
Chapter 4

Elements of
Scientific Measurement

4.1 Issues in measurement

In most practical situations, a scientist has to measure something.
The quantity to be measured could be the average weight of adult
male sparrows, the number of microbes in unit volume of a fluid,
or the electrical charge of an electron.

In the first case the weight of each sparrow is really different
from that of another, because of the variation inherent in that
species. If one could somehow measure the weight of all adult
male sparrows, one could obtain the true answer to the question.
But that enterprise is practically impossible, due to constraints
of time and money. So one has to obtain a smaller sample and
has to obtain the mean. For the scientific question in hand, it
could also be important to measure the variability within the
species (becase it is the variation that natural selection acts on).
Even though the weight of a sparrow is a continuous variable, one
always measures upto a definite accuracy: the least count of the
instrument used.

In the second case, the microbes may not be uniformly dis-
tributed in the liquid, and for that reason one would have to take
samples from different parts of the liquid. Counting such tiny
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living organisms may also have its problems: each counting may
not be accurate. One could miss or overcount. If one does not
assume any particular propensity of the experimenter to miss or
overcount, the error in counting may be assumed to be random.

In case of the measurement of the charge of an electron, the
value to be measured is really a constant. But in the process of
measurement, many errors would creep in—systematic as well
as random. The scientist would have to remove all chances of
systematic errors, but has to learn to live with random errors.

In all these cases there is some objective value of the quantity
to be measured, and the scientist has to reach as close as possible
to that value, subject to the constraints of time and money, by
taking samples. Even in the case of measuring the charge of an
electron, in each measurement he is really taking samples from a
theoretically infinite number of possible readings.

4.2 Analyzing the sampled data

The first thing one does after recording the data is to obtain the
mean given by

Mean : x̄ = 1

n
(x1 +x2 · · ·+xn) = 1

n

n∑
i=1

xi (4.1)

One would also like to know how much the data points devi-
ate from the mean value on an average. Thus one would like to
obtain an average of (xi − x̄). But this quantity (xi − x̄) could be
positive as well as negative, although the average of the quantities
(xi − x̄) is zero. If we really want a measure of the deviation from
the mean value, it should be a positive number. To overcome this
problem, we take the square of (xi − x̄) and obtain its average.
Thus, we obtain

Variance : s2 = 1

n −1

n∑
i=1

(xi − x̄)2 (4.2)
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The ‘standard deviation’ s is just the square root of the vari-
ance. This is thus a measure of how much the data points deviate
from the mean value on an average.

It has been found that if the divisor in (4.2) is n, then s under-
estimates the population standard deviation σ. That is why the
divisor in (4.2) is taken as n −1 to compensate for it.

These are the values obtained from the samples. The ‘true’
mean of the population will be denoted by µ and the ‘true’ stan-
dard deviation of the population will be denoted by σ. The
attempt is to obtain a value of x̄ as close as possible to µ and
a value of s as close as possible to σ.

Example-1

You have conducted an experiment to measure a quantity x, and
have obtained the following data.

5.23 4.97 4.78 5.05 5.34 4.78 4.92 4.89
5.10 5.22 4.80 4.94 5.06 4.96 5.03 5.15
5.26 4.92 4.78 4.98 5.01 5.19 5.08 5.15

Obtain the mean and standard deviation of x.

Solution: The mean of x is

x̄ = 1

24

n∑
i=1

xi = 5.018

and the standard deviation of x is

s =
√

1

23

n∑
i=1

(xi − x̄)2 = 0.16 2

4.3 Distribution of the data

The next step is to obtain the frequency plots. In case of the
weight of sparrows, one would have to divide the whole range
of weights into discrete ‘bins’ and have to count how many data
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points fell into each bin. The number of data points in each bin
divided by the total number of data points give the normalized
frequency of each bin. One then plots the graph of the weight
versus the frequency of each weight. An example of such a graph
is shown in Fig. 4.1. For different observations the graph may
have different shapes.

Figure 4.1: A typical histogram obtained from observational data

If the thing to be measured has an inherent variability (like
the variation within a species), the frequency curve may have
specific characteristics reflecting the nature of variability. But if
the variation is purely due to random errors, one would expect a
bell-shaped curve: the so-called ‘normal’ distribution. This curve
is given by

f (x) = 1

σ
p

2π
exp

(
−1

2

( x −µ

σ

)2
)

, −∞< x <∞ (4.3)

whereµ is the mean andσ is the standard deviation. The function
is graphed in Fig. 4.2. The position of the standard deviation
is shown on the graph. If a set of data has a smaller standard
deviation, the graph is narrow and tall and if σ is large, it is
broader and of shorter height.

One can integrate this curve in different ranges to find the
fraction of the population that can be expected to lie in specific
ranges:

• Approximately 68.3% of the population are within 1 standard
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µ

σ

Figure 4.2: The normal distribution .

deviation of the mean (that is, between µ−σ and µ+σ);

• Approximately 95.4% of the population are within 2 standard
deviations of the mean (that is, between µ−2σ and µ+2σ);

• Almost all the population – about 99.7% – are within 3 stan-
dard deviations of the mean (that is, between µ− 3σ and
µ+3σ).

One is normally interested in finding the standard deviations
within which certain specific percentages of the population lie.
These are summarized as follows.

• Approximately 90% of the population are within 1.64 standard
deviations of the mean;

• Approximately 95% of the population are within 1.96 standard
deviations of the mean;

• Approximately 99% of the population are within 2.58 standard
deviations of the mean.

It helps to remember these values.

In all observational or experimental situations, there is an
objectively existing distribution for the quantity being measured,
with ‘true’ values of the meanµ and the standard deviationσ. The
challenge is to get as close as possible to these values through a
finite number of samplings. Note that, after a scientist publishes
his or her results, hundreds of scientists worldwide will repeat the
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experiment or observation, and it is almost certain that others will
not obtain exactly the same numbers obtained by that scientist.
Given this reality, how can the scientist state the results in a way
that would be acceptable to the scientific community?

4.4 Sampling

When a scientist conducts an experiment, often he has to mea-
sure the value of a parameter or a constant. Obviously the pro-
cedure of measurement of the mass of an electron will be quite
different from the procedure of measuring the density of Earth’s
crust. The fundamental difference is that in the former case the
quantity to be measured is really a constant (since all electrons
have identical rest mass) while in the latter, the density varies
from place to place and one is trying to measure the average
density. In the class of measurement of the second category, one
has to execise great caution in choosing the samples from which
the information about the average is to be extracted. Normally
a random sampling is recommended. If variability is expected,
one has to take great care to collect samples representing that
variability.

Let us illustrate that with an example.

Suppose you are trying to find the character of soil in a given
field. If you go to different locations within the field, or if you
collect soil from different depths, you will find significant vari-
ability in the character of the soil. How, then, can one get a
‘representative’ sample which can be tested to get an idea about
the character of soil in the field?

This is a typical problem of sampling, and the recommended
procedure of soil collection gives a good idea about the sampling
procedure to be adopted in other areas.

The recommended procedure is as follows.

We take a 10,000 sqm area in the field. We dig 15 cm holes at
every 20 m distances, and collect some amount of soil (say, half a
kg) from the top, bottom, and middle of the hole. Soil is collected
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in a sack from similar holes 20 m apart. Then the collected soil
is spread over a hard surface and is dried in the sun. After the
soil is dry, it is mixed well and spread over a square area. The
square is then divided into 4 equal parts. Two of them along the
main diagonal are kept for further processing and the other two
are discarded. The remaining part is again mixed well, spread
over another square area, divided into four parts, two along the
diagonal are kept and the rest are thrown away. The process is
repeated until the remaining amount is around 2-3 kg. Then the
bigger particles are ground, and the material is passed through
a 2 mm sieve. The soil that goes through the sieve is considered
to be the representative sample of the soil in the field, on which
tests are done.

Similarly, standard procedures of sampling exist in almost
all fields. One has to learn the procedures before proceeding to
conduct any experiment. If such time-tested procedures are not
available in a field of enquiry, one has to develop a procedure
that ensures that the range of variability is aptly represented in
the sample. The procedure adopted has to be clearly stated in
the paper or scientific report.

After the samples are collected, one proceeds to measure the
parameters in question.

4.5 Experimental Errors

All measurements are prone to errors, and a scientist has to be
conscious of this fact when making measurements. Errors can be
divided into two major categories:

Random errors: These are fluctuations in readings around the
actual value being measured, caused by thermal and other
sources of noise.

Systematic errors: These are consistent deviations of the mea-
surement from the value being measured, caused by definite
causative factors.
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A researcher has to consciously try to avoid all possibilities of
systematic errors. There are two general prescriptions of doing
so. First, one has to check the calibration of each measuring
instrument, because these may change with time and environ-
mental conditions under which an experiment is conducted.
Second, to do the measurement of a value in two or more different
ways, because it is unlikely that the same systematic error would
creep in two different sets of apparatus. Apart from these two
prescriptions, there are no other general guidelines, because in
different experiments different causative factors may be operative
that influence the readings.

But there are very definite prescriptions in dealing with ran-
dom errors. The first prescription is that, the experiment should
be so planned that it is possible to make a large number of
measurements of the same quantity, under varying conditions.
For example, if one is interested in measuring the electrical resis-
tance of a sample, one should make arrangements for applying a
variable voltage (which can be done with a potential divider) and
to measure the current for each value of the voltage. When the
measured values are tabulated, the resistance can be obtained by
dividing the voltage across the sample by the current through it.
We thus get a large number of measured values of the resistance,
say, x1, x2, x3 · · ·xn which typically will be slightly different from
each other due to random error. One can then take the average
of the measured values

x̄ = x1 +x2 +x3 · · ·+xn

n

and can hope that the positive errors will cancel out the negative
ones, thus getting a mean value close to the actual value being
measured.

But still many questions remain.

• How many observations need to be taken in order to obtain a
confident estimate?

• Which value out of the large number of observations can be
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stated as the “measured value”?

• How reliable will the measured mean be as an estimate of the
actual value?

• How can one state the measured value so that it will be ac-
ceptable to the scientific community?

• Should he declare a range within which the actual value is
likely to lie?

• With what level of confidence can the scientist state that the
value to be measured actually lies within this range?

All these questions require statistical treatment.

4.6 Specifying the measured value

Modern science is heavily dependent on statistical methods.
There is hardly any quantitative treatment of a problem in any
branch of science where one can avoid this method. In most
situations the use of statistical method becomes indispensable
for a scientist.

Let us consider the first question. Suppose somehow you
are able to take an infinite number of readings. These will give
a distribution with a certain mean µ and a certain variance σ2.
This mean would be a reliable representation of the value you
are trying to measure. But we cannot physically take an infinite
number of readings, and have to be constrained to a finite num-
ber, say n, i.e., you take samples from the theoretically infinite
number of possible readings. The question is, how reliable will
this estimate of mean be?

Let us consider a real-life situation. Suppose a biologist has
discovered a new species of insect and wants to measure the
average body-weight of these organisms1. She will have to catch

1If you are a geologist, you might think of the task of measuring the average
density of the Earth’s crust; if you are a physicist, you might think of measuring
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a few of these insects and will have to weigh them. By the act
of catching a few insects, she is actually ‘sampling’ from a pop-
ulation of insects, and typically the population will be much
larger than the samples chosen. How can she make an objective
estimate about the character of the species by taking a relatively
small number of samples?

Note that the body-weight of the organisms in the insect
species might have a distribution that is not a normal distri-
bution. But if one could somehow capture all the organisms
in that species and could measure them, she could obtain the
‘true’ mean µ and the ‘true’ standard deviation σ. But that is
not physically possible. So she would actually measure these
quantities from a finite sample. If she captures 10 individuals
and measures them, the sample size is 10. From these values she
could obtain the sample mean x̄ and sample standard deviation
s.

Now, she could again capture another 10 individuals and
measure them, i.e., she could again obtain another sample of
size 10. Of course she will not get the same value of the sample
mean x̄ and sample standard deviation s. Each time she repeats
the experiment and obtains 10 samples, she will get different
values. Now if she calculates the distribution of these sample
means, what will the distribution be?

Similarly, when you are making any measurement (say, the
charge of an electron), you are actually ‘sampling’ from an ideally
infinite number of possible measurements. Suppose you have
taken 10 measurements, and have obtained the mean value. Now
if you repeat the experiment and take 10 more readings, will you
get the same mean value? No. If you repeat the experiment a
number of times (each time taking 10 readings), you will get a
scatter of mean values. What will the distribution be?

the value of the gravitational constant G by a number of experimental runs; if
you are a chemist, think of the task of measuring the specific gravity of a new
compound that has been synthesized, etc. It helps to think of a problem from
one’s own field. Note that in all these cases, you are taking a small number of
samples from a large ‘population’ of possible measurements.
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4.6.1 The Central Limit Theorem

The answers to these questions come from the Central Limit
Theorem:

For large sample sizes (at least 25), the sampling distribu-
tion of the mean for samples of size n from a population
with mean µ and standard deviation σ may be approxi-
mated by a normal distribution with meanµ and standard
deviation σ/

p
n.

Thus, the Central limit Theorem says that in all these cases
the distribution of the sample means will be approximately a
normal distribution. The more the sample size n, the better is the
fit to a normal distribution curve. And this is independent of the
actual distribution in the population.

Now, instead of taking 10 readings in each set, if you had taken
50 readings, the average values that come out in each experiment
would be closer to the actual mean value µ, and so you would get
a narrower Gaussian function. If you take 100 readings, it will be
even narrower, i.e., with a smaller variance. The variance of the
distribution of means, σ2

x̄ , is thus inversely proportional to the
number of readings, i.e.,

σ2
x̄ = σ2

n

Therefore the standard deviation of the distribution of the sample
means is

σx̄ = σp
n

That is what the Central Limit Theorem says: That the sample
means will follow a normal distribution, with the same mean as
that of the population (i.e., µ) and standard deviation σ/

p
n.

This gives a way of finding out how good will be the measured
value x̄ (using a small number of samples) as an estimate of the
mean µ of the actual population. Let us illustrate that with an
example.
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Example 4.1: Suppose there is a ‘population’ 2 with mean 2
(whatever the unit) and standard deviation 0.7. The distribution
within that population is unknown. Now suppose you take a
random sample of 20 individuals from that population. What is
the probability that the sample mean that you get might be above
2.2?

Solution:

The Central Limit Theorem says that if you kept taking similar
20 samples again and again and plotted the distribution of the
means, you would get a normal distribution with mean same as
that of the population, i.e., 2, and standard deviation 0.7/

p
20 =

0.156. Now we need to find out the probability P (x̄ lies above 2.2)

= P

(
x̄ lies

2.2−2

0.156
= 1.28 standard deviations above the mean

)

The multiplier of the standard deviation is known as the z
value, and the area under the normal distribution curve to the left
of the z value are given in the z-tables (Tables 4.1 and 4.2). In this
case we have to find out the area under the normal distribution
curve that lies above 1.28 standard deviations. We see from
Table 4.2 that the area to the left of 1.28 is 0.8997. Therefore
that to the right is 1−0.8997 = 0.1003 of the whole area under
the normal curve (see Fig. 4.3). This implies that, if the scientist
took 20 samples from the population, there will be 10% chance
that she will get a mean value beyond 2.2, even though the actual
mean is 2. Scientifically she should not rely on such an estimate.

Let us now check what will be the odds of getting such a bad
estimate if she took 50 data points. According to the Central Limit
Theorem, in this case the means will be distributed according to a
standard distribution curve with mean 2 and standard deviation

2This could be the population of individuals in a species, or the ‘population’
of possible measurements of the mass of an electron, each measurement
coming with a random error, etc.
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µ 1.28σ

σ

Figure 4.3: The distribution of the sample means in Example 1

0.7/
p

50 = 0.099. Therefore we have to find

P

(
x̄ lies

2.2−2

0.099
= 2.02 standard deviations above the mean

)
From Table 4.2 we find that 0.9783 fraction of the area lies to the
left of this value, and so 1−0.9783 = 0.0217 fraction lies to the
right. This implies that the probability of getting a mean value
beyond 2.2 goes down to 2.17% if she took 50 samples. 2

4.6.2 Standard error of the mean

The standard deviation of the distribution of the sample means,
σx̄ , is called the “standard error of the mean”, and gives an esti-
mate of the error in the mean obtained by taking a finite number
of readings. Let us illustrate it with an example.

Example 4.2: Suppose you have measured a quantity 36 times
and have obtained a sample mean x̄ = 112.0 and sample standard
deviation s = 40. What is the probability that the actual mean µ

lies in the range [100,124]?

Solution:
Here we have a situation where we do not know the actual

population mean µ and the population standard deviation σ,
i.e., we do not know the actual distribution. But we want a good
estimate of the population mean.

If we repeated the experiment of taking 36 samples again and
again, we would get slightly different values each time which
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will be distributed as a normal distribution, whose mean will
be µ and standard deviation will be σ/

p
36 = σ/6. Since we

actually do not know the value of σ, the best we can do is to
substitute it with what you know: the standard deviation s of the
readings actually taken. Thus the sampling distribution will have
a standard deviation 40/6=6.67.

µ 1.8σ−1.8σ

σ

Figure 4.4: The distribution of the sample means in Example 2

Now we ask: what is the probability that the population mean
µ is within 12 of x̄ = 112, i.e., µ ∈ [112− 12,112+ 12]? This is
the same as asking what is the probability that the quantity x̄
we have measured is within 12 of the population mean µ? And
the quantity 12 is actually 12/6.67=1.8 standard deviations (see
Fig. 4.4). To write it mathematically,

P (µ is within 12 of x̄)

= P (x̄ is within 12 of µ)

= P (x̄ is within 1.8 standard deviations of µ)

From the z-table in Table 4.2 we see that the area under
the normal curve below 1.8 standard deviations is 0.9641. The
area under the curve from the mean to 1.8 standard deviations
is 0.9641−0.5 = 0.4641. Thus the area between −1.8 standard
deviations to +1.8 standard deviations is 0.4641×2 = 0.9282.

Therefore there is 92.82% chance that the actual population
mean lies within ±12 of the measured value. 2

Now let us consider the question: how many data points are
necessary for a confident estimate of the population mean and



4.6. Specifying the measured value 15

Parameter
V

a
ri

a
b

le

Figure 4.5: A typical graph showing the error bars.

standard deviation? The Central Limit Theorem says that the
answer is: At least 25.

Thus, after you have obtained the mean from the data taken,
the standard error of the mean is estimated to be

SE = Standard deviation of the readings obtainedp
n

4.6.3 The error bar

Now let us consider the question: How can one state the mea-
sured value so that it will be acceptable to the scientific commu-
nity? The standard procedure is to define a range within which
the actual value is likely to lie. In many experimental situations,
standard error of the mean is plotted as an ‘error-bar’ around the
mean value.

A typical plot showing the error bars might look like Fig. 4.5.
Notice that each error bar may have different length, because for
each value of variable 1, the data points obtained for variable 2
may have different variance. The number of data points may also
be different.

If one is measuring a length, one would be expected to express
the measurement in the form

3.56 cm±0.03 cm.
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Here the error is expressed in absolute magnitude, and so it has
a unit. The error can also be expressed as a percentage, i.e., a
measurement of a length x can also be expressed as

x̄ cm± δx

x̄
×100%

where x̄ is the mean and δx is the standard error of the mean.

In this case the error is expressed as a fraction and will not
have any unit.

Example 4.3: You have conducted an experiment to measure
two values x and y , and have obtained the following data.

x 5.23 4.97 4.78 5.05 5.34 4.78 4.96 5.03
5.15 5.26 4.92 4.78 4.98 5.01 5.19 5.08
5.15 4.94 4.92 4.89 5.10 5.22 4.80 5.06
4.87

y 3.43 3.45 3.85 3.29 3.96 3.10 3.11 3.23
3.43 3.24 3.29 3.24 3.16 3.45 3.23 3.19
3.29 3.37 3.42 3.10 3.29 3.27 3.17 3.24
3.58

How will you describe the result scientifically?

Solution:

The mean values can be easily obtained as

x̄ = 1

n

n∑
i=1

xi = 5.018

ȳ = 1

n

n∑
i=1

yi = 3.335

The standard deviations are

σsx =
√

1

n −1

n∑
i=1

(xi − x̄)2 = 0.16
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σs y =
√

1

n −1

n∑
i=1

(yi − ȳ)2 = 0.211

Using the approximation σ≈ s, we get

Standard error in x = σp
n
= 0.16

5
= 0.032

Standard error in y = σp
n
= 0.211

5
= 0.042

Therefore, the results are to be specified as

x = 5.018±0.032

y = 3.335±0.042

2

4.7 Estimating with confidence

Thus, the usual experimental procedure is to obtain samples from
a population, to obtain the mean and the standard deviation from
the data, and to use these to estimate the characteristics of the
population. The question is: How good is the sample mean as an
estimate of the population mean? One normally approaches this
question by finding an interval of values within which one can be
fairly confident that the population mean lies.

We have seen earlier that the sampling distribution of the
mean for samples of size n has mean µ and

Standard error SE = σp
n

.

Since this distribution is approximately normal, 95% of the sam-
ples will lie within 1.96×SE of the population mean. So, for ap-
proximately 95% of samples of size n, the difference between the
sample mean x̄ and the population meanµ is less than 1.96σ/

p
n.
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Thus, for approximately 95% of samples of size n, the population
mean will lie between the two values

x̄ −1.96× σp
n

and x̄ +1.96× σp
n

The sample mean x̄ can be calculated from the data. Since
we do not know the value of population standard deviation σ, we
use the sample standard deviation s as an estimate of σ. With
that, we can calculate the values of the two expressions above
and hence can obtain an interval of values within which we could
be fairly confident that the population mean µ lies. This leads to
the conclusion that for 95% of samples of size n, the population
mean µ lies between the two values

x̄ −1.96× sp
n

and x̄ +1.96× sp
n

If the act of collecting samples is repeated many times, ap-
proximately 95% of the time we would find that the interval
thus calculated did contain the true population mean, and in
approximately 5% of the cases it would miss µ. That is why this
interval is called 95% confidence interval for the population mean.

This interval is our answer to the question: “how good is the
sample mean x̄ as an estimate of the population mean µ?”

Now, we have seen in Chapter 4 that 68.3% of the data points
lie within the range [µ−SE, µ+SE]. Therefore stating this error
bar amounts to saying that the ‘true’ population mean would lie
within this range with 68.3% confidence level. Some experiments
demand a higher confidence level, typically 95%, and for that
error bar will have to be ±1.96 SE.

Some physics experiments, especially the ones that test the
correctness of a theory like the existence of Higgs’ boson or gravi-
tational waves, demand a much higher level of confidence before
such an announcement is made. Typically announcements are
made stating that ‘five-sigma’ confidence level is achieved. This
means that the range is taken as five times the standard error.
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Only one in 3.5 million data points lie outside this range, i.e., if
the results were due to chance (not caused by the phenomenon
in question) then the obtained result can occur to most once in
3.5 million repetitions of the experiment.

Still a question may remain in your mind: Was it a good idea
to replace σ by s? Doesn’t it introduce error in our estimate
of the 95% confidence interval? There is actually an intuitive
justification for it. You have seen that the sample mean varies
from sample to sample less for large sample sizes than for small
ones. In a similar way, it can be shown that the sample standard
deviation also varies from sample to sample less for large sample
sizes than for small ones. Thus, the larger the sample size, the
better s is as an estimate of σ. Moreover, due to the division byp

n, for large sample sizes s/
p

n would not be much different
from σ/

p
n, and the confidence interval thus calculated would

really contain the population mean µ in 95% of the cases.

Now notice a few things.

• Since the 95% confidence interval is proportional to 1/
p

n,
you would need to take samples four times as large in order
to halve the widths of confidence intervals.

• The calculation of a 95% confidence interval does not depend
on the size of the population. The only assumption is that
the population size is much larger than the sample size. The
interval will remain the same if you have drawn a sample of
100 from a population of 10,000 or 107.

• The calculation of this interval does depend on the size of the
sample, because we have assumed that the sampling distribu-
tion follows a normal curve. This is true only if the sample size
is at least 25. Moreover, for small n the replacement of σ by
s becomes questionable. But still, a scientist may encounter
situations where it is impossible (or expensive) to draw a large
number of samples (n < 25). In that case the distribution of
the sample means cannot be assumed to be normal, and
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one has to fit it to some other distribution (generally the t-
distribution). We shall come to this issue later.

• Following a similar line of argument, any other confidence in-
terval can also be calculated. For example, a 99% confidence
interval would be given by[

x̄ −2.58× sp
n

, x̄ +2.58× sp
n

]
because 99% of the area under the normal distribution curve
lies between −2.58 to +2.58 standard deviations.

Example 4.4: For the data in Example 3, define a range of x in
which the “true” value of x must lie with 99% probability.

Solution:
From the data, we get the standard error of x as

SEx = σp
n
= 0.16

5
= 0.032

Therefore the true value of x will lie in the range

[x̄ −2.58 SEx , x̄ +2.58 SEx ]

= [5.018−2.58×0.032, 5.018+2.58×0.032]

= [4.937, 5.102]

2

4.8 When the data size is small

The above procedures are applicable to situations where the data
size is reasonably large (at least 25), without which the Central
Limit Theorem would not be applicable. But there are situations
in which it is difficult (or very expensive) to obtain many data
points. What to do in such cases?
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We have seen earlier that, if the number of samples is suf-
ficiently large, the sampling distribution of the mean follows a
normal distribution. In that case we defined a quantity

z = x̄ −µ

σx̄
= x̄ −µ

σp
n

which followed a normal distribution. Then we used the z-table
to obtain the probability of getting a z value at least that large (or
that small).

Where the data size n is small, the sampling distribution of
the mean would not follow a normal distribution. But it follows a
different distribution, called the t-distribution, whose character-
istics can then be used to derive meaningful results. In this case
the quantity t is defined the same way:

t = x̄ −µ
σp
n

Then one can use the t-table to derive similar conclusions.

Let us illustrate this with an example.

Example 4.5: A scientist could take only 9 measurements on
the mass of a particle, and the measured values were 16.2, 19.7,
21.8, 15.6, 19.0, 18.7, 16.9, 21.7, 20.2 (in suitable units). Do
the data provide sufficient evidence to say that the mass of the
particle is less than 21? Here “sufficient evidence” implies that
the probability that the statement is wrong is less than 0.01 or 1%.

Solution: From the data, we find that the sample mean is x̄ =
18.87 and sample standard deviation is s = 2.2583. The prediction
we have to test is that the population mean µ < 21. This is the
same as checking the odds of getting x̄ = 18.87 if the value of µ
were 21. So our approach will be to assume µ= 21 and to check
the probability of getting x̄ = 18.87. If the probability is less than
0.01, there will be less than 1% chance of making an error.



22 Chapter 4. Elements of Scientific Measurement

Using the data, we get

t = x̄ −µ
σp
n

≈ x̄ −µ
sp
n

= 18.87−21
2.2583p

9

=−2.83

Now, we need to look at the t-table in Table 4.3 to locate
the threshold value of t that has a significance level of 1%. The
columns are arranged according to the “significance level” (which
is the area under the t-distribution curve beyond that value of
t ). In this case we are looking for 1% significance level. The rows
are arranged according to the degree of freedom, which is one
less than the number of data points, i.e., n −1. Here the number
of data points is 9. Therefore the degree of freedom is n −1 = 8.
For the above degree of freedom and significance level, we find
t = 3.355. Therefore the probability of getting a t value higher
than 3.355 is 1%. Since the t-distribution is symmetrical about
zero, the probability of getting a t value below −3.355 is also 1%.

The value of t we got in our case is −2.83, which is above
−3.355. This implies that if the mean is µ = 21, the probability
of getting x̄ = 18.87 is more than 1%. Thus, from the data if we
state that the population mean µ< 21, there will be more than
1% chance of committing an error. 2

4.9 Box and whisker plots

It may be noticed that a plot of the experimental results showing
the error bars (like Fig. 4.5) does not give the information about
the spread of the data obtained. That is why in some applica-
tions where such information are important, a different way of
presenting the results may be preferred. This is called a ‘box-
and-whisker’ plot, a typical representation of which is shown in
Fig. 4.6.

In producing such a plot, the data are first arranged in as-
cending order. The minimum value and the maximum value thus
obtained gives the extremities of the ‘whiskers’ of the plot. Then
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Parameter

V
a
ri

a
b

le

Figure 4.6: A typical box and whisker plot

one has to obtain the median, which is nothing but the middle
value. If the number of data points is odd, the middle number is
easy to identify. If there are an even number of data points, two
numbers will appear at the middle and one has to take the mean
of these two numbers. This median gives the mid-point of the
plot, called second quartile, or Q2 (see Fig. 4.7).

Q1 Q2 Q3Minimum Maximum

Median

range
Interquartile

Figure 4.7: The ranges in a box and whisker plot

Then one has to obtain the median of the data points below
Q2. That gives another value, called first quartile or Q1. Similarly
one obtains the median of the data points above Q2, which gives
the third quartile, or Q3. The range between Q1 and Q3 is called
the interquatile range (IQR), which is plotted as a box. The range
between the minimum and Q1, and that between Q3 and the
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maximum are plotted as ‘whiskers’. Thus the representation of a
typical data set would look like Fig. 4.7. One characteristic feature
of such a plot is that 25% of the date lie in each of the four ranges
shown in the plot.

Sometimes one gets some data points that lie way outside the
natural range of the data. These are called the ‘outliers’. The box
plot also enables one to identify and present the outliers. The
usual method is that the data points lying outside 1.5 times the
interquartile range outside the box are called outliers. Thus the
‘minimum’ of the whisker may be placed at the data point lying
above (Q1−1.5× IQR) and the ‘maximum’ may be placed at the
data point lying below (Q3+1.5× IQR), and any data point falling
outside this range may be shown as ‘outlier’.

Such outliers may result from experimental or observational
errors, but may also result from some phenomenon not yet dis-
covered. That is why one cannot simply ignore an outlier or delete
it from a data set. Outliers have to be faithfully presented in the
paper, though these may be ignored in further analysis of the
data.

Example 4.6:
Consider the following data set:

17.2, 15.9, 16.7, 18.3, 15.0, 19.3, 20.2, 16.3, 17.9, 15.3, 10.1, 19.1,
18.2
Obtain the box and whister plot.

Solution:
Arranging the data in ascending order, we get

10.1, 15.0, 15.3, 15.9, 16.3, 16.7, 17.2, 17.9, 18.2, 18.3, 19.1, 19.3,
20.2

It has 13 data points, which is an odd number. So the 7th data
point, 17.2, is the median.

There are 6 data points below and above the median, which
is an even number. So we get Q1 by taking the mean of the 3rd
and 4th entries and get Q1=15.6. Similarly we get Q3 as the mean
of the 10th ans 11th entries, and get Q3=18.7.
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10 11 12 13 14 15 16 17 18 19 20

10.1 15.6 17.2 18.7 20.2

Figure 4.8: The box and whisker plot for the whole data set given in the
Example

Thus the box and whisker plot becomes as shown in Fig. 4.8

Now let us see if any data point can be identified as an outlier.
The IQR is 18.7−15.6 = 3.1. Going below lowest point of the box
by 1.5×IQR gives 10.95. We see that there is one data point below
that value. Therefore we can declare this point as an outlier, and
set the ends of the whisker at the last data point above 10.95. This
value is 15.0. Going above Q3 by 1.5×IQR gives 23.35. This is
above the highest point of the data set. Thus there is no outlier in
the higher side. The resulting plot, excluding the outlier, is shown
in Fig. 4.9.

10 11 12 13 14 15 16 17 18 19 20

17.2 18.7 20.2

10.1

15.0 15.6

Figure 4.9: The box and whisker plot excluding the outlier.

Exercise

1. Suppose you have measured the concentration of a substance
in a solution by taking 25 samples from different parts of the
liquid and have obtained the following data (the figures are
in ppm).
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4.87 5.23 4.97 4.78 5.05 5.34 4.78 4.96 5.03
5.15 5.26 4.92 4.78 4.98 5.01 5.19 5.08
5.15 4.94 4.92 4.89 5.10 5.22 4.80 5.06

If you are to report the result in a paper, how will you specify
the measured value? With what confidence level can you state
that the actual value µ lies in the range 5 ppm to 5.036 ppm?

2. A scientist could take only 10 measurements on the molecular
weight of a new compound, and the measured values were
57.6, 55,4, 58.9, 56.3, 55.3, 58.9, 54.9, 57.3, 58.1, 54.8. Do the
data provide sufficient evidence to say that the molecular
weight of the compound is less than 59? Here “sufficient
evidence” implies that the probability that the statement is
wrong is less than 0.01 or 1%.

3. Suppose that 15% of the 1750 students at a college have
experienced extreme level of stress during the past month. A
newspaper doesn’t know the figure, but they are curious what
it is, so they decide to ask a random sample of 160 students
if they have experienced extreme levels of stress during the
past month. 16 students replied “yes” to the question.

In case the assumption is true, what is the probability of
getting the ‘yes’ answer from 16 or less number of students
out of 160? What conclusion regarding the assumption can
you scientifically draw based on the observation?

4. Find the median (Q2), lower quartile (Q1) and upper quar-
tile (Q3) for the following data obtained in an experiment.
Identify if there is any outlier and draw a box-and-whisker
plot.

{48,56,75,50,46,5,52,49,53,42,55,50,58,40,102}

What is the mean value that you can report?
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Table entry

Table entry for z is the area under the standard normal curve

to the left of z.

Standard Normal Probabilities

z

z .00

–3.4

–3.3

–3.2

–3.1

–3.0

–2.9

–2.8

–2.7

–2.6

–2.5

–2.4

–2.3

–2.2

–2.1

–2.0

–1.9

–1.8

–1.7

–1.6

–1.5

–1.4

–1.3

–1.2

–1.1

–1.0

–0.9

–0.8

–0.7

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

–0.0

.0003

.0005

.0007

.0010

.0013

.0019

.0026

.0035

.0047

.0062

.0082

.0107

.0139

.0179

.0228

.0287

.0359

.0446

.0548

.0668

.0808

.0968

.1151

.1357

.1587

.1841

.2119

.2420

.2743

.3085

.3446

.3821

.4207

.4602

.5000

.0003

.0005

.0007

.0009

.0013

.0018

.0025

.0034

.0045

.0060

.0080

.0104

.0136

.0174

.0222

.0281

.0351

.0436

.0537

.0655

.0793

.0951

.1131

.1335

.1562

.1814

.2090

.2389

.2709

.3050

.3409

.3783

.4168

.4562

.4960

.0003

.0005

.0006

.0009

.0013

.0018

.0024

.0033

.0044

.0059

.0078

.0102

.0132

.0170

.0217

.0274

.0344

.0427

.0526

.0643

.0778

.0934

.1112

.1314

.1539

.1788

.2061

.2358

.2676

.3015

.3372

.3745

.4129

.4522

.4920 

.0003

.0004

.0006

.0009

.0012

.0017

.0023

.0032

.0043

.0057

.0075

.0099

.0129

.0166

.0212

.0268

.0336

.0418

.0516

.0630

.0764

.0918

.1093

.1292

.1515

.1762

.2033

.2327

.2643

.2981

.3336

.3707

.4090

.4483

.4880

.0003

.0004

.0006

.0008

.0012

.0016

.0023

.0031

.0041

.0055

.0073

.0096

.0125

.0162

.0207

.0262

.0329

.0409

.0505

.0618

.0749

.0901

.1075

.1271

.1492

.1736

.2005

.2296

.2611

.2946

.3300

.3669

.4052

.4443

.4840

.0003

.0004

.0006

.0008

.0011

.0016

.0022

.0030

.0040

.0054

.0071

.0094

.0122

.0158

.0202

.0256

.0322

.0401

.0495

.0606

.0735

.0885

.1056

.1251

.1469

.1711

.1977

.2266

.2578

.2912

.3264

.3632

.4013

.4404

.4801

.0003

.0004

.0006

.0008

.0011

.0015

.0021

.0029

.0039

.0052

.0069

.0091

.0119

.0154

.0197

.0250

.0314

.0392

.0485

.0594

.0721

.0869

.1038

.1230

.1446

.1685

.1949

.2236

.2546

.2877

.3228

.3594

.3974

.4364

.4761

.0003

.0004

.0005

.0008

.0011

.0015

.0021

.0028

.0038

.0051

.0068

.0089

.0116

.0150

.0192

.0244

.0307

.0384

.0475

.0582

.0708

.0853

.1020

.1210

.1423

.1660

.1922

.2206

.2514

.2843

.3192

.3557

.3936

.4325

.4721

.0003

.0004

.0005

.0007

.0010

.0014

.0020

.0027

.0037

.0049

.0066

.0087

.0113

.0146

.0188

.0239

.0301

.0375

.0465

.0571

.0694

.0838

.1003

.1190

.1401

.1635

.1894

.2177

.2483

.2810

.3156

.3520

.3897

.4286

.4681

.0002

.0003

.0005

.0007

.0010

.0014

.0019

.0026

.0036

.0048

.0064

.0084

.0110

.0143

.0183

.0233

.0294

.0367

.0455

.0559

.0681

.0823

.0985

.1170

.1379

.1611

.1867

.2148

.2451

.2776

.3121

.3483

.3859

.4247

.4641

.01 .02 .03 .04 .05 .06 .07 .08 .09
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Table 4.1: The z-table for negative values of z
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Table entry

Table entry for z is the area under the standard normal curve

to the left of z.
z

z .00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

.5000

.5398

.5793

.6179

.6554

.6915

.7257

.7580

.7881

.8159

.8413

.8643

.8849

.9032

.9192

.9332

.9452

.9554

.9641

.9713

.9772

.9821

.9861

.9893

.9918

.9938

.9953

.9965

.9974

.9981

.9987

.9990

.9993

.9995

.9997

.5040

.5438

.5832

.6217

.6591

.6950

.7291

.7611

.7910

.8186

.8438

.8665

.8869

.9049

.9207

.9345

.9463

.9564

.9649

.9719

.9778

.9826

.9864

.9896

.9920

.9940

.9955

.9966

.9975

.9982

.9987

.9991

.9993

.9995

.9997

.5080

.5478

.5871

.6255

.6628

.6985

.7324

.7642

.7939

.8212

.8461

.8686

.8888

.9066

.9222

.9357

.9474

.9573

.9656

.9726

.9783

.9830

.9868

.9898

.9922

.9941

.9956

.9967

.9976

.9982

.9987

.9991

.9994

.9995

.9997

.5120

.5517

.5910

.6293

.6664

.7019

.7357

.7673

.7967

.8238

.8485

.8708

.8907

.9082

.9236

.9370

.9484

.9582

.9664

.9732

.9788

.9834

.9871

.9901

.9925

.9943

.9957

.9968

.9977

.9983

.9988

.9991

.9994

.9996

.9997

.5160

.5557

.5948

.6331

.6700

.7054

.7389

.7704

.7995

.8264

.8508

.8729

.8925

.9099

.9251

.9382

.9495

.9591

.9671

.9738

.9793

.9838

.9875

.9904

.9927

.9945

.9959

.9969

.9977

.9984

.9988

.9992

.9994

.9996

.9997

.5199

.5596

.5987

.6368

.6736

.7088

.7422

.7734

.8023

.8289

.8531

.8749

.8944

.9115

.9265

.9394

.9505

.9599

.9678

.9744

.9798

.9842

.9878

.9906

.9929

.9946

.9960

.9970

.9978

.9984

.9989

.9992

.9994

.9996

.9997

.5239

.5636

.6026

.6406

.6772

.7123

.7454

.7764

.8051

.8315

.8554

.8770

.8962

.9131

.9279

.9406

.9515

.9608

.9686

.9750

.9803

.9846

.9881

.9909

.9931

.9948

.9961

.9971

.9979

.9985

.9989

.9992

.9994

.9996

.9997

.5279

.5675

.6064

.6443

.6808

.7157

.7486

.7794

.8078

.8340

.8577

.8790

.8980

.9147

.9292

.9418

.9525

.9616

.9693

.9756

.9808

.9850

.9884

.9911

.9932

.9949

.9962

.9972

.9979

.9985

.9989

.9992

.9995

.9996

.9997

.5319

.5714

.6103

.6480

.6844

.7190

.7517

.7823

.8106

.8365

.8599

.8810

.8997

.9162

.9306

.9429

.9535

.9625

.9699

.9761

.9812

.9854

.9887

.9913

.9934

.9951

.9963

.9973

.9980

.9986

.9990

.9993

.9995

.9996

.9997

.5359

.5753

.6141

.6517

.6879

.7224

.7549

.7852

.8133

.8389

.8621

.8830

.9015

.9177

.9319

.9441

.9545

.9633

.9706

.9767

.9817

.9857

.9890

.9916

.9936

.9952

.9964

.9974

.9981

.9986

.9990

.9993

.9995

.9997

.9998

.01 .02 .03 .04 .05 .06 .07 .08 .09

Standard Normal Probabilities
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Table 4.2: The z-table for positive values of z
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Table 4.3: The t-table


