is in
exactly one coset of H), therefore, #G = (#H) .p. Therefore, #H is a
divisor of #G.

(i) A nice corollary of Lagrange’s theorem is that a group of prime order has
no proper (aka non-trivial) subgroup (otherwise, the order of the proper
subgroup would be a non-trivial divisor of the order of the group).

Let us check the consistency of Lagrange’s theorem with an example we have
already seen. D3 is a 6-element group. Its non-trivial subgroups have either 2
elements or 3 elements. 2 and 3 both are divisors of 6. Sanity checked.

13.3 Cyclic groups :

13.3.1 Definition : Order of an element of a group :

Let G be a finite group and g ∈ G. Consider the sequence
(
g, g2, g3, . . .

)
. Here,

∀n ∈ N, gn ≡ g ∗ g ∗ . . . ∗ g (n factors). Since G is a group, all the terms of
the sequence belong to G. Since G is finite, ∃m,n ∈ N, with m < n, such
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that gm = gn (had this not been true, we would end up with an infinitely
many elements gn of a finite group). This implies that20 gn−m = e. Therefore,
N ⊇ {p : p ∈ N and gp = e} 6= ∅. From the well-ordering principle21 of set
theory, the set {p : p ∈ N and gp = e}has a least element. The smallest p ∈ N
for which gp = e (such a p exists, as we have shown above, for every element in
a finite group) is called the order of the element g.

13.3.2 Lemma :

For a finite group G and g ∈ G with order p, Zp ≡
{
g, g2, . . . , gp−1, gp = e

}
is a

subgroup of G.

Proof : Let gk, gl ∈ Zp. k, l ∈ N∪{0} and k, l ≤ p. If k > l, then gk ∗
(
gl
)−1

=
gk−l ∈ Zp because k − l ∈ N and k − l ≤ p. If k ≤ l, then −p ≤ k − l ≤ 0 and

gk ∗
(
gl
)−1

= gp ∗ gk ∗ g−l = gp+k−l ∈ Zp. The second step works since gp = e.
And gp+k−l ∈ Zp because 0 ≤ (p+ k − l) ≤ p. By theorem (13.1.4), Zp < G.

Comment : For an element g ofG with order p, clearly gn∗gm = g(n+m) mod p.

13.3.3 Definition : Cyclic group :

Let G be a finite group and g ∈ G be of order p. The subgroup Zp ≡{
g, g2, . . . , gp−1, gp = e

}
is defined to be the cyclic group generated by g. A

finite group G is said to be a cyclic group of order p if it is of the form
G =

{
g, g2, . . . , gp−1, gp = e

}
. Such a group G is said to be generated by g.

13.3.4 Some results concerning cyclic groups :

(a) Let G =
{
g, g2, . . . , gp−1, gp = e

}
be a cyclic group generated by g which

is of order p. If h is another (h 6= g) element of G with order p, then h
also generates the same group G.
Proof : The result is intuitively obvious. Supply a proof.

(b) For finite groups, cyclic subgroups are guaranteed to exist.
Proof : Easy, and left as an exercise.

(c) Every cyclic group is abelian.
Proof : The result follows because group multiplication of one element
with itself commutes.

(d) Every finite group has an abelian subgroup.
Proof : Follows from results (b) and (c) above.

(e) Every finite group of prime order has to be cyclic and hence abelian.
Proof : Combine Lagrange’s theorem with some of the results above.
The details are left as an exercise.

20For n ∈ N, g−n ≡
(
g−1

)n
= (gn)−1. Also, for n,m ∈ N, gn+m ≡ gn∗gm. To consistently

extend the domain of applicability of this notation, we define g0 ≡ e.
21The well-ordering principle states that every non-empty subset of N contains a least ele-

ment. In other words, N is well-ordered (look up the definition of a well-ordered set).
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(f) All elements of a cyclic group of prime order have the same order (which
is equal to the order of the group).
Proof : Exercise!
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14 Lecture 14 : September 2, 2016

14.1 Group Action :

Recall what I said towards the end of the twelfth lecture. We talked about
the multiplication table and gave as an illustrative example the table for the
D3 group. Then I commented that the set along with the multiplication table
completely specifies the group structure of D3. One can very well ignore (or
be unaware of) the fact that D3 is made up of symmetry transformations of an
equilateral triangle. That is to say that a group is an abstract algebraic structure
whose identity is not dependent on any concrete example. However, we also
agreed that the concrete examples, where the group elements are some kinds of
transformation operations acting on some physical objects (or the space which
accommodates these objects), help us understand the abstraction better. The
way in which the group elements act on the physical objects in these examples
is formally defined as the action of the group on a set.

14.1.1 Definition : Group action :

Given a group (G, ∗) and a set X, the action of G on X is a map ◦ : G×X → X,
with its commonly used notation ◦ ((g, x)) ≡ g.x where g ∈ G and x ∈ X, such
that it obeys

(i) ∀x ∈ X, e.x = x.

(ii) ∀x ∈ X and ∀a, b ∈ G, (a ∗ b) .x = a. (b.x).

The group G (and its elements) are said to act on the set X.

14.1.2 Examples of group action :

(a) SO (3) and rotations : The set of 3×3 special (aka unimodular) orthogonal
matrices with real entries forms the group SO (3) under matrix multipli-
cation. We also know that every SO (3) matrix corresponds to a rotation
in R3 and vice versa. The definition of the group SO (3) does not need any
reference to the rotations, but this correspondence helps us “interpret” the
matrices as being a particular kind of linear transformation defined on R3,
viz. rotations. So, rotation is the action of SO (3) on R3. Formally, define
the map ◦ : SO (3)×R3 → R3 such that, for R ∈ SO (3) (with [R]ij ≡ Rij)

and x = (x1, x2, x3) ∈ R3, ◦ ((R, x)) ≡ R.x and (R.x)i =
3∑
j=1

Rijxj . That

is, the action map ◦ is ordinary matrix multiplication (of a 3 × 3 matrix
and a 3× 1 matrix, in that order from left to right). We can easily verify
that ◦ meets all the criteria for qualifying as an action map. Do it as an
exercise. I think that you get the drift of what group action is all about
from the definition and the present example. The concept is so intuitive
that we have made use of it several times (while studying symmetries in
classical or quantum physics) even though we had not known its formal
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definition. Most of the groups we encounter in real life (and hence in
physics) are defined as sets of transformations on some set, i.e., via their
actions on these sets. Let us now see two more examples of group action
that are of great importance.

(b) Action of G on itself via group multiplication : Let (G, ∗) be a group. We
can define the following action of G on itself : G × G 3 (a, b) 7→ a ∗ b.
We observe that (a ∗ b) .g = (a ∗ b) ∗ g = a ∗ (b ∗ g) = a. (b.g). Thus,
associativity of ∗ implies that this is a valid action. Similarly, the map
(a, b) 7→ b ∗ a is another action of G on itself.

(c) Action of G on itself via conjugation : Consider the map (a, b) 7→ a∗b∗a−1,
where a, b ∈ G. This is called action of G on itself via conjugation. Let’s
check if this really is an action. For arbitrary g ∈ G, e.g = e ∗ g ∗ e−1 =
g. Furthermore, for a, b, g ∈ G, (a ∗ b) .g = (a ∗ b) ∗ g ∗ (a ∗ b)−1

= a ∗(
b ∗ g ∗ b−1

)
∗ a−1 = a. (b.g). Thus, this is a legal action.

14.1.3 Orbit of a point of X under the action of G :

Let (G, ∗) be a group and ◦ be an action of G on the set X. Let x ∈ X.
The orbit of x under the action of G is denoted by G.x and is defined by
G.x = {g.x : g ∈ G}.

Notice that we have already met this concept before. Recall how we obtained
the multiplication table of D3. The very definition which we gave of the group
D3 furnishes an action of D3 on the set of points on and inside an equilateral
triangle. While trying to figure out the entries in the multiplication table, we
took one point x inside this triangle and traced its fate under the action of
the various group elements. The set of points on which x is mapped under the
transformations is the orbit of x. Now, notice that a generic point x has a
6-element orbit. A point on exactly one of the medians has a 3-element orbit.
The centroid has a 1-element orbit. And no point on or inside the triangle can
have, for instance, a 4-element orbit, or a 5-element orbit. Every orbit is either
a 1-element, or a 3-element or a 6-element orbit. Can you explain why? Hint :
the following result may be of help.

14.1.4 Part definition, part theorem : the stabilizer or stability sub-
group :

Let (G, ∗) be a group and ◦ be an action of G on the set X. Let x ∈ X.
Then, Gx = {g ∈ G : g.x = x} is a subgroup of G. This subgroup is called the
stabilizer of x, aka the stability subgroup corresponding to x.
Proof : First of all, e ∈ Gx since e.x = x by definition of group action.
Therefore, Gx 6= ∅. If e is the only element in Gx, then there is nothing to prove
since {e} < G. Suppose e is not the only element in Gx. Let g1, g2 ∈ Gx. Now,
x = e.x =

(
g−1

2 ∗ g2

)
.x = g−1

2 . (g2.x) = g−1
2 .x since g2 ∈ Gx =⇒ g2.x = x.

Thus g−1
2 .x = x. Therefore,

(
g1 ∗ g−1

2

)
.x = g1.

(
g−1

2 .x
)

= g1.x = x. Thus,

g1 ∗ g−1
2 ∈ Gx. Hence, Gx < G.

54



14.2 Cosets and Normal subgroups :

14.2.1 Left and right cosets are different in general :

Let us illustrate this through an example. Consider the subgroup {e, a} of D3.
The left and right cosets of {e, a} are listed below :

Left Cosets Right Cosets
e {e, a} = a {e, a} = {e, a} {e, a} e = {e, a} a = {e, a}
b {e, a} = f {e, a} = {b, f} {e, a} b = {e, a} d = {b, d}
c {e, a} = d {e, a} = {c, d} {e, a} c = {e, a} f = {c, f}

Now, for the subgroup {e, d, f}, the left cosets are

e {e, d, f} = d {e, d, f} = f {e, d, f} = {e, d, f}
a {e, d, f} = b {e, d, f} = c {e, d, f} = {a, b, c}

and the right cosets are

{e, d, f} e = {e, d, f} d = {e, d, f} f = {e, d, f}
{e, d, f} a = {e, d, f} b = {e, d, f} c = {a, b, c}

Left and right cosets of {e, a} with respect to b, c, d, f etc. are different from
each other. Left and right cosets of {e, a}with respect to e or a are the same
– {e, a} itself – because it is a subgroup (and hence has closure). In contrast,
{e, d, f} has the same left and right coset with respect to any element of D3.
Subgroups which have this special property are called normal subgroups and
have tremendous importance in group theory and its applications.

14.2.2 Theorem :

Let (G, ∗) be a group and S be a subgroup of G. Then, ∀g ∈ G, g−1Sg ≡{
g−1sg : s ∈ S

}
is a subgroup of G.

Proof : Let x1, x2 ∈ g−1Sg. Therefore, ∃s1, s2 ∈ S such that x1 = g−1s1g and
x2 = g−1s2g. Now, x1x

−1
2 =

(
g−1s1g

) (
g−1s−1

2 g
)

= g−1s1s
−1
2 g ∈ g−1Sg since,

S being a subgroup, s1s
−1
2 ∈ S. This completes the proof.

14.2.3 Definition : Normal (aka invariant) subgroup :

Let (G, ∗) be a group and N be a subgroup of G. N is said to be a normal
subgroup, aka invariant subgroup, of G if ∀g ∈ G, gNg−1 = N . Of course,
gNg−1 = N ⇐⇒ gN = Ng. When N is a normal subgroup of G we denote it
by N / G.

14.2.4 Example :

SL (n,R) / GL (n,R) : The proof is pretty simple and hinges on the facts that
determinant of a product of matrices is equal to the product of the determinants
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of the matrices and that determinant of the inverse of a matrix is equal to the
inverse of the determinant of the matrix. Fill in the details yourself.

We observed earlier that cosets partition the entire set. Cosets of SL (n,R),
of the form A (SL (n,R)) where A ∈ GL (n,R), partition GL (n,R). We can
uniquely specify a coset by referring to any one of its elements. So, in a sense,
all the elements of a given coset are identified (each of them equivalently label
the said coset). This is reflected in the fact that all matrices belonging to a given
coset of SL (n,R) have the same determinant. So, the value of the determinant
can be used to label the cosets.

14.2.5 Theorem :

Let (G, ∗) be a finite group with 2n elements, n ∈ N. If G has a subgroup H
with n elements in it, then H / G.
Proof : Left as an exercise.

14.2.6 Theorem :

All subgroups of an abelian group is normal.
Proof : Left as an exercise.

14.2.7 Definition : Complex :

Let (G, ∗) be a group. A non-empty subset A ⊆ G is technically called a
complex.

14.2.8 Definition : Multiplication of complexes :

Let (G, ∗) be a group, A,B be complexes of G. Then, the product of A and B,
denoted in short by AB or A.B, is defined as AB = {a ∗ b : a ∈ A, b ∈ B}.

Note that AB 6= BA in general. Also note that this product is defined
between any two complexes (non-empty subsets) of G. None of the factors A,B
have to be a subgroup. An interesting question to ask would be if A,B being
subgroups implies that AB is a subgroup. The answer to that is encoded in
the following theorem which we shall only state and the proof will be left as an
exercise.

14.2.9 Theorem :

Let H and K be subgroups of G. Then HK is a subgroup if and only if
HK = KH.

14.2.10 Example : multiplication of complexes :

The most relevant and useful application of complex multiplication is to mul-
tiply cosets (we will shortly see why). Let us see a few examples from D3.
For example, {c, d} . {b, f} = {a, d, c, e} ({c, d}, {b, f} are left cosets of {e, a}),
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{e, a} . {b, f} = {b, f} ({b, f} is a left coset of {e, a}) etc. We notice that the
product of two cosets is not necessarily a coset. That means, if we were to
look for a group structure on the set of cosets (corresponding to a particular
subgroup), we would fail (in general) at the very first step – the group operation
for this attempted group would not have closure. But this can be done under a
special circumstance which we shall demonstrate in the next class.
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15 Lecture 15 : September 6, 2016

Today, we shall start with the question which we left off last time. The question
is this :

Question : Let S be a subgroup of G, and g1, g2 ∈ G. g1S, g2S are cosets of
S. Is (g1S) . (g2S) also a coset of S?

We know the answer to this question is in the negative. Because in the last
class we saw an example in which two a product of two cosets was not a coset.
However, for certain kinds of subgroups S, this can be achieved. Now suppose
that we have a situation where (g1S) . (g2S) is a coset. Then surely this coset
is22 g1g2S, because g1g2 ∈ (g1S) . (g2S) and a coset can be labeled by any one
of its elements.

15.1 Quotient groups :

We start off by proving a theorem about normal subgroups.

15.1.1 Theorem :

Let G be a group and N / G. Then, ∀g ∈ G, gN = Ng. That is, left and right
cosets of N with respect to any given element g are the same set.
Proof : Let x ∈ gN . Therefore, ∃n ∈ N such that x = gn = gng−1g. Since
N / G, ∃n′ ∈ N such that gng−1 = n

′
. Thus, x = n

′
g ∈ Ng. Therefore,

gN ⊆ Ng. Proving the reverse inclusion Ng ⊆ gN is equally easy. Thus,
gN = Ng.

15.1.2 Theorem :

Let G be a group and N /G. Then CN = {gN : g ∈ G}, the collection of cosets
of N , form a group with the group operation being coset multiplication.
Proof : First, we check closure. Let g1, g2 ∈ G, x ∈ (g1N) . (g2N). Therefore,
∃n1, n2 ∈ N such that x = g1n1g2n2. Now, x = g1n1g2n2 = g1g2g

−1
2 n1g2n2.

Since N / G, ∃n′ ∈ N such that g−1
2 n1g2 = n

′
. Thus, x = g1g2n

′
n2 ∈ g1g2N

because n
′
n2 ∈ N . Therefore, (g1N) . (g2N) ⊆ g1g2N . Now, let x ∈ g1g2N , so

∃n ∈ N such that x = g1g2n = g1eg2n ∈ (g1N) . (g2N) where e is the identity
element of G. Therefore, g1g2N ⊆ (g1N) . (g2N). This proves that

(g1N) . (g2N) = g1g2N (9)

Not only have we proven closure, but we have also found a nice formula in
(9). This helps in proving associativity of coset multiplication in one meager
step. For g1, g2, g3 ∈ G,(g1N) . ((g2N) . (g3N)) = (g1N) . (g2g3N) = g1g2g3N =
(g1g2N) (g3N) = ((g1N) . (g2N)) . (g3N).
Clearly, N is the identity with respect to coset multiplication, since, ∀g ∈ G,

22We write g1 (g2S) = g1g2S.
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N. (gN) = (gN) .N = gN (using (9)).
Finally, we claim that, ∀g ∈ G, g−1N is the inverse of gN with respect to coset
multiplication. This is seen from (gN) .

(
g−1N

)
=
(
g−1N

)
. (gN) =

(
g−1g

)
N =

N (we use (9) again, and the fact that N is the identity of coset multiplication).

We write (gN)
−1

= g−1N .

15.1.3 Definition : Quotient group (aka Factor group) :

Let G be a group and N /G. Then the group formed by the set of all cosets of
N under the operation of coset multiplication is called the quotient group of G
with respect to N and is denoted by G/N . We have,

G/N = {gN : g ∈ G} (10)

Comment : Notice that, in defining the quotient group of G with respect to
N , we have not specified whether we are talking about left cosets of N or
right cosets of N . That is because they are the same.

15.1.4 Example of a quotient group :

We have earlier seen that SL (n,R) / GL (n,R). Clearly, GL (n,R) /SL (n,R)
is a quotient group. This group has elements of the form A. (SL (n,R)) where
A ∈ GL (n,R) is arbitrary. Every element in the the coset A. (SL (n,R)) has
the same value of determinant, viz det (A). All elements in the coset are thus
identified and their collection is treated as a single entity in the quotient group.

At this point, let me make a comment. In mathematics, we try to follow
up every definition by an example so that the abstract concept can be seen at
work in a concrete form, so to speak. This example seems to serve no such
purpose. We just observe that GL (n,R) fits in the role of G from definition
(15.1.3), and SL (n,R) fits the role of N . We still do not know what kind of
group structure the quotient group GL (n,R) /SL (n,R) has. Is this group akin
to any familiar group? To answer this question with complete rigor, we need to
familiarize ourselves with the concepts of homomorphism and isomorphism.

15.2 Homomorphism and Isomorphism :

15.2.1 Definition : Homomorphism :

Let (G, ∗) and
(
G
′
, ∗′
)

be two groups. A map f : G→ G
′

is called a homomor-

phism if f is onto (surjective) and satisfies

f (g1 ∗ g2) = f (g1) ∗
′
f (g2) ∀g1, g2 ∈ G

This defining property is often expressed in words by saying that f is structure-
preserving.
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Comment : In defining homomorphism, most authors do not include surjec-
tivity as a defining property. In textbooks, therefore, you will find defini-
tions of homomorphism that state only the structure-preserving property.
However, we shall include this property in the definition. Otherwise, most
of the theorems we are going to state and prove about homomorphisms
would have to bear an additional clause that would say that this theorem
concerns G and f (G) ⊆ G

′
. By demanding that f be onto, the image

f (G) of f becomes the same as G
′
. We could also (equivalently) hold

the view that f (G) is being defined as G
′

since it is what is of interest.
Therefore, demanding surjectivity to be included as a defining property of
homomorphism does not cause any loss of generality.

15.2.2 Definition : Isomorphism :

Let (G, ∗) and
(
G
′
, ∗′
)

be two groups. A map f : G→ G
′

is called an isomor-

phism if f is a homomorphism and also one-to-one (injective).
If f be an isomorphism, then, by virtue of being a homomorphism, f is

onto. f is also one-to-one. Thus, f is a bijection and establishes a one-to-one
correspondence between elements of the two groups G and G

′
.

15.2.3 Definition : Homomorphic and Isomorphic groups :

Two groups (G, ∗) and
(
G
′
, ∗′
)

are said to be homomorphic (isomorphic) if there

exists a homomorphism (isomorphism) from G to G
′
. If G,G

′
be homomorphic,

we denote it by G ∼ G′ . If G,G
′

be isomorphic, we denote it by G ' G′ .
As far as group properties are concerned, two isomorphic groups are one and

the same thing.

15.2.4 Theorem :

GL (n,R) /SL (n,R) ' (R \ {0} , ∗).
Proof : In order to prove this theorem, we need to find an isomorphism
between the quotient group GL (n,R) /SL (n,R) and the group of non-zero
real numbers under ordinary multiplication. Define the following function F :
GL (n,R) /SL (n,R) → R \ {0}, such that F : gS 7→ det (g) ∀g ∈ GL (n,R),
where we use the abbreviation S for SL (n,R).
F is well-defined : An immediate question arises about the validity of this func-
tion. We know that a coset gS can be labeled by any one of its elements.
That is, if g

′ ∈ gS, then g
′
S = gS. Then, under F , this coset can be said

to map to both det (g) and det
(
g
′
)

. If these two values are not equal, then

F would not qualify as a function. Hence, we need to check if at all F is a
well-defined function. Now, for g

′ ∈ gS, ∃s ∈ S such that g
′

= gs. Therefore,

det
(
g
′
)

= det (gs) = det (g) det (s) = det g, since s ∈ S =⇒ det (s) = 1.

Thus, no matter which g we use to label a coset, the image of the coset under
F comes out to be the same. Hence, F is well-defined.
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F is one-to-one : Let F (g1S) = F (g2S), for g1, g2 ∈ GL (n,R). Therefore,
det (g1) = det (g2) =⇒ det

(
g−1

1 g2

)
= 1 =⇒ g−1

1 g2 ∈ S. Thus, ∃s ∈ S

such that g−1
1 g2 = s =⇒ g2 = g1s =⇒ g2S = g1sS = g1S. Thus,

F (g1S) = F (g2S) =⇒ g1S = g2S, proving that F is one-to-one.
F is onto : Let x ∈ R \ {0}. The matrix23 g = diagn (x, 1, 1, . . . , 1) ∈ GL (n,R).
Clearly, det (g) = x. Thus, F is onto.
F is structure-preserving : F ((g1S) . (g2S)) = F (g1g2S) = det (g1g2). Since
det (g1g2) = det (g1) det (g2), therefore, F ((g1S) . (g2S)) = det (g1) det (g2) =
F (g1S)F (g2S)
Therefore, F is an isomorphism, and GL (n,R) /SL (n,R) ' (R \ {0} , ∗).

The above theorem settles the question as to what the group structure of
GL (n,R) /SL (n,R) is like. The elements of this quotient group are fancy
things, cosets of SL (n,R), but the group structure is as simple as that of non-
zero real numbers under ordinary multiplication.

A final comment about this theorem is in order. Consider the determi-
nant map (denoted by f here, but people conventionally use det) defined from
GL (n,R) to R \ {0} : f : GL (n,R) → R \ {0} such that f : g 7→ det (g) ∀g ∈
GL (n,R). This map is onto and structure preserving, and hence a homomor-
phism from GL (n,R) to (R \ {0} , ∗). However, it is not injective. Thus, f fails
to be an isomorphism. By defining the quotient group GL (n,R) /SL (n,R) and
taking that as the domain of a new function F which is in a way “derived”
from our old f , we manage to make F into an isomorphism. All the matrices in
GL (n,R) which mapped to the same number under the determinant map f have
been clustered together into cosets (which are elements of GL (n,R) /SL (n,R)).
Now the new determinant map F , viewed as a map from the set of cosets to
non-zero reals, becomes injective. This is the essence of the all important iso-
morphism theorem. So, the theorem above is a consequence of the more general
isomorphism theorem which we shall state and prove in the next class.

23This notation might need some explanation. diagn (x, 1, 1, . . . , 1) is a diagonal n×n matrix
whose diagonal elements (in order from top to bottom) are x, 1, 1, . . . , 1 (the first element is
x, followed by (n− 1) 1′s).
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16 Lecture 16 : September 8, 2016

16.1 Isomorphism theorem :

Today’s main agenda will be to prove the isomorphism theorem.

16.1.1 Theorem :

Let (G, ∗) ,
(
G
′
, ∗′
)

be two groups and f : G→ G
′

be a homomorphism. Then,

(i) f (e) = e
′
, where e, e

′
are the identities of G,G

′
respectively.

(ii) f
(
g−1

)
= (f (g))

−1
, ∀g ∈ G. Here, (f (g))

−1
is the inverse of f (g) in the

group G
′
. Very often, the notation f−1 (g) ≡ (f (g))

−1
is used.

Proof : (i) Let g ∈ G. Then, f (g) = f (e ∗ g) = f (e) ∗ f (g), which implies
that e

′
= f (g) ∗′ f−1 (g) = f (e).

(ii) ∀g ∈ G, e
′

= f (e) = f
(
g−1 ∗ g

)
= f

(
g−1

)
∗′ f (g), which implies that

f
(
g−1

)
= e

′ ∗′ (f (g))
−1

= (f (g))
−1

.

16.1.2 Definition : Kernel of a homomorphism :

Let (G, ∗) ,
(
G
′
, ∗′
)

be two groups and f : G → G
′

be a homomorphism. The

kernel of f , denoted by ker (f), is defined as ker (f) =
{
g ∈ G : f (g) = e

′
}

where e
′

is the identity of the group G
′
.

16.1.3 Theorem :

Let (G, ∗) ,
(
G
′
, ∗′
)

be two groups and f : G→ G
′

be a homomorphism. Then,

ker (f) / G.
Proof : First of all, we should prove that ker (f) is a subgroup of G. Let
g1, g2 ∈ ker (f). Hence, f (g1) = e

′
= f (g2). Now, f

(
g−1

2

)
= f−1 (g2) =

e
′−1 = e

′
. Thus, f

(
g1g
−1
2

)
= f (g1) f

(
g−1

2

)
= e

′
, implying g1g

−1
2 ∈ ker (f).

Thus, ker (f) < G. Now, consider g ker (f) g−1 for an arbitrary g ∈ G. Let
x ∈ g ker (f) g−1. Hence, ∃k ∈ ker (f) such that x = gkg−1. Now, f (x) =
f (g) f (k) f

(
g−1

)
= f (g) f

(
g−1

)
= e

′
, since f (k) = e

′
. Thus, x ∈ ker (f), and

g ker (f) g−1 ⊆ ker (f). Since this holds for all g ∈ G, in particular for g−1 we
get g−1 ker (f) g ⊆ ker (f). Multiplying from the left by g and from the right by
g−1, we find ker (f) ⊆ g ker (f) g−1. This proves the reverse inclusion, and we
finally get g ker (f) g−1 = ker (f) ,∀g ∈ G. Thus, ker (f) / G.

16.1.4 Definition : Image of a homomorphism :

Let (G, ∗) ,
(
G
′
, ∗′
)

be two groups and f : G → G
′

be a homomorphism.

The image of f , denoted by f (G), or Im (f), is defined as Im (f) = f (G) =
{f (g) : g ∈ G}.
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According to our definition of a homomorphism, f (G) = G
′

for every homo-
morphism. If the onto condition is relaxed from the definition of homomorphism,
then f (G) would be a subset (not necessarily proper) of G

′
. For the case when

f (G) is a proper subset of G
′
, the following theorem holds (it obviously holds

when f (G) = G
′
).

16.1.5 Theorem :

Let (G, ∗) ,
(
G
′
, ∗′
)

be two groups and f : G→ G
′

be a homomorphism (with

the onto condition relaxed). Then, f (G) < G
′
.

Proof : Let g
′

1, g
′

2 ∈ f (G). Hence, ∃g1, g2 ∈ G such that f (g1) = g
′

1 and

f (g2) = g
′

2. Therefore, g
′

1g
′−1
2 = f (g1) f−1 (g2) = f (g1) f

(
g−1

2

)
= f

(
g1g
−1
2

)
∈

f (G). Thus, f (G) < G
′
.

Henceforth, we shall regard every homomorphism as being onto by definition.
This amounts to setting f (G) = G

′
, if you will, and this is legal since we have

proved that f (G) is a group in its own right.

16.1.6 Theorem :

Let (G, ∗) ,
(
G
′
, ∗′
)

be two groups and f : G→ G
′

be a homomorphism. Then,

f is an isomorphism iff ker (f) = {e}.
Proof : If (⇐= ) : Let f : G → G

′
be a homomorphism and ker (f) = {e}.

Let g1, g2 ∈ G be such that f (g1) = f (g2). Then, f
(
g1g
−1
2

)
= e

′
, implying

g1g
−1
2 ∈ ker (f) = {e}. Therefore, g1g

−1
2 = e =⇒ g1 = g2. Thus, f is injective,

and hence an isomorphism.
Only if ( =⇒ ) : Let f : G → G

′
be an isomorphism. We already know that

f (e) = e
′

(theorem (16.1.1)). Therefore, e ∈ ker (f). Since f is also injective
(by virtue of being an isomorphism), therefore f (g) = e

′
= f (e) =⇒ g = e.

Thus, e is the only element in ker (f). Q.E.D.
We are finally ready to state and prove the isomorphism theorem.

16.1.7 The isomorphism theorem :

Let (G, ∗) ,
(
G
′
, ∗′
)

be two groups and f : G→ G
′

be a homomorphism. Then,

G/ ker (f) ' G′ .
Proof : From our discussion so far, we recognize that elements of the quotient
group G/ ker (f) are cosets of the form g ker (f), where g ∈ G. We also under-
stand the meaning of two groups being isomorphic. All we need to do is to show
that there exists an isomorphism from G/ ker (f) to G

′
. We shall show it by

construction. With the help of the function f which is already at hand, let us
define the map F : G/ ker (f)→ G

′
such that f : g ker (f) 7→ f (g), ∀g ∈ G.

F is well-defined : Just as in the case of theorem (15.2.4), the question arises as
to whether or not F is a valid function. We can label a coset g ker (f) by any
other element g1 if g1 ∈ g ker (f) since g1 ∈ g ker (f) =⇒ g1 ker (f) = g ker (f).
Now, g1 ∈ g ker (f) implies that ∃k ∈ ker (f) such that g1 = gk. Thus,
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f (g1) = f (gk) = f (g) f (k) = f (g) e
′

= f (g). Hence, g1 ∈ g ker (f) im-
plies that F (g ker (f)) = f (g) = f (g1) = F (g1 ker (f)). This shows that F is
well defined.
F is onto : This is true because f is onto (by definition). To show it explicitly, let

g
′ ∈ G′ . Since f is onto, ∃g ∈ G such that g

′
= f (g). Also, F (g ker (f)) = f (g).

Therefore, ∃g ker (f) ∈ G/ ker (f) such that F (g ker (f)) = g
′
,∀g′ ∈ G′ .

F is structure preserving : F ((g1 ker (f)) . (g2 ker (f))) = F (g1g2 ker (f)) =
f (g1g2) = f (g1) f (g2) = F (g1 ker (f))F (g2 ker (f)), and this holds ∀g1, g2 ∈
G.
F is injective : Let F (g1 ker (f)) = F (g2 ker (f)), for some g1, g2 ∈ G. This

implies that f (g1) = f (g2) =⇒ f
(
g−1

1 g2

)
= e

′
=⇒ g−1

1 g2 ∈ ker (f).

Thus, ∃k ∈ ker (f) such that g−1
1 g2 = k =⇒ g2 = g1k. Hence, g2 ker (f) =

g1k ker (f) = g1 ker (f). Therefore, F is one-to-one. This is also reflected in

the fact that ker (F ) =
{
g ker (f) : f (g) = e

′
}

= {ker (f)}, and ker (f) is the

identity of G/ ker (f).
This completes the proof that F is an isomorphism, and hence, G/ ker (f) ' G′

for every homomorphism f from G to G
′
. You must have caught on to the fact

that, in this proof, we have essentially mimicked all the steps in the proof of
theorem (15.2.4). This should not come as a surprise since it had already been
declared that theorem (15.2.4) is a special case of the more general isomorphism
theorem. Now you know how and why.

Comment : While proving that F is onto, we use the fact that f is onto
by virtue of being a homomorphism. Had we relaxed the surjectivity
condition from the definition of homomorphism, we would not have been
able to prove that F is onto24. The isomorphism theorem would then

have to be phrased as follows : “Let (G, ∗) ,
(
G
′
, ∗′
)

be two groups and

f : G → G
′

be a homomorphism. Then, G/ ker (f) ' f (G).” Our
definition of homomorphism implies f (G) = G

′
which nips the problem

in the bud.

Let us take the liberty of stating another result which goes hand in hand with
the isomorphism theorem. This was not done in class, so we shall just state it
and not burden you with a proof25. We feel that this is important knowledge
and should be shared with you.

16.1.8 Theorem :

Let (G, ∗) , be a group and N be a subgroup of G. Then, N /G iff N = ker (f)

for some homomorphism f from G to some other group, say
(
G
′
, ∗′
)

.

24It is not that THIS argument would fail to prove that F is onto and we would have to
resort to some other trick/argument to prove the desired result. The desired result would
simply cease to hold in general : F would not generally be onto in such a case.

25There would be nothing like it if you could come up with a proof yourself. Give it a go.
It’s easy!
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Comment : Half of the proof (the “if” part) has already been done. Worry
only about the other half.

We wrap up today by showing one more example of isomorphism.

Claim : (R,+) ' (R+, ∗) : Here, R+ = {x ∈ R : x > 0}, + and ∗ are ordinary
addition and multiplication of real numbers respectively. To prove that
this claim is true, we need to find an isomorphism f : R→ R+. f should
be structure preserving, and hence, ∀x, y ∈ R, f (x+ y) = f (x) f (y).
The exponential function26 comes to mind : f : x 7→ exp (x). Clearly, f is
onto, and structure preserving, and hence a homomorphism. In addition,
ker (f) = {x ∈ R : exp (x) = 1} = {0}. Thus, f is an isomorphism.

26There are plenty of other functions with this property, in fact infinitely many, but this
works just fine.
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17 Lecture 17 : September 9, 2016

We are almost done with discussing the concepts of group theory needed to
understand Homology and Cohomology theory. We shall round it up today.
Before doing that, let us take a peek at the future and give a small introduction
to what Homology and Cohomology are and how they are related to each other.

17.1 A crude introduction to Homology and Cohomology
:

We stated earlier that, if two topological spaces have different topological in-
variants then they cannot be homeomorphic to each other. This is the basic
philosophy behind the search for topological invariants. We also stated that Ho-
mology groups and Cohomology groups are topological invariants. In homology
theory, we look for regions in the space that do not have a boundary and are not
themselves boundaries of some other regions. Let us demonstrate by an exam-
ple what we mean. Consider a triangular region 4ABC in R2. By a triangular
region we mean the collection of points on the edges AB,BC,CA and also in
the interior of the triangle. To stress that the interior points are included, we
paint the interior by color in the figure (i) below. Although we have not defined
what a boundary is, geometric intuition says that the boundary to this trian-
gular region is the collection of the points on the edges : B = AB +BC +CA.
Since the region is closed, B does not have a boundary of its own : it has no
“end-points” or “extremities”. If we define a boundary operator ∂ which, when
acted upon a region, gives the boundary of the region as output, then we have
∂ (4ABC) = B, and ∂B = 0. Now focus on the figure (ii) on the right. It is
the same triangular region without the paint. To explain why, suppose that we
are talking about a space which is different from R2. Our space is R2 sans the
points in the interior of 4ABC. Therefore, the figure (ii) is essentially B, and
we have already seen that ∂B = 0. However, this time, B 6= ∂ (4ABC), in
contrast to what we had before. The difference between the two cases is that the
latter space contains a “hole” and the former does not. As a consequence, the
latter space accommodates a region B with zero boundary, although B itself is
not a boundary of some other region.

To summarize, it is known that the boundary to a closed region itself has no
region. If Σ is a closed region, then its boundary ∂Σ does not have a boundary
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: ∂ (∂Σ) ≡ ∂2Σ = 0. This, in fact, is a defining property of the boundary
operator ∂ : ∂2 = 0. However, if one finds a region B such that ∂B = 0, does
that imply the existence of another region τ such that B = ∂τ? The answer can
be yes or no depending on the kind of space we are in. In spaces without holes,
∂B = 0 =⇒ B = ∂τ for some region τ . In spaces with holes, this implication
does not hold. However, let us not forget that ∂2 = 0 holds in all spaces by
definition of ∂.

The discussion above has strange resemblance with a very familiar concept
from calculus. Recall that a differential M (x, y) dx + N (x, y) dy is defined to
be closed if ∂M

∂y = ∂N
∂x , and it is defined to be exact if ∃φ (x, y) such that

Mdx + Ndy = dφ. It can be shown that a differential is exact if and only if
its integral on a closed contour is zero. Now, if a differential is exact then it is
automatically closed27. However, a closed differential is not necessarily exact.
To illustrate this, take the most common example : xdy−ydx

x2+y2 . This differential

is closed, since ∂M
∂y = ∂N

∂x = y2−x2

(x2+y2)2
. But,

¸
S1

xdy−ydx
x2+y2 = 2π, where S1 is

the unit circle given by x2 + y2 = 1. This integral can be easily computed by
substituting x = cos θ and y = sin θ. Hence, a loop integral of the differential is
non-zero, implying that it is not exact. The reason behind this is the following.
The differential xdy−ydx

x2+y2 is not defined at the origin (x, y) = (0, 0). Hence, its

domain of definition is R2\{(0, 0)}, the punctured plane. This hole at the center
is responsible for this differential being non-exact despite being closed.

Thus, we have seen that the presence of holes in a topological space leaves
its impression in (at least) two different ways :

(i) there exist boundary-less regions which are not themselves boundaries of
other regions, and

(ii) there exist differentials (differential forms, to be precise) which are closed
but not exact.

These two consequences are closely related to each other via what is famously
known as the Stokes’ theorem (rings a bell?). Point (i) forms the core of homol-
ogy theory and point (ii) forms the core of cohomology theory. The approach
in cohomology is calculus based. We have already seen results from cohomol-
ogy theory in action in various practical applications (especially in electromag-
netism, also in general relativity, gauge theory etc.). Hopefully, by the end of
this course, we shall have learned the essentials of cohomology and be able to
identify many of the previously known results from physics as being particular
applications of this general theory.

27This can be proved using the fact that mixed partial derivatives of a smooth function

commute : ∂2φ
∂x∂y

= ∂2φ
∂y∂x

, and so on.
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17.2 More group theory :

17.2.1 Abelian groups :

We have already defined what abelian groups are. In an abelian group (G, ∗), ∗
is commutative. The general convention is to denote any commutative binary
operation by the symbol +, even though ∗may have nothing to do with addition.
Also, the identity is denoted by 0, and the inverse g−1 of g ∈ G is denoted by −g.
Generalizing this notational convention, for n ∈ N, gn = g∗g∗. . .∗g (n factors) =
g + g + . . . + g (n factors) ≡ ng, and g−n = g−1 ∗ g−1 ∗ . . . ∗ g−1 (n factors) =
(−g) + (−g) + . . .+ (−g) (n factors) ≡ −ng. Therefore,

ng ≡

 g + g + . . .+ g (n factors) , n ∈ Z, n > 0
0 n = 0

(−g) + (−g) + . . .+ (−g) (|n| factors) n ∈ Z, n < 0
(11)

We have already seen that a cyclic group is always abelian. Consider the
cyclic group G =

{
g, g2, g3, . . . , gn = e

}
generated by g (an element of order n).

In the new notation, G = {g, 2g, 3g, . . . , ng = 0}.

17.2.2 Theorem :

Every subgroup of an abelian group is normal.
Proof : Left as an exercise.

17.2.3 Definition : Finitely generated subgroup of an abelian group
:

Let G be an abelian group and let x1, x2, . . . , xr ∈ G, r ∈ N. Then, H =
{n1x1 + n2x2 + . . .+ nrxr : n1, n2, . . . nr ∈ Z}, which is clearly a subgroup28 of
G, is called a finitely generated subgroup of G, generated by {x1, x2, . . . , xr}.

17.2.4 Definition : Finitely generated abelian group :

Let G be an abelian group. If ∃x1, x2, . . . , xr ∈ G, r ∈ N, such that the

finitely generated subgroup

{
r∑
i=1

nixi : n1, n2, . . . nr ∈ Z
}

is the entire group

G itself, then G is said to be a finitely generated abelian group generated by
{x1, x2, . . . , xr}.

17.2.5 Definition : Finitely generated free subgroup of an abelian
group :

Let G be an abelian group. For r ∈ N, let x1, x2, . . . , xr ∈ G be such that
n1x1 + n2x2 + . . . + nrxr = 0 ⇐⇒ n1 = n2 = . . . = nr = 0. Then the
subgroup finitely generated by {x1, x2, . . . , xr} is said to be a finitely generated
free subgroup of G, generated by {x1, x2, . . . , xr}.

28Prove it.
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17.2.6 Definition : Finitely generated free abelian group :

An abelian group G is said to be a finitely generated free abelian group if
∃x1, x2, . . . , xr ∈ G, r ∈ N, such that n1x1 + n2x2 + . . .+ nrxr = 0 ⇐⇒ n1 =
n2 = . . . = nr = 0 and G is finitely generated by {x1, x2, . . . , xr}.

17.2.7 Examples :

(a) (Z,+) is a finitely generated free abelian group.

(b) Z3 = ({0, 1, 2} ,+ mod 3) is a finitely generated, but not free, abelian
group.

(c)
{

1√
2
, 1
}

generates a finitely generated free subgroup of (R,+).

We finish off today by stating a very important result. We shall not prove it
because the proof takes a lot of work.

17.2.8 Theorem :

Every finitely generated abelian group is isomorphic to G = Z⊕ Z⊕ . . .⊕ Z︸ ︷︷ ︸
r copies

⊕

Zp1 ⊕ Zp2 ⊕ . . .⊕ Zpq .

Comment : Here, G has r copies of Z, r ∈ N. r could very well be infinite.
J ⊕ H denotes the group obtained by taking a direct sum of the groups
J and H (we shall define later what direct sum means). The statement
of the theorem makes it clear that it holds for finitely generated abelian
groups, not necessarily for finitely generated free abelian groups. Also,
it should be mentioned that the group G mentioned in the theorem does
not always have to contain at least one copy of Z and at least one Zp.
For instance, Z is a finitely generated abelian group and it is isomorphic
to itself. Here, G = Z. Again, Zp is a finitely generated (and free too)
abelian group and it is isomorphic to itself. Here, G = Zp. Therefore,
the essence of the theorem is that every finitely generated abelian group
is either identical to a bunch of copies of Z direct summed together, or, if
it is not, then it has some extra Zp’s direct summed with the rest.
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18 Lecture 18 : September 15, 2016

18.1 Singular Homology Theory :

Let us start by recalling a nice formula we learned long back in school. Let A,B
be two distinct points on R2 (or R3) whose position vectors (with respect to the
chosen origin) are ~x and ~y respectively. Consider a point C on the line segment
between A and B such that C divides AB in the ratio m : n, i.e., AC : CB =

m : n. Then, the position vector of C is given by ~z =
(

n
m+n

)
~x+

(
m

m+n

)
~y.

This can be put in the form ~z = (1− α) ~x + α~y, where 0 ≤ α ≡ m
m+n ≤ 1, and

0 ≤ (1− α) ≤ 1. In fact, any point on the line segment between A and B is of
this form. Let us generalize this idea to Rn.

18.1.1 Definition : Line segment in Rn :

Given x, y ∈ Rn, the set 〈x, y〉 = {(1− t)x+ ty : 0 ≤ t ≤ 1} is defined to be the
line segment from x to y.

Comment : The reason why we define this set to be the line segment from
x to y is that, for t = 0 we get the point x, for t = 1 we get y and the
intermediate points are obtained for the intermediate values of t. In this
sense, we start at x (when t = 0) and end at y (when t = 1). However,
elements of a set have no order. Therefore, as sets, 〈x, y〉 = 〈y, x〉.

18.1.2 Definition : Convex subset in Rn :

A set C ⊆ Rn is called a convex subset of Rn if, ∀x, y ∈ C, 〈x, y〉 ⊆ C.

18.1.3 Theorem :

Rn is a convex subset of itself.
Proof : Trivial, and left as an exercise.

18.1.4 Theorem :

Let Ci be convex subsets of Rn, where i ∈ I, an index set. Then, ∩
i∈I
Ci is a

convex subset of Rn.
Proof : Let x, y ∈ ∩

i∈I
Ci. Therefore, x, y ∈ Ci∀i ∈ I. Since Ci is convex ∀i ∈ I,

therefore 〈x, y〉 ⊆ Ci∀i ∈ I. Thus, 〈x, y〉 ⊆ ∩
i∈I
Ci. This completes the proof.
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If you have a subset X ⊆ Rn, not necessarily convex, you can find the small-
est convex subset containing X. Let us illustrate it first through an example.

Let us now formalize this observation.

18.1.5 Definition : Convex hull of a subset of Rn :

Let A ⊆ Rn. The convex hull of A, denoted by 〈A〉 is defined to be the inter-
section of all convex sets containing A.

Note : The collection of all convex sets containing A is not empty, because Rn
is convex and it contains A. Clearly, 〈A〉 is the smallest convex subset
containing A.

Now, we need to define a concept of independence of points in Rn. We already
know of one kind of independence from linear algebra : linear independence of
vectors in a vector space. Rn happens to be a vector space. We use this fact to
define the following.

18.1.6 Definition : Independence of points in Rn :

(p+ 1) points x0, x1, . . . , xp ∈ Rn are called independent if the p vectors vi =
xi − x0, i = 1 (1) p, are linearly independent.

18.1.7 Theorem :

In Rn one can have at most n+ 1 independent points.
Proof : Left as an exercise.

Question : In the definition above, have we given any special importance to
the point x0? It looks like we have. The p vectors vi defined above all
have their “tails” at x0. But, despite appearances, x0 does not enjoy any
special role here. The following theorem proves that.

18.1.8 Theorem :

Let x0, x1, . . . , xp ∈ Rn. The vectors vi = xi − x0, i = 1 (1) p are linearly

independent if and only if the vectors v
′

j = xj −x1, j = 0, 2, 3, . . . , p are linearly
independent.
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Proof : if (⇐= ) : Let λ1v1+λ2v2+. . .+λpvp = 0. We have v1 = x1−x0 = −v′0
and vi = xi − x0 = v

′

i − v
′

0 for i = 2 (1) p. Thus,

λ1

(
−v
′

0

)
+ λ2

(
v
′

2 − v
′

0

)
+ . . .+ λp

(
v
′

p − v
′

0

)
= 0

=⇒ −

(
p∑
i=1

λi

)
v
′

0+

p∑
i=2

λiv
′

i = 0

Since v
′

j , j = 0, 2, 3, . . . , p are linearly independent, therefore
p∑
i=1

λi = λ2 = λ3 =

. . . = λp = 0. This implies that λi = 0 for i = 1 (1) p. We have shown that,
λ1v1 + λ2v2 + . . .+ λpvp = 0 =⇒ λi = 0,∀i = 1 (1) p. Hence vi, i = 1 (1) p are
linearly independent.
only if ( =⇒ ) : This proof is similar to the proof of the“if” part and is left as
an exercise.

18.1.9 Theorem :

Let x0, x1, . . . , xp ∈ Rn. Then, the following statements are equivalent :

(i) x0, x1, . . . , xp ∈ Rn are independent.

(ii) x0, x1, . . . , xp ∈ Rn are such that, if for si, ti ∈ R, i = 0 (1) p,
p∑
i=0

sixi =
p∑
i=0

tixi and
p∑
i=0

si =
p∑
i=0

ti then si = ti,∀i = 0 (1) p.

Proof : (i) =⇒ (ii) : Let (i) be given to be true. Let
p∑
i=0

sixi =
p∑
i=0

tixi, which

implies
p∑
i=0

(si − ti)xi = 0. Also, let
p∑
i=0

si =
p∑
i=0

ti, which implies
p∑
i=0

(si − ti) =

0. Combining these two,

p∑
i=0

(si − ti)xi −

(
p∑
i=0

(si − ti)

)
x0 = 0

=⇒
p∑
i=0

(si − ti) (xi − x0) ≡
p∑
i=1

(si − ti) vi = 0

Since x0, x1, . . . , xp ∈ Rn are independent, therefore vi, i = 1 (1) p are linearly

independent and hence si = ti,∀i = 1 (1) p. Also, by hypothesis,
p∑
i=0

si =
p∑
i=0

ti.

Hence, s0 = t0. Therefore, si = ti,∀i = 0 (1) p.

(ii) =⇒ (i) : Let (ii) be given to be true. Let
p∑
i=1

λivi = 0. Thus,
p∑
i=1

λixi −
(

p∑
i=1

λi

)
x0 = 0. This means that

p∑
i=0

sixi = 0 where s0 = −
p∑
i=1

λi and,
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for i = 1 (1) p, si = λi. This gives
p∑
i=0

si = 0. Now, the choice ti = 0, i = 0 (1) p

is such that
p∑
i=0

tixi = 0 =
p∑
i=0

sixi and
p∑
i=0

ti = 0 =
p∑
i=0

si. Therefore, (ii) =⇒

si = ti,∀i = 0 (1) p. Hence, si = 0,∀i = 0 (1) p, meaning λ1 = λ2 = . . . = λp =
0. Therefore, the vectors vi, i = 1 (1) p are linearly independent, and the points
x0, x1, . . . , xp are independent. This completes the proof.

18.1.10 Definition : Geometric p-simplex :

A geometric p-simplex Sp in Rn, p ≤ n, is defined as the convex hull of
{x0, x1, . . . , xp} where xi, i = 0 (1) p are (p+ 1) independent points in Rn. Ac-
cording to our already introduced notation, Sp = 〈{x0, x1, . . . , xp}〉.

18.1.11 Definition : Vertices of a geometric p-simplex :

x0, x1, . . . , xp are said to be vertices of the geometric p-simplex 〈{x0, x1, . . . , xp}〉.

18.1.12 Example : Geometric simplexes/simplices in R3 :

These are the only kinds of geometric p-simplices one can have in R3. The
3-simplex is a triangular pyramid by shape. It is also called a tetrahedron. In
Rn we can have higher simplices. But we shall mostly use these four simplices
even in Rn.

Comment : In the definition above, we use the attribute “geometric” to the
term p-simplex. This is because we are going to define other kinds of sim-
plices, viz standard simplices, singular simplices etc. However, very often
we shall simply use the term simplex without any attributes preceding it,
because it would be apparent from the context what kind of simplex we
are talking about.

18.1.13 Theorem :

Consider the 2-simplex 〈{x0, x1, x2}〉 in R3. Any point in this 2-simplex can be
expressed as t0x0 + t1x1 + t2x2 for some t0, t1, t2 ∈ R such that 0 ≤ t0, t1, t2 ≤ 1
and t0 + t1 + t2 = 1.
Proof : Left as an exercise.

This theorem is a prelude to a more general result which we are going to
state now.
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18.1.14 Theorem :

Let x0, x1, . . . , xp ∈ Rn. Then,

〈{x0, x1, . . . , xp}〉 =

{
p∑
i=0

tixi : ti ≥ 0 and

p∑
i=0

ti = 1

}

We shall prove this result the next day.
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19 Lecture 19 : September 16, 2016

Yesterday the class broke when we were in the middle of a theorem. Let us state
it again and then prove it.

19.1 Simplices :

19.1.1 Theorem :

Let x0, x1, . . . , xp ∈ Rn. Then,

〈{x0, x1, . . . , xp}〉 =

{
p∑
i=0

tixi : ti ≥ 0 and

p∑
i=0

ti = 1

}
(12)

Proof : 〈{x0, x1, . . . , xp}〉 is, by definition, the smallest convex subset contain-
ing the points x0, x1, . . . , xp. Therefore, it is sufficient to prove that the set on
the right hand side of (12) is the smallest convex subset containing the points

x0, x1, . . . , xp. Let S =

{
p∑
i=0

tixi : ti ≥ 0 and
p∑
i=0

ti = 1

}
.

S contains the points x0, x1, . . . , xp : Observe that, for i = 0 (1) p, 0.x0 + . . .+
0.xi−1 + 1.xi + 0.xi+1 + . . .+ 0.xp = xi ∈ S.
S is convex : Let u, v ∈ S. That is, ∃ui, vi : 0 ≤ ui, vi ≤ 1, i = 0 (1) p,

such that u =
p∑
i=0

uixi, v =
p∑
i=0

vixi and
p∑
i=0

ui = 1 =
p∑
i=0

vi. Now, 〈u, v〉 =

{(1− α)u+ αv : 0 ≤ α ≤ 1}. Let 〈u, v〉 3 x = (1− α)u+ αv where 0 ≤ α ≤ 1.

Therefore, x =
p∑
i=0

[(1− α)ui + αvi]xi ≡
p∑
i=0

tixi where ti = (1− α)ui + αvi,

i = 0 (1) p. Clearly, ∀i = 0 (1) p, ti ≥ 0 and
p∑
i=0

ti = (1− α)
p∑
i=0

ui + α
p∑
i=0

vi = 1 − α + α = 1. Therefore, x ∈ S. Since x ∈ 〈u, v〉 is arbitrary, therefore
〈u, v〉 ⊆ S. Hence S is a convex subset of Rn.
S is the smallest convex subset containing x0, x1, . . . , xp : We shall show it by

contradiction. Let t0, t1, . . . , tp be given such that 0 ≤ ti ≤ 1,∀i = 0 (1) p and
p∑
i=0

ti = 1. Let t =
p∑
i=0

tixi. Consider the set S
′

= S \{t}. Clearly, ∃k ∈ {0, 1, . . . , p}

such that tk 6= 0 (otherwise, if ti = 0 for all i = 0 (1) p, then
p∑
i=0

ti = 0). Choose

α ∈ R such that 1 > α > 1 − tk. Let t
′

= α−(1−tk)
α xk + 1

α

p∑
i=0
i6=k

tixi. Clearly,

t
′ ∈ S

′
because29 t

′ ∈ S and t
′ 6= t. Also, xk ∈ S

′
. If S

′
were convex, then

(1− α)xk + αt
′ ∈ S

′
. However, (1− α)xk + αt

′
= t /∈ S

′
. Therefore, S

′
is

not convex. We have managed to show that taking away even one point from

29Note that
α−(1−tk)

α
+ 1
α

p∑
i=0
i6=k

ti = 1, ti ≥ 0 for i ∈ 0 (1) p and
α−(1−tk)

α
> 0.
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S renders it to be a non-convex subset of Rn. Thus, S is the smallest convex
subset containing the points x0, x1, . . . , xp ∈ Rn. In conclusion,

〈{x0, x1, . . . , xp}〉 =

{
p∑
i=0

tixi : ti ≥ 0 and

p∑
i=0

ti = 1

}

Q.E.D.
The above theorem gives us another way of identifying a geometric p-simplex

〈{x0, x1, . . . , xp}〉. We defined it to be the smallest convex subset containing
the points x0, x1, . . . xp. However, that definition does not directly tell us which
points are included (or not) in the set 〈{x0, x1, . . . , xp}〉. The above theorem
provides an answer to this question. It asks us to take the vertices x0, . . . , xp and

form all possible convex linear combinations
p∑
i=0

tixi, where ti ≥ 0,∀i = 0 (1) p

and
p∑
i=0

ti = 1, to get all the elements of the set 〈{x0, x1, . . . , xp}〉. This also

results in the following extremely useful theorem.

19.1.2 Theorem :

Every point x in a geometric p-simplex 〈{x0, x1, . . . , xp}〉 has a unique repre-

sentation of the form x =
p∑
i=0

tixi where ti ≥ 0,∀i = 0 (1) p and
p∑
i=0

ti = 1.

Proof : We have already shown, in the above theorem, that every point

x ∈ 〈{x0, x1, . . . , xp}〉 can be written as x =
p∑
i=0

tixi where ti ≥ 0,∀i = 0 (1) p

and
p∑
i=0

ti = 1. We need to show that this representation is unique. However,

this uniqueness follows immediately from theorem (18.1.9) since the vertices
x0, x1, . . . , xp are independent points (by definition of a p-simplex). Q.E.D.

19.1.3 Definition : Barycentric coordinates :

Let S = 〈{x0, x1, . . . , xp}〉 be a geometric p-simplex, with the set {x0, x1, . . . , xp}
being an ordered set of vertices. Let x ∈ S. By the theorem above, the coef-

ficients ti, i = 0 (1) p, in the expansion x =
p∑
i=0

tixi are unique. Then, the

barycentric coordinates of x are defined as the elements of the (p+ 1)-tuple
(t0, t1, . . . , tp).

Comment : Why do we need to order the set of vertices? Let us explain
it with care. Suppose, {u, v} is the set (not ordered) of vertices of a
1-simplex. Let (0.2, 0.8) be the barycentric coordinates of a point P in
〈{u, v}〉. Therefore, P seems to be the point 0.2u + 0.8v. Now, as sets,
{u, v} = {v, u}. If someone were to think that P is the point 0.2v + 0.8u,
would you blame him/her? Of course not! To avoid this ambiguity, we
decide to order the set of vertices. Hence, the n-tuples of barycentric
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coordinates are ordered by definition. Now there is no ambiguity as to
which coordinate multiplies which vertex.

From now onward, whenever we write down a set of vertices, it is to be under-
stood that it is an ordered set (the order being that in which its elements are
being written down) unless stated otherwise. Also, the vertices of a face, or any
“subsimplex” spanned by a subset of the vertices of a simplex will always be
ordered according to their order in the larger simplex. With this understanding,
we shall not explicitly state every time that a set of vertices is ordered. But,
what is the face of a simplex?

Although we have not defined what a face of a geometric p-simplex is, we
have an intuition as to what it is. For instance, for particular p-simplices in
R3, it makes sense to define the faces in the following way : the two faces of a
line segment are its end-points, the three faces of a triangle are its edges and
so on. Draw these simplices on your notebooks and notice that you obtain the
face opposite to the vertex xi by taking all points whose barycentric coordinate
ti = 0! Defining the barycentric coordinates helps us in identifying the faces of
a geometric p-simplex.

We can formalize this idea very easily. But, for the time being, we shall
focus on another very important result. This would tell us that all geometric
p-simplices are homeomorphic to each other and hence studying topological
properties of only one standard geometric p-simplex is enough.

19.1.4 Definition : Standard p-simplex :

A standard p-simplex, denoted by σp, is defined as the following subset of Rp+1

: σp =

{
(t0, t1, . . . , tp) : ti ≥ 0,∀i = 0 (1) p and

p∑
i=0

ti = 1

}
⊂ Rp+1.

19.1.5 Theorem :

The standard p-simplex σp is the geometric p-simplex with vertices e0, e1, . . . , ep ∈
Rp+1 where e0 = (1, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0), . . . , ep = (0, 0, . . . , 0, 1).
Proof : Let us first form the geometric p-simplex with vertices e0, e1, . . . , ep ∈
Rp+1. According to theorem (19.1.1), this is obtained by taking all convex linear
combinations of the vertices :

〈{e0, e1, . . . , ep}〉 =

{
p∑
i=0

tiei : ti ≥ 0,∀i = 0 (1) p and

p∑
i=0

ti = 1

}

Clearly,
p∑
i=0

tiei = (t0, t1, . . . , tp). Hence,

〈{e0, e1, . . . , ep}〉 =

{
(t0, t1, . . . , tp) : ti ≥ 0,∀i = 0 (1) p and

p∑
i=0

ti = 1

}
= σp

Q.E.D.
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19.1.6 Examples : Standard p-simplices :

You may have observed the following. A geometric p-simplex can be accommo-
dated in Rp since the maximum number of independent points in Rp is (p+ 1),
exactly equal to the number of vertices of a geometric p-simplex. Despite this
fact, we define a standard p-simplex as a subset of Rp+1, and not of Rp. By
doing so, we can (and we do) place one vertex of the standard p-simplex on
each coordinate axis of Rp+1. We choose to put these vertices unit distance
away from the origin. This “embedding” of a standard p-simplex in a higher di-
mensional space (dimension 1 more than is necessary) also helps us to visualize
the standard simplex in a much better way.

Of all results we have encountered so far regarding simplices, the most im-
portant one will be revealed now. The statement of this result is quite innocuous
and it takes only a minute to write its proof down. But there is a catch. To be
able to prove this result so effortlessly, we need to use a theorem from general
topology. This theorem has not been covered in class before. We shall merely
state it here and omit the proof. Interesting students can (and should) look it
up – it is one of the central and most important theorems of general topology.

19.1.7 Theorem (from general topology) :

Let (X,TX) and (Y,TY ) be two topological spaces and f : X → Y be a con-
tinuous bijection. Let X be compact and Y be Hausdorff. Then f is a homeo-
morphism.

Now we come back to the promised theorem regarding simplices.

19.1.8 Theorem :

Given a geometric p-simplex Sp ⊂ Rn, n ≥ p, with vertices x0, x1, . . . , xp, the

map f : σp → Sp defined by f : (t0, t1, . . . , tp) 7→
p∑
i=0

tixi is a homeomorphism.

Proof : The domain and the range of f are subsets of Rp+1 and Rn (n ≥ p)
respectively. Both of them inherit the standard subspace topologies. Since the
image of (t0, t1, . . . , tp) under f is a linear combination of the ti’s, therefore f
is continuous. f is clearly well-defined and is an injection because of theorem
(18.1.9). And f is trivially onto. Therefore, f is a continuous bijection. Also,
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σp is compact (it is both closed and bounded) and Sp is Hausdorff. Hence, f is
a homeomorphism.

Observe : Under f , the vertex ei of the standard p-simplex σp maps onto
the vertex xi of the geometric p-simplex Sp, i = 0 (1) p, because f (e0) =
f ((1, 0, 0, . . . , 0)) = x0 and so on.

The above theorem shows that every geometric p-simplex is homeomorphic
to the standard p-simplex. Hence, all geometric p-simplices are homeomorphic
to each other. Therefore, we only need to study the topological properties of
σp. Any geometric p-simplex Sp can then be identified with a homeomorphism
f : σp → Sp.

So far, we have been talking about simplices in Rn. We need to generalize
to arbitrary topological spaces.

19.1.9 Definition : Singular p-simplex :

Let (X,TX) be a topological space. A singular p-simplex on X is a continuous
map φ : σp → X.

Comments : Some comments are in order :

(i) In the definition above, the only restriction on the map φ is that it must
be continuous. Therefore, φ may very well be a non-invertible map. The
term singular is often used interchangeably with the term non-invertible.
This explains why this kind of simplex bears the qualifier “singular”.

(ii) However, nothing stops φ from being invertible as well. As long as φ is
continuous, it qualifies as a singular p-simplex. Thus, this kind of simplices
should probably be called potentially singular p-simplices. But we don’t
bother much about it.

(iii) Notice that the map φ itself, and not its image, has been defined as a
singular p-simplex. This is different from what we have seen so far. Every
other kind of simplex is defined to be a set of points. We do not do it
here because defining the map φ to be a singular p-simplex helps us to
algebraically manipulate these simplices. We will shortly explain what
these useful algebraic manipulations are.
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Let us look at some examples in a diagram. In the figure below, the standard 2-
simplex σ2 undergoes three different continuous transformations. All the three
maps qualify as singular 2-simplices. The first map is easily seen to be invertible.
The last one is the constant map and is obviously non-invertible. The one in
the middle where σ2 maps to a line is somewhat intermediate between the two
(it, too, is non-invertible, though not as drastically as the constant map).

19.2 The Many-Faced30 simplices :

19.2.1 Definition : Face, and face operator :

Let (X,TX) be a topological space and φ : σp → X be a singular p-simplex
on X. For an integer i, 0 ≤ i ≤ p, the ith face of φ is a singular (p− 1)-
simplex, denoted by ∂(i)φ : σp−1 → X, and defined by ∂(i)φ : (t0, t1, . . . , tp−1) 7→
φ ((t0, t1, . . . , ti−1, 0, ti, . . . , tp−1)). ∂(i) is said to be the face operator that acts
on the singular p-simplex φ to yield the singular (p− 1)-simplex ∂(i)φ. Symbol-
ically, ∂(i) : φ 7→ ∂iφ.

Notation : If A is a face of B, we write A < B.

Comment : Now we have a rigorous definition of a face of a simplex. What
is the motivation behind defining a face of a singular p-simplex in this
fashion? The definition does not answer that. Let us try to understand
this motivation. Recall what we said about the face opposite to a vertex
of a geometric p-simplex in the discussion following definition (19.1.3) of
barycentric coordinates. We said that, for a standard simplex, the face
opposite to the vertex xi is obtained by taking all points whose barycentric
coordinate ti = 0! This is the intuitive concept that has been generalized
in the definition above. Let us see how this definition gives rise to the
aforesaid intuitive concept. A geometric p-simplex is homeomorphic to a
standard p-simplex. A standard p-simplex σp is also a singular p-simplex

30Valar Morghulis!
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withX = Rp+1 and φ = id, the identity map. Thus, if φ = id : σp → Rp+1

is viewed as a singular p-simplex, then, according to the definition (19.2.1)
above,

(
∂(i)φ

)
((t0, t1, . . . , tp−1)) = φ ((t0, t1, . . . , ti−1, 0, ti, . . . , tp−1)) =

(t0, t1, . . . , ti−1, 0, ti, . . . , tp−1), which is a generic point on σp whose ith

barycentric coordinate is set to zero. This explains, with perfect rigor, the
claim we made earlier that the face opposite to the vertex xi is obtained
by taking all points whose barycentric coordinate ti = 0.

Let us look at an example. LetX = R3 and φ : σ2 → R3 such that φ ((t0, t1, t2)) =
t0x0 + t1x1 + t2x2, where x0, x1, x2 ∈ R3 are fixed. Now,

(
∂(0)φ

)
((s0, s1)) =

φ ((0, s0, s1)) = s0x1+s1x2, which is a generic point on the line 〈x1, x2〉 opposite
to the vertex x0.

Next day we will define the boundary operator in terms of the face operators
and work with it.
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20 Lecture 20 : September 20, 2016 :

Today we shall introduce the idea of boundary operator and learn one of the
central results of homology theory : boundary of a boundary is zero. We will
try to get a sense of this result by concentrating on examples rather than on
rigorous definitions and proofs. This will be remedied in the next lecture.

20.1 Faces and Boundaries :

We start by recalling some basic definitions. A geometric p-simplex Sp is defined
as

Sp =

{
p∑
i=0

tixi :

p∑
i=0

ti = 1 and, ∀i = 0 (1) p, ti ≥ 0 with xi ∈ Rn independent

}

Clearly, Sp ⊂ Rn, p ≤ n. A standard p-simplex σp is

σp =

{
(t0, t1, . . . , tp) : ∀i = 0 (1) p, ti ≥ 0 and

p∑
i=0

ti = 1

}

And, given a topological space (X,T ), a singular p-simplex is a continuous map
φ : σp → X. We mentioned that perhaps a more accurate name for a singular
p-simplex would be potentially singular p-simplex. It seems more natural to
think of the image of this map φ to be a singular simplex. However, we define
the map φ, not its image, to be a singular p-simplex because that will help us
define and carry out algebraic manipulations of singular simplices later. We also

learned that the map f : σp → Sp, defined by f : (t0, t1, . . . , tp) 7→
p∑
i=0

tixi is a

homeomorphism. Also, the ith face of a singular p-simplex φ is given by(
∂(i)φ

)
((t0, t1, . . . , tp−1)) ≡ φ ((t0, t1, . . . , ti−1, 0, ti, . . . , tp−1))

Let me introduce a simpler notation for the convex hull which will cut down
on the writing a bit. We will often write 〈x0, x1, . . . , xp〉 in place of the earlier
notation 〈{x0, x1, . . . , xp−1}〉. What we do not change is the convention that
the vertices are ordered (the order being the same in which they are written
inside 〈〉) and the simplices are thus ordered simplices.

20.1.1 Theorem :

Let Sp = 〈x0, x1, . . . , xp〉 be an ordered geometric p-simplex. Then, ∂(i)Sp =
〈x0, x1, . . . , xi−1, x̂i, xi+1, . . . , xp〉.

Comment : Before starting to prove this theorem, we need to clarify a thing
or two about its statement. First up, we have defined faces of singu-
lar simplices, whereas Sp is a geometric simplex. However, this is no
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cause of concern because geometric simplices are also singular simplices31.
Take X = Rp+1. Define f : σp → X such that, for (t0, t1, . . . , tp) ∈ σp,

f ((t0, t1, . . . , tp)) =
p∑
i=0

tixi. Thus, Im (f) = Sp = 〈x0, x1, . . . , xp〉. Now,

strictly speaking, ∂(i)Sp translates to ∂(i)Im (f) which is illegal32 (or not
defined). So, when we write ∂(i)Sp, we really mean ∂(i)f . We shall live
with this abuse of notation from now on. Secondly, we need to explain the
meaning of the hat on xi in 〈x0, x1, . . . , xi−1, x̂i, xi+1, . . . , xp〉. This nota-
tion stands for the subset of the convex hull of x0, x1, . . . , xp containing
convex combinations of only the points x0, x1, xi−1, xi+1, . . . , xp. That is,

〈x0, x1, . . . , xi−1, x̂i, xi+1, . . . , xp〉

≡


p∑
j=0
j 6=i

tjxj : ∀j ∈ 0 (1) p \ {i} , tj ≥ 0 and

p∑
j=0
j 6=i

tj = 1


Proof : ∂(i)Sp ≡ ∂(i)f , from the comment above. Now,

(
∂(i)f

)
((t0, t1, . . . , tp−1)) =

f ((t0, t1, . . . , ti−1, 0, ti, . . . , tp−1)) = t0x0 + t1x1 + . . .+ ti−1xi−1 + tixi+1 + . . .+
tp−1xp, which is a generic element of 〈x0, x1, . . . , xi−1, x̂i, xi+1, . . . , xp〉. Thus,
∂(i)f ≡ ∂(i)Sp = 〈x0, x1, . . . , xi−1, x̂i, xi+1, . . . , xp〉.

20.2 Push-forward :

20.2.1 Definition : Push-forward of a singular p-simplex :

Let X,Y be topological spaces, f : X → Y be continuous, and φ be singular p-
simplex on X. Then f# (φ), defined by f# (φ) ≡ f ◦φ is a singular p-simplex on
Y . f# is said to be a push-forward map and f# (φ) is said to be a push-forward
of the singular p-simplex φ.

In order for the definition above to be sensible, we should check if f# (φ) at
all qualifies as a singular p-simplex (on Y ). Since φ : σp → X is continuous, and
f : X → Y is continuous, therefore f ◦ φ : σp → Y is continuous. Therefore,
f ◦ φ is a singular p-simplex on Y . Push-forward maps appear all the time in
mathematics. You shall encounter them in the study of differentiable manifolds
(hopefully in this course itself if time permits).

20.2.2 Theorem :

Let X,Y, Z be topological spaces. If f : X → Y and g : Y → Z be both
continuous, and if φ is a singular p-simplex on X, then,

(g ◦ f)# (φ) = g# (f# (φ)) = (g# ◦ f#) (φ)

31A geometric simplex is a set of points, while a singular simplex is a map. Hence, to be
absolutely precise, geometric simplices are images of singular simplices.

32∂(i) can act only on continuous functions from σp to X (by definition) and not on images
of such functions.
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That is, (g ◦ f)# = g# ◦ f#.
Proof : The proof is as easy as it gets. (g ◦ f)# (φ) = (g ◦ f) ◦ φ, by def-
inition of push-forward of a singular p-simplex. Since composition of func-
tions is associative, therefore, (g ◦ f) ◦ φ = g ◦ (f ◦ φ) = g ◦ f# (φ). Also,
f# (φ) is a singular p-simple on Y and g : Y → Z is continuous. Hence,
g ◦ f# (φ) = g# (f# (φ)) ≡ (g# ◦ f#) (φ).

Comment : There is an inkling of group action here in the sense that it does
not matter if one takes the push-forward after composing two continuous
maps or composes the push-forwards of two continuous maps. However,
continuous maps need not be invertible, and this is where these maps fail
to form a group.

20.3 Simplicial Complexes and Triangulation :

We shall now define simplicial complexes, in the context of geometrical simplices,
which will lead us to the concept of triangulation.

20.3.1 Definition : Simplicial Complex :

A collection Σ of geometrical simplices is said to be a simplicial complex if it
has the following properties :

(i) If S ∈ Σ and S
′
< S, then S

′ ∈ Σ.

(ii) For S, S
′ ∈ Σ, if S ∩S′ 6= ∅, then S ∩S′ < S and S ∩S′ < S

′
. Combining

this with the former property yields S ∩ S′ ∈ Σ.

20.3.2 Definition : Polyhedron associated with a simplicial complex
:

Given a simplicial complex Σ, the polyhedron associated with Σ, denoted by
|Σ|, is defined to be the set |Σ| ≡ ∪

S∈Σ
S. That is, the set of all points that belong

to at least one simplex of a simplicial complex is said to form the polyhedron
associated with that complex.

20.3.3 Examples : Simplicial complexes :
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Look at figure (i) above. The collection

Σ1 = {〈1〉, 〈2〉, 〈3〉, 〈4〉, 〈1, 2〉, 〈2, 3〉, 〈1, 3〉, 〈2, 4〉, 〈3, 4〉, 〈1, 2, 3〉, 〈2, 3, 4〉}

is a simplicial complex and corresponds to figure (i). The polyhedron associated
with Σ1 is the entire area inside the boundary. Such polyhedra are said to be
“solid”, meaning without holes, and will be filled with color in diagrams. One
might think that Σ1 is not the minimal simplicial complex that can correspond
to figure (i). The collection Σ2 = {〈1, 2, 3〉, 〈2, 3, 4〉, 〈2, 3〉, } is the smallest col-
lection of simplices that “covers” all the points in figure (i). However, the first
collection Σ1 has all the faces, edges and vertices as its elements and satisfies
all the defining properties of a simplicial complex. The latter does not satisfy
all the defining properties of a simplicial complex; it does not contain, e.g., 〈2〉
which is a face of 〈2, 3〉 ∈ Σ2. Therefore, Σ2 is not a simplicial complex despite
being a collection of simplices whose union gives the polyhedron in figure (i).

In contrast, figure (ii) is not a simplicial complex. The simplices 〈2, 3〉, 〈4, 5〉
have in their intersection exactly one point which is not a face of either 〈2, 3〉
or 〈4, 5〉.

Figure (iii) is a tetrahedron. The collection of all its faces, edges and vertices
forms a simplicial complex.

20.3.4 Definition : Triangulation of a topological space :

Let X be a topological space. A triangulation of X is a homeomorphism between
a simplicial complex and X.

In this definition, we have implicitly assumed that a simplicial complex is
a topological space33. That statement needs refinement. But, we shall defer it
for the time being. We shall quickly go on to talk about the boundary operator
and a very important result concerning it. Just as a teaser though, let us leave
you with the following question.

Firstly, the following is how we represent a cylinder (the surface of a cylinder,
to be precise).

33It has to be, otherwise a homeomorphism cannot exist between it and X.
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The above diagram is a 2-d representation of a cylindrical surface which is
better visualized when embedded in 3-d. The arrows on the two vertical sides
imply that these two sides are identified. And the identification is done along
the direction indicated by the arrows – p on one side gets identified with p
on the opposite side, q on one side gets identified with q on the opposite side.
Using this diagrammatic scheme, we can draw Möbius strips, Klein bottles and
Projective planes. We shall talk about these very non-trivial topological spaces
in much more detail later, but here are the pictures.

Let us come back now to the teaser we promised. We claim that figure (i)
below is a valid triangulation of the cylinder whereas figures (ii) and (iii) are
not. Question - why? You get the next couple of days to figure this out.

20.4 The Boundary Operator34 :

Given a singular n-simplex φ : σn → X, the boundary operator ∂n is defined in
the following way :

∂nφ = ∂(0)φ− ∂(1)φ+ ∂(2)φ− . . .+ (−1)
n
∂(n)φ

We know what the pieces ∂(i)φ mean in the above expression. All of these are
singular (n− 1)-simplices. But how do you add or subtract (n− 1)-simplices?
We haven’t explained this yet. We shall do that in the next class when we
take up a more rigorous approach. For now, we shall naively add and subtract
simplices as though they are numbers and illustrate how to compute ∂nφ.

Take n = 3. So, ∂3φ = ∂(0)φ − ∂(1)φ + ∂(2)φ − ∂(3)φ. We know that(
∂(0)φ

)
(t0, t1, t2) = φ ((0, t0, t1, t2)) and so forth. Therefore,

(∂3φ) (t0, t1, t2) = φ ((0, t0, t1, t2))− φ ((t0, 0, t1, t2)) + φ ((t0, t1, 0, t2))

34The boundary operator, as discussed in this section, will have many holes in it. We will
plug them with rigor the next time around.
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−φ ((t0, t1, t2, 0))

If you mechanically apply this “rule” by which ∂n has been defined to act on φ
and if you assume (with no present justification35 whatsoever) that things like

φ ((t0, t1, t2, t3))− φ ((t0, t1, t2, t3)) = 0

hold, then a brute force computation will show that (∂2 ◦ ∂3) (φ) ≡ ∂2 (∂3φ) =
0. We have skipped a multitude of steps here. We still do not know what
φ ((0, t0, t1, t2)) − φ ((t0, 0, t1, t2)) means, for instance. On top of that, we are
making ∂2 act on such objects. Therefore, we need to do the following two
things :

(a) Define what sums or differences of n-simplices mean.

(b) ∂n has been defined to act on singular n-simplices. Therefore, its definition
certainly needs an extension so that it can act on sums or differences of
n-simplices. Only then things like ∂2 ◦ ∂3 make sense.

With these caveats in mind, we claim that the result ∂(n−1) ◦∂n = 0 is true and
it is often written as ∂2 = 0. It is also pronounced in words as “boundary of a
boundary is zero”. All this should be transparent in the following lectures.

35It needs justification. Because, we have not defined what addition (+) or subtraction (−)
of φ’s mean, which implies that the statement that their sum or difference is equal to zero (or
anything, for that matter) does not make any sense.
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21 Lecture 21 : September 22, 2016

21.1 Abelian group freely generated by simplices :

Today’s objective is to put everything we talked about last time on a rigorous
platform. First, recall that an abelian group G is said to be a free group finitely
generated by A ⊂ G if every element of G has a unique representation of the
form g =

∑
x∈A

nxx where nx ∈ Z and nx is non-zero for at most finitely many

x ∈ A for a particular g ∈ G. We shall often omit the qualifier “finitely” while
describing, or referring to, finitely generated free abelian groups. However,
dropping the qualifier “free” is a sin, because, the uniqueness of the expression
g =

∑
x∈A

nxx is the all important property that is referred to by the term “free”.

All this should be familiar from the discussions in (17.2).

21.1.1 Theorem :

If G be a free abelian group generated by A ⊂ G and G
′

be any abelian group,
then any f : A→ G

′
can be extended to a homomorphism (structure-preserving,

but not necessarily onto) from G to G
′

by defining f (g) = f

( ∑
x∈A

nxx

)
≡∑

x∈A
nxf (x), ∀g ∈ G.

Comment : Firstly, note that we declare what we mean by a homomorphism
in this theorem. We defined a homomorphism by two defining properties
- surjectivitiy and preservation of structure. We also mentioned that most
algebraists exclude surjectivity while defining homomorphisms. However,
many theorems that relate one groupG with the subgroup f (G) of another
groupG

′
, where f is a homomorphism, can be more easily stated if f (G) =

G
′
, i.e., if f is onto. It is because of this reason that we made the choice to

include surjectivity as a defining property of a homomorphism. However,
if we continue with this choice, the present theorem falls apart, because
the extension being talked about here will not be onto in general. It will be
structure-preserving, though. Therefore, for the purpose of this theorem,
let’s assume that homomorphism means a structure-preserving (but not
necessarily onto) map.

Proof : Let g, g
′ ∈ G such that g =

∑
x∈A

nxx and g
′

=
∑
x∈A

n
′

xx. Therefore,(
g + g

′
)

=
∑
x∈A

(
nx + n

′

x

)
x, and, in this expansion,

(
nx + n

′

x

)
is non-zero

only for finitely many x ∈ A, otherwise at least one of g and g
′

won’t have a
finite expansion, which is not the case. Also, for given g, g

′ ∈ G, the coeffi-

cients
(
nx + n

′

x

)
are unique. Therefore, f

(
g + g

′
)

= f

( ∑
x∈A

(
nx + n

′

x

)
x

)
=∑

x∈A

(
nx + n

′

x

)
f (x) =

∑
x∈A

nxf (x) +
∑
x∈A

n
′

xf (x) = f (g) + f
(
g
′
)

. This proves
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that f , as extended to all of G by the definition f (g) = f

( ∑
x∈A

nxx

)
≡∑

x∈A
nxf (x), ∀g ∈ G, is a homomorphism from G to G

′
.

21.2 The Boundary Operator :

21.2.1 Definition : n-Chain Groups :

Given a topological space (X,TX), the n-chain group, denoted by Cn (X), is
defined to be the free abelian group finitely generated by the singular n-simplices
of X.

Note that we have eventually defined the meaning of φ ((t0, t1))+φ ((s0, s1))
and all things alike. The sum of two n-simplices is what it is – the sum of two
n-simplices. It is a lot like adding apples and oranges. The “sum” of 2 apples
and 3 oranges is exactly 2 apples and 3 oranges and nothing more. The only
difference between apples-oranges and the free abelian group Cn (X) finitely
generated by the singular n-simplices is that, in Cn (X), we also have elements
like −5φ which is the inverse of 5φ (revisit definition (11) of section 17.2).

Let Sn (X) be the collection of all singular n-simplices of X. Sn (X) ⊂
Cn (X). Clearly, if C ∈ Cn (X), then C =

∑
φ∈Sn(X)

nφφ, where nφ ∈ Z and nφ is

non-zero for at most finitely many φ’s for a particular C.

21.2.2 Extension of the definition of face operators ∂(i) :

Recall definition (19.2.1) where we define the ith face ∂(i)φ of a singular n-
simplex φ as follows :(

∂(i)φ
)

((t0, t1, . . . , tn−1)) = φ ((t0, t1, . . . , ti−1, 0, ti, . . . , tn−1))

It is quite obvious that φ ((t0, t1, . . . , ti−1, 0, ti, . . . , tn−1)) is homeomorphic to
a singular (n− 1)-simplex. Hence, the face operators ∂(i) generate transfor-
mations that map singular n-simplices to singular (n− 1)-simplices. Thus,
∂(i) : Sn (X) → Sn−1 (X). We need to extend the definition of ∂(i) so that
it may act on general elements of Cn (X). The extension is straightforward.
Define ∂(i) : Cn (X)→ Cn−1 (X) through the homomorphic extension available
to us via theorem (21.1.1) :

∂(i)

 ∑
φ∈Sn(X)

nφφ

 =
∑

φ∈Sn(X)

nφ∂(i)φ

In this definition, ∂(i)φ is already well-defined since φ ∈ Sn (X).
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21.2.3 Definition : Boundary operator :

Given a topological space X, the boundary operator ∂n is defined to be a map
∂n : Cn (X)→ Cn−1 (X) such that

∂n ≡ ∂(0) − ∂(1) + . . .+ (−1)
n
∂(n)

This makes sense now. For a singular n-simplex φ, ∂nφ is an element of
the(n− 1)-chain group Cn−1 (X). Similarly, for an arbitrary element C of the
n-chain group Cn (X), ∂nC is an element of Cn−1 (X).

Comment : Since all the ∂(i) : Cn (X) → Cn−1 (X) are homomorphisms,
therefore, ∂n : Cn (X)→ Cn−1 (X) is also a homomorphism.

21.2.4 Example :

Let φ and ψ be two singular 3-simplices on a topological space X. Then, 3φ−
7ψ ∈ C3 (X). Therefore,

∂3 (3φ− 7ψ) =
(
∂(0) − ∂(1) + ∂(2) − ∂(3)

)
(3φ− 7ψ)

= 3∂(0)φ− 7∂(0)ψ − 3∂(1)φ+ 7∂(1)ψ + 3∂(2)φ− 7∂(2)ψ − 3∂(3)φ+ 7∂(3)ψ

21.3 ∂2 = 0 :

21.3.1 ∂2 = 0 : illustrated through an example :

Let φ be a singular 3-simplex on a topological space X. Let us compute
(∂2 ◦ ∂3) (φ) ≡ ∂2 (∂3φ). By definition, ∂2 (∂3φ) is an element of C1 (X) and
hence depends on two arguments, t0, t1, say. Therefore, by definition of ∂2,

((∂2 ◦ ∂3) (φ)) (t0, t1)

=
(
∂(0) (∂3φ)

)
(t0, t1)−

(
∂(1) (∂3φ)

)
(t0, t1) +

(
∂(2) (∂3φ)

)
(t0, t1)

= (∂3φ) (0, t0, t1)− (∂3φ) (t0, 0, t1) + (∂3φ) (t0, t1, 0)

Now,

(∂3φ) (0, t0, t1) = φ (0, 0, t0, t1)− φ (0, 0, t0, t1) + φ (0, t0, 0, t1)− φ (0, t0, t1, 0)
(∂3φ) (t0, 0, t1) = φ (0, t0, 0, t1)− φ (t0, 0, 0, t1) + φ (t0, 0, 0, t1)− φ (t0, 0, t1, 0)
(∂3φ) (t0, t1, 0) = φ (0, t0, t1, 0)− φ (t0, 0, t1, 0) + φ (t0, t1, 0, 0)− φ (t0, t1, 0, 0)

These yield
((∂2 ◦ ∂3) (φ)) (t0, t1) = 0

This is an illustration of a more general theorem ∂n−1 ◦ ∂n = 0 which is also
expressed briefly as ∂2 = 0.
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21.3.2 Theorem :

Given a topological space X, the boundary operator satisfies ∂n−1 ◦ ∂n = 0.
Proof : The general proof follows easily from a little bit of thinking. Let φ
be a singular n-simplex on X. Surely, φ ∈ Cn (X), but it is not the most
general element of Cn (X). Now, ∂nφ is a singular (n− 1)-simplex. Hence,
∂n−1 (∂nφ) is a singular (n− 2)-simplex and depends on n − 1 arguments :
(∂n−1 (∂nφ)) (t0, t1, . . . , tn−2). Using the definition of boundary operators ∂n
and ∂n−1, (∂n−1 (∂nφ)) (t0, t1, . . . , tn−2) can be expressed in terms of the singular
n-simplex φ. φ, by definition, has (n+ 1) arguments but we have (n− 1) in
hand, namely t0, t1, . . . , tn−2. We supplement this list of arguments with two
zeros. One zero is introduced when ∂n acts on φ, another zero is introduced
when ∂n−1 acts on ∂nφ. Therefore, a typical term (sans its algebraic sign) in
the expansion of ∂n−1 (∂nφ) is of the form

φ

t0, t1, . . . , ti−1, 0︸︷︷︸
ith position

, ti, . . . , tj−2, 0︸︷︷︸
jth position

, tj−1, tj , . . . , tn−2


Here, we assume that 0 ≤ i < j ≤ n+ 1. There are two ways in which this term
is obtained in the expansion of ∂n−1 (∂nφ) :

(i) The 0 at the ith position is introduced by ∂n and the 0 at the jth position
is introduced by ∂n−1 : In this case, the 0 at the jth position was, in fact,

introduced at the (j − 1)
th

position to begin with, because ∂n−1 gets to

act first followed by the action of ∂n. This results in a factor of (−1)
j−1

.
Finally, when ∂n introduces the 0 at the ith position, we get another factor
of (−1)

i
. This is explicitly shown below.

(∂n−1 (∂nφ)) ((t0, t1, . . . , tn−2))

= . . .+ (−1)
j−1

(∂nφ)


t0, . . . , tj−2, 0︸︷︷︸

(j−1)th

, tj−1, . . . , tn−2




= . . .+(−1)
i+j−1

φ

t0, . . . , ti−1, 0︸︷︷︸
ith

, ti, . . . , tj−2, 0︸︷︷︸
jth

, tj−1, . . . , tn−2


(ii) The 0 at the ith position is introduced by ∂n−1 and the 0 at the jth position

is introduced by ∂n : In this case, the 0 at the jth position is introduced at
the jth position itself to begin with, because ∂n−1 acts before the action
of ∂n. This results in a factor of (−1)

j
. And in the beginning, when ∂n−1

introduces the 0 at the ith position, we get another factor of (−1)
i
. This

is explicitly shown below.

(∂n−1 (∂nφ)) ((t0, t1, . . . , tn−2))
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= . . .+ (−1)
i
(∂nφ)

t0, . . . , ti−1, 0︸︷︷︸
ith

, ti, . . . , tn−2


= . . .+ (−1)

i+j
φ

t0, . . . , ti−1, 0︸︷︷︸
ith

, ti, . . . , tj−2, 0︸︷︷︸
jth

, tj−1, . . . , tn−2


Clearly, as shown above, for every i, j such that 0 ≤ i < j ≤ n + 1, the term

φ

t0, . . . , ti−1, 0︸︷︷︸
ith

, ti, . . . , tj−2, 0︸︷︷︸
jth

, tj−1, . . . , tn−2

 appears twice with op-

posite signs. Hence, ∂n−1 (∂nφ) = 0. Since this is true for all singular n-
simplices, therefore it must also be true for an arbitrary element C of Cn (X) be-
cause,

∑
φ∈Sn(X)

nφφ = C ∈ Cn (X) implies ∂n−1 (∂nC) =
∑

φ∈Sn(X)

nφ∂n−1 (∂nφ).

Thus,
∂n−1 ◦ ∂n ≡ ∂2 = 0

This completes the proof.
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22 Lecture 22 : September 29, 2016

Recall that we proved ∂r−1 ◦ ∂r = 0 last time, where ∂r : Cr (X)→ Cr−1 (X) is
the boundary operator acting on the r-chain group Cr (X) on a topological space
X. We established that the boundary operator is a homomorphism. Today, let
us redo the proof for geometrical simplices. This repetition is unnecessary, but
it will probably be of help to you. In fact, most of today’s lecture will be spent
in discussing and explaining old stuff. We shall also clear the air about the
gaps in the definition (20.3.4) of a triangulation. We implicitly assumed in that
definition that a simplicial complex is a topological space while it is, in fact,
not. The proper explanations will be provided shortly.

22.1 Geometric simplices and ∂2 = 0 :

Firstly, recall that our convention is to treat every geometric simplex as an
ordered simplex. By this token, 〈p0, p1, p2, p3〉 and 〈p0, p2, p1, p3〉, despite be-
ing the same entity as sets, are different ordered simplices.Now, in the 3-chain
group C3 (Rn), 〈p0, p1, p2, p3〉 and its inverse −〈p0, p1, p2, p3〉 both exist. The
differently ordered simplex 〈p0, p2, p1, p3〉 is also accommodated in C3 (Rn) by
adopting the following convention :

〈pσ(0)pσ(1)pσ(2)pσ(3)〉 = sgn (σ) 〈p0p1p2p3〉

where sgn (σ) is the signature of the permutation36 σ of four symbols :

sgn (σ) =

{
1 when σ is an even permutation
−1 when σ is an odd permutation

Thus, 〈p0, p1, p2, p3〉 = 〈p1, p0, p3, p2〉 = −〈p0, p2, p1, p3〉 etc. Now,

∂3〈p0, p1, p2, p3〉 = 〈p1, p2, p3〉 − 〈p0, p2, p3〉+ 〈p0, p1, p3〉 − 〈p0, p1, p2〉

Therefore,

∂2 (∂3〈p0, p1, p2, p3〉) = ∂2 (〈p1, p2, p3〉 − 〈p0, p2, p3〉+ 〈p0, p1, p3〉 − 〈p0, p1, p2〉)

= 〈p2, p3〉 − 〈p1, p3〉+ 〈p1, p2〉 − 〈p2, p3〉+ 〈p0, p3〉 − 〈p0, p2〉
+〈p1, p3〉 − 〈p0, p3〉+ 〈p0, p1〉 − 〈p1, p2〉+ 〈p0, p2〉 − 〈p0, p1〉 = 0

Clearly, ∂2 ◦ ∂3 = 0 since this operator acts on arbitrary elements of C3 (Rn),
n ≥ 3, to yield zero. More generally,

∂r−1 (∂r〈p0, p1, . . . , pr〉)
36A permutation is a bijection from a finite set to itself. Permutations on a set of n elements

can be divided into two types – even and odd. Even permutations can be carried out using
only an even number of transpositions (transpositions are binary switches). Odd permutations
require an odd number of transpositions. The signature (aka parity) of a permutation σ,
denoted sgn (σ), is defined to be 1 if σ is even and −1 if σ is odd. You can find more
about permutations on https://en.wikibooks.org/wiki/Abstract_Algebra/Group_Theory/

Permutation_groups
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=
∑
i<j

[
(−1)

i+j−1
+ (−1)

i+j
]
〈p0, p1, . . . , pi−1, p̂i, pi+1, . . . , pj−1, p̂j , pj+1, . . . , pr〉

= 0

The above equalities follow from the arguments we presented in the last class.

22.2 Simplicial Complexes :

Recall the definition of a simplicial complex. A collection K of geometric sim-
plices in Rn is called a simplicial complex if the following properties hold.

(i) If σ ∈ K and σ
′
< σ, then σ

′ ∈ K.

(ii) If σ, σ
′ ∈ K, then either σ ∩ σ′ = ∅ or σ ∩ σ′ < σ and σ ∩ σ′ < σ

′
.

Let us also recall the definition of the polyhedron associated with a simplicial
complex. A simplicial complex is made out of geometric simplices in Rn. The
union of all these geometric simplices belonging to a simplicial complex K is
defined to be polyhedron associated with K. It is often denoted by |K|. Let us
look at some examples.

(i) K = {〈p0〉, 〈p1〉, 〈p0, p1〉}. This is a simplicial complex in Rn, n ≥ 1.
The associated polyhedron is|K| = 〈p0, p1〉, the line in the figure (i). The
collection K

′
= {〈p0〉, 〈p1〉} also qualifies as a simplicial complex. Its

polyhedron is |K ′ | = {p0, p1}. Clearly, |K ′ | is not a convex subset of Rn.
|K ′ |, viewed as a topological subspace of Rn, is no connected, while |K|
is a connected topological subspace of Rn.

(ii) K = {〈p0〉, 〈p1〉, 〈p2〉, 〈p0, p1〉, 〈p1, p2〉, 〈p2, p0〉}. This is a simplicial com-
plex in Rn, n ≥ 2. Here, |K| is the set of points lying on the sides of
the triangle drawn in figure (ii). The points of Rn in the interior of the
triangle |K| = 〈p0, p1〉 ∪ 〈p1, p2〉 ∪ 〈p1, p2〉 are not covered, or spanned,
by the elements of the complex. By this, we mean that these points do
not belong in the polyhedron |K|. Therefore, |K|, viewed as a topological
subspace of Rn, has a “hole” in it – it has a 1-simplex which is a cycle (aka
boundary-less) but is not a boundary of some bigger simplex. If you can’t
make sense of this statement right now, be patient. We shall be talking
about this observation in great detail very soon. Polyhedra such as the
one in this example are sometimes said to be hollow. Clearly, |K| is not a
convex subset of Rn.
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(iii) K = {〈p0〉, 〈p1〉, 〈p2〉, 〈p0, p1〉, 〈p1, p2〉, 〈p2, p0〉, 〈p0, p1, p2〉}. This is a sim-
plicial complex in Rn, n ≥ 2. Here, the polyhedron |K| contains every
point on and in the interior of the triangle with sides 〈p0, p1〉, 〈p1, p2〉, 〈p2, p0〉,
as drawn in figure (iii). Here, |K| is a convex subset of Rn. Polyhedra
which contain all the points in the interior of their boundary are said to
be solid. Clearly, |K| in the present example is a solid polyhedron. To
indicate that diagrammatically, we have filled the triangle with a color, in
contrast to figure (ii) which is not colored. This will be our convention
– points belonging to a given polyhedron will be painted with some color
(black, blue etc.). Points that do not belong in a polyhedron will lie on
the white patches in a figure of the said polyhedron.

(iv) K = {〈p0〉, 〈p1〉, 〈p2〉, 〈p3〉, 〈p0, p1〉, 〈p1, p2〉, 〈p2, p3〉, 〈p3, p0〉}. This is a
simplicial complex in Rn, n ≥ 2. The associated polyhedron is just the
square boundary in figure (iv).

22.2.1 Result : Polyhedra are topological spaces :

Given a simplicial complex K in Rn, the polyhedron |K| associated with it is
a subset of Rn. Now, Rn comes with the standard Euclidean (metric induced)
topology. Therefore, by theorem (8.1.4), |K| inherits the standard topology from
Rn. In other words, |K| is a topological subspace of Rn. This means that |K|,
along with the collection of open sets induced on |K| by its parent topology Rn,
is a topological space in its own right. Henceforth, we shall simply refer to |K|
being a topological space without explicitly mentioning what topology is defined
on it. Unless stated otherwise, the topology on |K| is the one inherited from Rn.
The set K is a collection of simplices with no easily conceivable/useful topology
defined on it. If K is not a topological space to begin with, the question of it
being homeomorphic to some other topological space does not arise. However,
we very often make statements like “K is homeomorphic to a cylinder” and so
forth. In statements like these, we simply write K while we should really be
writing |K|.

With this understanding, we can now polish our concept of a triangulation.
Let us restate its definition, only this time we shall wholly understand it.

22.2.2 Definition : Triangulation of a topological space :

Let X be a topological space. A triangulation of X is a homeomorphism between
a simplicial complex K and X.

Now we know that the homeomorphism referred to in the above definition
is between |K| and X.

22.3 Simplicial Complexes : some non-trivial examples :

(i) The solid square : You might think that the following complex works. K =
{〈p0〉, 〈p1〉, 〈p2〉, 〈p3〉, 〈p0, p1〉, 〈p1, p2〉, 〈p2, p3〉, 〈p3, p0〉, 〈p0, p1, p2, p3〉} But
it does not. 〈p0, p1, p2, p3〉 is not even a simplex since p0, p1, p2, p3 are not
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independent points. In a plane, one can have at most three independent
points. Therefore, figure (i) below is not a valid triangulation of the solid
square. What works is the following :

K = {〈p0〉, 〈p1〉, 〈p2〉, 〈p3〉, 〈p0, p1, p2〉, 〈p0, p2, p3〉, 〈p0, p2〉︸ ︷︷ ︸,
the diagonal

〈p0, p1〉, 〈p1, p2〉, 〈p2, p3〉, 〈p3, p0〉}

Clearly, |K| is the entire solid square. This is a valid triangulation as
drawn in figure (ii) below.

(ii) The cylinder : The four figures below do not qualify as triangulations of
the cylinder.

For instance, figure (iii) does not work because it could not possibly have
come from a simplicial complex to begin with. The collection contains
〈p0, p1, p2〉 and 〈p2, p3, p0〉, two 2simplices, whose intersection is {p0, p2}
which is not a simplex and hence cannot belong to a simplicial com-
plex. Find similar arguments to discredit all four candidates above. What
works, in this case, is the following.
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Teaser for the next class :

The following two polyhedra37 are homeomorphic to each other.

To establish this claim, a homeomorphism can easily be found in the following
manner. Inscribe the triangle inside the square. Then draw a line from the
center of the triangle and extend it all the way so that it meets the square (see
figure below).

Then, define a function f from |K1| to |K2| under which the point a maps onto
the point b. This map is a homeomorphism and you can verify it. Now, since
K1 is a topological space, therefore we can find out the n-chain groups on K1.
These are given below.

Cr (K1) =

 {0} r 6= 0, 1
{i〈p0, p1〉+ j〈p1, p2〉+ k〈p2, p0〉 : i, j, k ∈ Z} r = 1

{i〈p0〉+ j〈p1〉+ k〈p2〉 : i, j, k ∈ Z} r = 0
(13)

Clearly, C0 (K1) ≈ Z⊕Z⊕Z ≈ C1 (K1), where ≈ stands for group isomorphism.
We are only one step away from defining the homology groups of a topological
space.

37We write K instead of |K|.
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23 Lecture 23 : September 30, 2016 :

23.1 Homology groups :

We saw that boundary operators are homomorphisms between n-chain groups
for successive value of n. We can represent this fact in the following manner.

. . .→ Cn+1
∂n+1−→ Cn

∂n−→ Cn−1
∂n−1−→ . . .

∂2−→ C1
∂1−→ C0

∂0−→ {0}

Here, the n-chain groups correspond to some topological space X. We simply
write Cn instead of Cn (X). Of course, Cn−1 is the range of ∂n and not its
image. There might very well exist (n− 1)-chains that are not images of any
n-chain under the map ∂n. We also know that ∂n−1 ◦ ∂n ≡ ∂2 = 0.

23.1.1 Definition : Closed n-chains aka n-cycles :

Given a topological space X and its n-chain groups Cn (X), n ∈ Z, n ≥ 0, the
boundary operators ∂n : Cn (X) → Cn−1 (X) are homomorphisms. The kernel
ker (∂n), denoted by Zn (X), is a subgroup of Cn (X) :

ker (∂n) ≡ Zn (X) ≤︸︷︷︸
subgroup

Cn (X)

In fact, Zn (X) is a normal subgroup of Cn (X) (by theorem (16.1.3)). By
definition of a kernel, Zn (X) = {C ∈ Cn (X) : ∂nC = 0}. An n-chain C is said
to be a closed chain aka a cycle if C ∈ Zn (X). That is, a closed chain is a
chain with zero, or empty, boundary. The group Zn (X) is thus referred to as
the group of closed chains (or cycles).

23.1.2 Definition : n-boundaries :

Since ∂n+1 : Cn+1 (X)→ Cn (X) is a homomorphism, therefore

Im (∂n+1) ≡ Bn (X) ≤︸︷︷︸
subgroup

Cn (X)

We denote Im (∂n+1) ≡ Bn (X). An n-chain B is said to be an n-boundary if
B ∈ Bn (X). B ∈ Bn (X) implies that ∃C ∈ Cn+1 (X) such that ∂n+1 (C) =
B. That is, an n-boundary is an n-chain which is the image of some (n+ 1)-
chain under the map ∂n+1. The group Bn (X) is referred to as the group of
n-boundaries.

23.1.3 Theorem : Bn (X) / Zn (X) :

Proof : Let B ∈ Bn (X). If B = 0, then, trivially, ∂nB = 0 and hence
B ∈ Zn (X). Let B 6= 0. Therefore, ∃C ∈ Cn+1 (X) such that B = ∂n+1C.
Now, ∂nB = ∂n (∂n+1C) = 0 since ∂n ◦ ∂n+1 = 0. Therefore, Bn (X) ⊆ Zn (X).
Moreover, Bn (X) is a group in its own right (since it is a subgroup of Cn (X)).
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Therefore, Bn (X) ≤︸︷︷︸
subgroup

Zn (X). Now, Zn (X) is an abelian group, and every

subgroup of an abelian group is normal (theorem (14.2.6)). Therefore, Bn (X)/
Zn (X).

23.1.4 Definition : nth Homology group of a topological space :

LetX be a topological space. The nth homology group ofX, denoted byHn (X),
is defined by Hn (X) ≡ Zn (X) /Bn (X). Here Zn (X) /Bn (X) is the quotient
group.

23.1.5 Theorem*** (very very important) :

Let X,Y be two homeomorphic topological spaces. Then, Hn (X) ' Hn (Y ).
That is, the nth homology groups of two homeomorphic topological spaces are
isomorphic to each other. In other words, nth homology groups are topological
invariants.

We shall not prove this theorem, although it is the heart and soul of the
homology theory. We shall only see a few examples in which this theorem
manifests itself. We shall also extensively use this result38.

23.2 Examples of homology groups :

In the rest of today’s lecture, we shall only work out examples. It is going
to be tedious, but some practice in explicit computations is necessary. In the
following examples, we shall take some polyhedra as our topological spaces.

(i) K = {p0} : Clearly, this space has no 1-simplices. It has only the 0-
simplex 〈p0〉 and 0-chains. Also, any 0-chain is of the form i〈p0〉 where
i ∈ Z. Therefore,

Cn (K) =

{
{0} n 6= 0

{i〈p0〉 : i ∈ Z} n = 0
(14)

Clearly, C0 (K) ' Z. Define f : C0 (K)→ Z such that f : i〈p0〉 7→ i. It is
straightforward to check that f is bijective and also structure-preserving.
Therefore, f is an isomorphism. Now, for n 6= 0, Cn (K) = {0}. The only
subgroup {0} can have is {0} itself. Therefore, Bn (K) = {0} = Zn (K)
for n 6= 0. Thus, Hn 6=0 (K) = {0} / {0} = {{0}} ' {0}. Now, Z0 (K)
is the set of 0-chains which, when acted upon by ∂0, yield 0. However,
every 0-chain i〈p0〉 always gives ∂0 (i〈p0〉) = i.0 = 0. Therefore, Z0 (K) =
C0 (K) ' Z. In fact, this is not a special result for the present example.
For any simplicial complex K, Z0 (K) = C0 (K). How about B0 (K)? It
is the set of all 0-boundaries. However, since there are no 1-chains in K,
therefore, no 0-chain can be a boundary of a 1-chain. Hence, B0 (K) =

38In other words, we shall behave like physicists, to utter horror of mathematicians, in order
to save some time and effort.
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{0}. Finally, H0 (K) = Z0 (K) /B0 (K) = C0 (K) / {0} ' C0 (K) ' Z.
We often write = in place of ' because two isomorphic groups are identical
as far as group structure is concerned. Keeping this in mind, we summarize

H0 (K) = Z
Hn6=0 (K) = {0} (15)

(ii) K = {〈p0〉, 〈p1〉} : This space has no 1-simplices or higher simplices (and
hence no 0-boundaries). Clearly, Cn 6=0 (K) = {0}. Therefore, Zn 6=0 (K) =
{0} = Bn 6=0 (K), and Hn 6=0 (K). K has 0-chains, though. C0 (K) =
{i〈p0〉+ j〈p1〉 : i, j ∈ Z} ' Z⊕ Z. Since there are no 0-boundaries, there-
fore, B0 (K) = {0}. And Z0 (K) = C0 (K) as always. Let us explicitly
show it anyway. For any i, j ∈ Z, ∂0 (i〈p0〉+ j〈p1〉) = i.0+j.0 = 0. There-
fore, i〈p0〉+j〈p1〉 ∈ Z0 (K) for arbitrary i, j ∈ Z. Hence Z0 (K) = C0 (K).

Therefore, H0 (K) = Z0(K)
B0(K) = C0(K)

{0} ' C0 (K) ' Z⊕ Z. Summarizing,

H0 (K) = Z⊕ Z
Hn6=0 (K) = {0} (16)

Contrast this with the previous case where the 0th homology group was
shown to be Z. This is a general result, that H0 (K) = Z whenever K is
a connected topological space. We shall prove this in the next class.

(iii) K = {〈p0〉, 〈p1〉, 〈p0, p1〉} : The polyhedron here is the line segment 〈p0, p1〉.
This is a connected topological space and hence H0 (K) is expected to
be Z. Let us find out if that really is the case. It is easily seen that
C0 (K) = {i〈p0〉+ j〈p1〉 : i, j ∈ Z} ' Z⊕ Z. Z0 (K) = C0 (K), as always,
and we do not bother proving it any more. Now, to find B0 (K), con-
sider an arbitrary 1-chain i〈p0, p1〉. ∂1 (i〈p0, p1〉) = i〈p1〉 − i〈p0〉. Clearly,
B0 (K) = {i〈p1〉 − i〈p0〉 : i ∈ Z} ' Z. Let us now find out H0 (K). Define
the function f : Z0 (K) → Z such that, for i, j ∈ Z, f : (i〈p0〉+ j〈p1〉) 7→
i+ j. This is a homomorphism, since

f ((i〈p0〉+ j〈p1〉) + (k〈p0〉+ l〈p1〉)) = f ((i+ k) 〈p0〉+ (j + l) 〈p1〉)

= i+ k + j + l = f (i〈p0〉+ j〈p1〉) + f (k〈p0〉+ l〈p1〉)

Also, Im (f) = Z, meaning f is onto. Let us find ker (f). For an arbi-
trary C = i〈p0〉 + j〈p1〉 in Z0(K), f (C) = i + j. Therefore, f (C) =
0 =⇒ j = −i. That is, C = j〈p1〉 − j〈p0〉, a generic element of B0 (K).
Thus, ker (f) = B0 (K). Therefore, by the isomorphism theorem (16.1.7),
Z0(K)
B0(K) = Z0(K)

ker(f) ' Im (f) = Z. Therefore, H0 (K) = Z, just as expected of

a connected topological space.
Now, C1 (K) = {i〈p0, p1〉 : i ∈ Z} ' Z. Let i〈p0, p1〉 ∈ Z1 (K). Therefore,
∂1 (i〈p0, p1〉) = i〈p1〉 − i〈p0〉 = 0. Thus, ∂1 (i〈p0, p1〉) can be zero only
for i = 0 since p0, p1 are independent points. Thus, Z1 (K) = {0}. Since
B1 (K) is a normal subgroup of Z1 (K) = {0}, therefore B1 (K) = {0}.
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Hence, H1 (K) = {0}
{0} ' {0}.

Finally, for n 6= 0, 1, Hn (K) = {0} since Cn (K) = {0} as there are no
2-simplices, or higher order simplices. Summarizing :

H0 (K) = Z
H1 (K) = {0}
Hn≥2 (K) = {0}

(17)

So, we have computed the homology groups for three special examples. We shall
work out some more non-trivial examples in the next class.
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24 Lecture 24 : October 4, 2016

24.1 How not to compute homology groups :

Let us repeat a computation we did in the last class, but slightly differently.
We shall derive the 0th homology group of K = {〈p0〉, 〈p1〉, 〈p0, p1〉}. First up,
C0 (K) = {i〈p0〉+ j〈p1〉 : i, j ∈ Z} ' Z⊕ Z. B0 (K) = {i〈p1〉 − i〈p0〉 : i ∈ Z} '
Z, Z0 (K) = C0 (K) ' Z⊕Z. From this, we can simply write H0 (K) = Z0(K)

B0(K) '
Z⊕Z
Z since Z0 (K) ' Z ⊕ Z and B0 (K) ' Z. Therefore, we need to compute

Z⊕Z
Z . First observe that Z is not exactly a subgroup of Z⊕ Z but is isomorphic

to a subgroup of Z⊕Z : Z ' {i⊕ 0 : i ∈ Z} ≤ Z⊕Z. However, we simply write
Z ≡ {i⊕ 0 : i ∈ Z} and Z ≤ Z ⊕ Z. Next, since Z ⊕ Z is abelian, therefore,
Z / Z ⊕ Z and hence Z⊕Z

Z makes sense. Now, define the map f : Z ⊕ Z → Z
such that f : i ⊕ j 7→ j. Clearly, ker (f) = {i⊕ 0 : i ∈ Z} ≡ Z and Im (f) = Z.
Therefore, by the isomorphism theorem (16.1.7), Z⊕Z

Z ' Z. This is exactly
what we obtained last time : H0 (K) ' Z. In fact, writing Z⊕ . . .⊕ Z︸ ︷︷ ︸

p factors

≡ Zp,

it is easy to show that Zp

Zq ' Zp−q, where p, q ∈ N and p > q. So, it seems
that if Z0 (K) ' Zp and B0 (K) ' Zq for some p, q ∈ N, we can simply use
the above result to conclude that H0 (K) ' Zp−q. However, this reasoning is
mathematically wrong. If G ' G′ , H / G, H

′
/ G

′
and H ' H ′ , that does not

imply G
H '

G
′

H′
. Let us give an example. Consider Z and its normal subgroup

E = {2n : n ∈ Z}. It is obvious that Z
E is a two element group, and therefore

must be isomorphic to Z2. Thus, Z
E ' Z2. Also, E ' Z. If we go by the belief

that G ' G
′
, H / G, H

′
/ G

′
and H ' H

′
=⇒ G

H '
G
′

H′
, then, for the choices

G = G
′

= Z, H = E and H
′

= Z, we would conclude that Z
E '

Z
Z ' {0}, which

is clearly wrong.
The take home lesson is that one should always manufacture an isomorphism

when claiming that a certain homology group Hn (K) is isomorphic to a known
group. Just showing that Zn (K) is isomorphic to a known group and Bn (K)
is isomorphic to another known group, and then taking the quotient of the said
known groups may not always work. The fact that this works in the present
example is a happy coincidence.

24.2 More examples of homology groups :

(iv) K = {〈p0〉, 〈p1〉, 〈p2〉, 〈p0, p1〉, 〈p1, p2〉, 〈p2, p0〉}. The polyhedron is drawn
below. Clearly, this polyhedron is homeomorphic to a circle39 S1. Hence,
the homology groups of this space would be isomorphic to the homology
groups of S1.

39A homeomorphism can easily be found by inscribing the triangle inside a circle, just as
we discussed towards the end of lecture 22.
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To derive the homology groups, notice that K does not have 2-simplexes or
any higher order simplexes. Hence, Cn≥2 (K) = {0}. Thus, Hn≥2 (K) '
{0}. Now, C1 (K) = {i〈p0, p1〉+ j〈p1, p2〉+ k〈p2, p0〉 : i, j, k ∈ Z} ' Z ⊕
Z⊕ Z. For i, j, k ∈ Z,

∂1 (i〈p0, p1〉+ j〈p1, p2〉+ k〈p2, p0〉) = (k − i) 〈p0〉+(i− j) 〈p1〉+(j − k) 〈p2〉

This shows that, if C ∈ Z1 (K), then it has to be of the form C = i〈p0, p1〉+
i〈p1, p2〉+ i〈p2, p0〉. Otherwise, ∂1C would not be zero since p0, p1, p2 are
independent. Thus, Z1 (K) = {i (〈p0, p1〉+ 〈p1, p2〉+ 〈p2, p0〉) : i ∈ Z} '
Z. Since there are no 2-chains in the space, hence there are no 1-boundaries.

Therefore, B1 (K) = {0}. This gives, H1 (K) = Z1(K)
B1(K) ' Z1 (K) ' Z.

Again, C0 (K) = {i〈p0〉+ j〈p1〉+ k〈p2〉 : i, j, k ∈ Z} ' Z ⊕ Z ⊕ Z. Since
all 0-chains are cycles (they are without boundaries), therefore, Z0 (K) =
C0 (K). Also, the 0-boundaries are of the form (k − i) 〈p0〉+(i− j) 〈p1〉+
(j − k) 〈p2〉. This 0-chain has the property that the sum of the coefficients
of 〈p0〉, 〈p1〉 and 〈p2〉 is zero. Therefore,

B0 (K) = {i〈p0〉+ j〈p1〉 − (i+ j) 〈p2〉 : i, j ∈ Z} ' Z⊕ Z

Let us define the map f : Z0 (K) → Z such that f : i〈p0〉 + j〈p1〉 +
k〈p2〉 7→ i+ j+k. f is a homomorphism (prove it) and it is also onto, i.e.,
Im (f) = Z. Also,

ker (f) = {i〈p0〉+ j〈p1〉+ k〈p2〉 : i, j, k ∈ Z and i+ j + k = 0} = B0 (K)

Thus, using the isomorphism theorem, H0 (K) = Z0(K)
B0(K) = Z0(K)

ker(f) '
Im (f) = Z. Summarizing,

H0 (K) = Z
H1 (K) = Z

Hn≥2 (K) = {0}
(18)

We again see the manifestation of the result that H0 (K) = Z for any
connected polyhedron |K|.

(v) K = {〈p0〉, 〈p1〉, 〈p2〉, 〈p3〉, 〈p0, p1〉, 〈p1, p2〉, 〈p2, p3〉, 〈p3, p0〉}. The polyhe-
dron is a square, homeomorphic to S1 and to the polyhedron from the
previous example.
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Since we know that homology groups are topological invariants, therefore
we should expect that the homology groups for this polyhedron is go-
ing to be the same as those obtained in the previous example. We shall
work the present example from scratch to see that it is indeed correct.
Here, Hn≥2 (K) = {0} because there are no simplices of order 2 or higher.
Now, C0 (K) = {i〈p0〉+ j〈p1〉+ k〈p2〉+ l〈p3〉 : i, j, k, l ∈ Z} ' Z4, and
C1 (K) = {i〈p0, p1〉+ j〈p1, p2〉+ k〈p2, p3〉+ l〈p3, p0〉 : i, j, k, l ∈ Z} ' Z4.
Since every 0-chain is a cycle, therefore Z0 (K) = C0 (K). An arbitrary
0-boundary is of the form

∂1 (i〈p0, p1〉+ j〈p1, p2〉+ k〈p2, p3〉+ l〈p3, p0〉)

= (l − i) 〈p0〉+ (i− j) 〈p1〉+ (j − k) 〈p2〉+ (k − l) 〈p3〉

≡ i〈p0〉+ j〈p1〉+ k〈p2〉+ l〈p3〉 such that i+ j + k + l = 0

Thus,

B0 (K) = {i〈p0〉+ j〈p1〉+ k〈p2〉+ l〈p3〉 : i, j, k, l ∈ Z, i+ j + k + l = 0}

Define f : Z0 (K) → Z such that f : i〈p0〉 + j〈p1〉 + k〈p2〉 + l〈p3〉 7→
i+ j + k+ l. f is onto and also a homomorphism. And ker (f) = B0 (K).

Using the isomorphism theorem, therefore, H0 (K) = Z0(K)
B0(K) ' Im (f) = Z.

Also, Z1 (K) = {i (〈p0, p1〉+ 〈p1, p2〉+ 〈p2, p3〉+ 〈p3, p0〉) : i ∈ Z} ' Z
(prove it!). Since there are no 2-chains, therefore there are no 1-boundaries.
Hence, B1 (K) = {0}. Thus, H1 (K) ' Z.

H0 (K) = Z
H1 (K) = Z

Hn≥2 (K) = {0}
(19)

The polyhedron from this example and that from the previous one are two
different, albeit homeomorphic, spaces. They have different Zn (K)’s and
Bn (K)’s (for n = 0), but all their homology groups are the same.

(vi) K = {〈p0〉, 〈p1〉, 〈p2〉, 〈p0, p1〉, 〈p1, p2〉, 〈p2, p0〉, 〈p0, p1, p2〉}. The polyhe-
dron is a solid triangle. The fact that it is not homeomorphic to a hollow
triangle will become apparent when we derive its homology groups.
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Since there are no simplices of order 3 or higher, therefore, Hn≥3 (K) =
{0}. We have, C2 (K) = {i〈p0, p1, p2〉 : i ∈ Z} ' Z. There are no 2-
boundaries, hence B2 (K) = {0}. Also, ∂2 (i〈p0, p1, p2〉) = i〈p1, p2〉 −
i〈p0, p2〉+i〈p0, p1〉, which is not 0 unless i = 0. This implies that Z2 (K) =
{0}. Therefore, Hn≥2 (K) = {0}. Now,

C1 (K) = {i〈p0, p1〉+ j〈p1, p2〉+ k〈p2, p0〉 : i, j, k ∈ Z} ' Z3

Also, Z1 (K) = {i (〈p0, p1〉+ 〈p1, p2〉+ 〈p2, p0〉) : i ∈ Z} ' Z. So far, we
cannot spot a difference between the solid and the hollow triangle. The
major difference arises in the form of B1 (K). We see that 〈p0, p1〉 +
〈p1, p2〉+〈p2, p0〉 and its multiples are all 1-boundaries : ∂2 (i〈p0, p1, p2〉) =
i (〈p0, p1〉+ 〈p1, p2〉+ 〈p2, p0〉). Hence,

B1 (K) = {i (〈p0, p1〉+ 〈p1, p2〉+ 〈p2, p0〉) : i ∈ Z} ' Z

For a hollow triangle, we obtained B1 (K) = {0} because the hollow tri-
angle is not a boundary of any 2-simplex. There is nothing inside the
lines making up the hollow triangle. In contrast, the solid triangle has an
interior of which the edges form the boundary. In the present example,
therefore, Z1 (K) = B1 (K), implying H1 (K) ' {0}. You can also check
that Z0 (K) ' Z3, B0 (K) ' Z2 and H0 (K) ' Z. Summarizing,

Solid Triangle Hollow Triangle
H0 (K) = Z H0 (K) = Z
H1 (K) = {0} H1 (K) = Z
Hn≥2 (K) = {0} Hn≥2 (K) = {0}

(20)

The hollow triangle has a non-trivial 1th homology group because it has
a hole inside it.
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25 Lecture 25 : October 6, 2016

We have worked out quite a few examples of homology groups. Today’s main
objective would be twofold : to give a geometric picture for the homology groups
and to prove an important result which we have already observed and stated.
The result is that, for a connected topological space K, H0 (K) ' Z.

25.1 Homologous cycles :

We have already defined, and seen a lot of examples of, Hn (K). We have done a
lot of algebraic computations. Let us try to see the geometric picture associated
with these algebraic concepts.

We have,
Zn (K) = group of all n-cycles

Bn (K) = group of all n-boundaries
Bn (K) / Zn (K)

Hn (K) = Zn(K)
Bn(K)

To illustrate the geometric picture, let us take an example. The following is a
triangulation of the Möbius strip.

The simplicial complex is

K = {〈p0〉, 〈p1〉, 〈p2〉, 〈p3〉, 〈p4〉, 〈p5〉, 〈p0, p1〉, 〈p0, p2〉, 〈p0, p5〉,

〈p1, p2〉, 〈p1, p3〉, 〈p1, p4〉, 〈p1, p5〉, 〈p2, p3〉, 〈p2, p4〉, 〈p3, p4〉, 〈p3, p5〉, 〈p4, p5〉,

〈p0, p1, p2〉, 〈p0, p1, p5〉, 〈p1, p2, p3〉, 〈p1, p4, p5〉, 〈p2, p3, p4〉, 〈p3, p4, p5〉}

Clearly, there are 12 different 1-simplices in K. Therefore, C1 (K) ' Z12. Of
the many 1-chains that can be formed, let us take one : z = 〈p0, p1〉+ 〈p1, p2〉+
〈p2, p0〉. It is easy to show that z is not an ordinary 1-chain. It is a 1-cycle
because its boundary is empty :

∂1z = 〈p1〉 − 〈p0〉+ 〈p2〉 − 〈p1〉+ 〈p0〉 − 〈p2〉 = 0

Also, z is the boundary of the 2-simplex 〈p0, p1, p2〉 :

∂2 (〈p0, p1, p2〉) = 〈p1, p2〉 − 〈p0, p2〉+ 〈p0, p1〉
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= 〈p0, p1〉+ 〈p1, p2〉+ 〈p2, p0〉 = z

Thus, z belongs to both Z1 (K) and B1 (K). z is drawn in the figure below.
It is marked with blue colored bold lines, and its interior (of which it is the
boundary) is painted in yellow.

Let us now take another 1-chain : z
′

= 〈p0, p1〉 + 〈p1, p3〉 + 〈p3, p5〉 + 〈p5, p0〉.
In the figure below, z

′
is drawn with a blue colored bold line.

It is easy to see that z
′

is also a cycle. It starts and ends at the same point p0.
Algebraically,

∂1z
′

= 〈p1〉 − 〈p0〉+ 〈p3〉 − 〈p1〉+ 〈p5〉 − 〈p3〉+ 〈p0〉 − 〈p5〉 = 0

However, the figure makes it clear that z
′

is not the boundary of any 2-chain.
You can also prove it algebraically by assuming that there exists a 2-chain of
which z

′
is the boundary and then arriving at a contradiction. Thus, z

′ ∈
Z1 (K), but z

′
/∈ B1 (K).

Can we find more examples of 1-chains which are 1-cycles but not 1-boundaries?
Take z

′′
= 〈p1, p2〉+ 〈p2, p4〉+ 〈p4, p5〉+ 〈p5, p1〉. z

′′
is drawn below.
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It is clear from the figure, and can easily be shown algebraically, that z
′′

is a
1-cycle but it is not a 1-boundary. That is, z

′′ ∈ Z1 (K), z
′′
/∈ B1 (K).

Now, look at the 1-chain b ≡ z′′ − z′ . This 1-chain can be drawn by combining
the figures drawn individually for z

′
and z

′′
. What we do is assign a direction on

the bold blue lines that represent z
′

and z
′′
. Then, the diagram for −z′ would

be obtained by reversing the direction of the z
′

line. Then, we superimpose the
diagrams for z

′′
and −z′ to get the diagram of z

′′ − z′ . In this superposition,
if a line segment appears twice, once in one direction and once in the opposite
direction, then that line segment vanishes from the sum.
Following is the diagram for −z′ :

Notice that, in drawing −z′ , we have chosen to draw the directed line segment
from p1 to p0 on the right edge of the figure. We could very well draw that
segment on the left edge. This is allowed because the points on the left edge are
identified with the points on the right edge. We just have to be careful about
the direction in which this identification has to be made – p0 with p0, p1 with p1

and so forth. Now, “adding” the diagrams for z
′′

and −z′ , we get the following.

From the diagram above, can immediately identify b ≡ z′′ − z′ as a 1-boundary.
To make it even more prominent, here goes another figure.
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Also, algebraically, one can show that b ≡ z′′−z′ is the boundary of the 2-chain
〈p1, p2, p3〉+ 〈p3, p2, p4〉+ 〈p3, p4, p5〉+ 〈p5, p1, p0〉 (show it).

We have seen above that z
′

and z
′′

are both 1-cycles. And both of them
fail to be 1-boundaries. However, b ≡ z

′′ − z′ is a 1-boundary. We can write
z
′′

= z
′

+ b, where b ∈ B1 (K). In fact, if we take an arbitrary 1-boundary
and add it to z

′
, we get a new 1-cycle which is not a 1-boundary. Let us now

formalize these observations.

25.1.1 Definition : Homologous cycles :

Given a topological space K and z, z
′ ∈ Zn (K), z is said to be homologous to

z
′

if z− z′ ∈ Bn (K). That is, an n-cycle z is said to be homologous to another
n-cycle z

′
if z − z′ is an n-boundary.

25.1.2 Theorem :

“Being homologous to” is an equivalence relation.
Proof : Left as an exercise.

25.1.3 Definition : Homology class :

Since “being homologous to” is an equivalence relation, therefore, this relation
partitions the set Zn (K) of n-cycles. Each member of this partition is said to
be a homology class and can be labeled by any of the n-cycles that belong to
that class. The homology class to which z ∈ Zn (K) belongs is denoted by [z].

25.1.4 Theorem :

For z ∈ Zn (K), the homology class [z] is the coset z.Bn (K). That is, [z] =
z.Bn (K).
Proof : Left as an exercise.

This last theorem gives us the geometric picture of what it means to take the

quotient Zn(K)
Bn(K) . In taking this quotient, we are basically collecting all n-cycles

that differ from each other by n-boundaries in one bunch and treating them as
a single entity. These entities then form the nth homology group Hn (K).
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25.2 K is connected =⇒ H0 (K) ' Z :

We shall now prove the following theorem.

25.2.1 Theorem :

Let K be a connected topological space. Then, H0 (K) ' Z.
Proof : Let i, j ∈ Z such that pi, pj ∈ K. Since K is connected, therefore it is
also path-connected
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