
Chapter 8

Mathematical Modeling of
Physical Systems

In many situations a scientist has to form mathematical models
of physical processes. The key steps in the process are:

Define the problem: Identify the phenomeon to investigate; iden-
tify various factors that influence the outcome; identify the
independent and dependent variables; identify the parame-
ters of the system; decide what the model seeks to achieve.

Create the model: Simplify the problem; state the assumptions;
formulate mathematical relationships.

Obtain the outcomes of the model: Solve the equations; draw
graphs; derive results that can be experimentally or observa-
tionally tested.

Test the model: Compare the predictions of the model with re-
ality; Analyze in which aspects the predictions of the model
deviates from reality; decide if it is necessary to adjust the
model; include factors that you ignored in the earlier cycle;
repeat the cycle again.
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8.1 Models built from first principles

Often we build models of phenomena by utilizing existing knowl-
edge. Let us illustrate this by trying to obtain the model of the
process of cooling of a hot liquid kept in a container, exposed at
the top.

Through the mathematical model, what are we trying to
achieve? We are trying to obtain how the temperature changes
with time. Thus, we seek to obtain a differential equation. The
average temperature of the liquid is the variable here. The pa-
rameters are the dimensions of the container, the mass and the
specific heat of the fluid, etc.

The liquid could dissipate heat by conduction, convection,
and radiation. Upon initial investigation, we notice that heat loss
happens majorly due to convection; the other components are
much smaller than convection so long as the temperature is not
too high. So we make the assumption that heat loss by conduction
and radiation are negligible. Heat dissipation happens through
all the sides of the vessel, but we assume that most part of the
heat is lost through the top layer that is in contact with air. We
may have to abandon these assumptions at a later stage if we
find that the predictions of our models do not match with the
experiental findings.

Now we set forth to creating the model. Suppose the temper-
ature at the interior of the fluid isΘ f , that at the surface isΘs and
that of the air isΘa . There will be two stages of convective heat
transfer: (i) that from the interior of the fluid to the upper surface,
and (ii) that from the surface of the fluid to air. The same amount
of heat is transported from the interior to the surface and then
from the surface to the air.

It is reasonable to assume that in each case the heat transfer
q is proportional to the temperature difference as well as with
the surface area of heat transfer. Thus, we may write

q = h f A (Θ f −Θs)
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and
q = ha A (Θs −Θa)

where h f and ha are the corresponding convective heat transfer
coefficients. Thus,

(Θ f −Θs) = q

h f A
, (Θs −Θa) = q

ha A

EliminatingΘs we get

q = h A (Θ f −Θa)

where the overall heat transfer coefficient h is

h =
(

1

h f
+ 1

ha

)−1

This equation is valid so long as the temperatures are constant.
But we had set out to obtain a dynamical equation. So we need
to assume that q(t) and Θ f (t) are time-varying quantities. The
temperature changes by a small amount over a small time δt ,
and that the heat transfer equation remains valid over this period.
Thus, over a time period from t to t +δt , the rate of heat loss is

q(t ) = h A (Θ f (t )−Θa)

Hence the total heat loss over this period is

q(t )δt = h A (Θ f (t )−Θa)δt

From the point of view of the fluid, the heat loss due to tempera-
ture drop fromΘ f (t ) toΘ f (t +δt ) is

δE = m c [Θ f (t +δt )−Θ f (t )]

Equating these two quantities of heat, we get

m c [Θ f (t +δt )−Θ f (t )] =−h A (Θ f (t )−Θa)δt
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or
Θ f (t +δt )−Θ f (t )

δt
=−h A

mc
(Θ f (t )−Θa)

As δt approaches infinitesimally small values, this equation will
become increasingly accurate. Thus, we get

dΘ f

d t
=−λ(Θ f (t )−Θa)

where λ= h A/(mc).

This is the model we obtain. But is this model correct? In
order to check that, we’ll have to obtain a prediction of the model,
and for that, we’ll have to solve the differential equation. This can
be done using the integrating factor method. We leave it to the
reader to solve it. We just state that the solution is

Θ f (t ) =Θa +
(
Θ f (0)−Θa

)
e−λt

whereΘ f (0) is the initial temperature of the fluid. We see that this
relationship is reasonable, because at t = 0, the fluid temperature
is its initial value, and at t =∞, it reaches the air temperature.
But is the rate of decay all right? In order to check that, one has
to conduct an experiment to obtain the variation of temperature
with time, and has to match it with the predicted value. If it does
not match, either one has to check the values of h and c used, or
one has to relax some of the simplifying assumptions that one
used in the first cycle of modeling.

8.2 Dimensional consistency

Any model is basically a relationship between quantities, ex-
pressed in the form of equations (algebraic or differential). The
resulting equations should be dimensionally consistent, i.e., the
left hand side and the right hand side should have the same
dimension, when two quantities are added of subtracted, they
should have the same dimension, etc.



8.2. Dimensional consistency 5

There are four quantities which are considered to be of fun-
damental nature in the sense that their dimension cannot be
expressed in terms of the dimensions of other quantities. These
are mass, length, time, and temperature, denoted at M ,L,T , and
Θ respectively. The units of all other quantities can be expressed
in terms of these base dimensions. We use square brackets to
mean ‘the dimension of’, for example,

[speed] = LT −1

Dimensional consistency demands that wherever we write
an equation, the dimensions must match. For example, we know
that the period τ of small oscillations of a particle of mass m
suspended from a fixed point by a light inextensible string of
length l is given by

τ= 2π

√
l

g

Is this equation dimensionally consistent? To check, we start with
the dimension of the right hand side:[

2π
√

l/g
]
= [2π]

(
[l ]/[g ]

)1/2

Now, 2π is an angle in radians, which is dimensionless. The
dimensions of l and g are L and LT −2 respectively. Substituting,
we get the dimension of the RHS as(

L

LT −2

)1/2

= (
T 2)1/2 = T

which is the dimension of τ in the LHS.

What should we do when an equation contains functions
like exp, ln, sin, cos, etc.? How can one check the dimensional
consistency in such cases? The key is to note that these functions
take real numbers as their arguments, and return real numbers.
Therefore functions like ex , ln x, sin x, cos x, etc., should be di-
mensionless, and their arguments should also be dimensionless.
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For example, when we write

x(t ) = A sin(ωt +φ),

this is ensured because φ (in radians) is non-dimensional, and
[ω] = T −1 and [t ] = T . And, for the whole equation to be di-
mensionally consistent, the dimension of the constant must be
[A] = L.

8.3 Modeling using dimensional analysis

It is interesting to note that one can often use dimensional anal-
ysis to get some idea about the functional forms describing the
dependence of one quantity on others. Suppose you are to find a
model to describe the distance a cannonball will go when fired
from a cannon. From observation, you notice that the distance
traversed depends on the mass m, the initial velocity u, and the
angle of firing θ. Physical intuition tells you that this distance
should be different on Earth and on Moon, that is, it depends on
the acceleration due to gravity g . But suppose you do not know
Newton’s laws, i.e., you do not know the functional relationships.
So your initial model will be

D = f (m,u,θ, g ).

The dimensions of the quantities in the RHS are [D] = L, [m] =
M , [u] = LT −1, [g ] = LT −2 and θ is dimensionless. What kind of
functional form should we assume?

Notice that the transcendental functions like exp, ln, sin,
cos, etc. can take only nondimensional numbers as arguments.
Therefore any quantity that has a dimension cannot appear in the
argument of such a function. Such quantities can only have pow-
ers. But since θ is nondimensional, D can have any functional
dependence on θ, say, h(θ).
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So let us assume that

D = k mαuβgδh(θ)

where k is a dimensionless constant. The problem is then to find
the powers α,β, and δ.

Now, dimensional consistency of the above equation demands
that

[D] = [k mαuβgδ]

= [k] [m]α[u]β[g ]δ

L = Mα
(
LT −1)β (

LT −2)δ
= MαLβ+δT −β−2δ

since k and θ are dimensionless. Equating the powers of M , L,
and T , we get

α= 0, β+δ= 1, −β−2δ= 0

Solving these equations, we get

α= 0, β= 2, δ=−1

Thus, we have been able to obtain the unknown parameters
simply by dimensional analysis.

Therefore, we get

D = h(θ)
u2

g

Dimensional analysis can lead you up to this point. But it can-
not give you the functional form h(θ). You could then design
a directed experiment where θ would be varied (while all other
parameters remain fixed), and D is measured for different values
of θ. From the graph thus obtained, you could guess the func-
tional form (from Newtonian mechanics we know that it will be
h(θ) = sin2θ).

In this example, the equations for the powers could be exactly
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solved. But this may not always be the case. In that case you
should obtain these powers in terms of a minimum number
of unknown parameters (usually one). Then substitute these
powers into the dimensional equation, which will contain the
unknown parameter. Then group together the parameters with
that unknown power and try to express the LHS in terms of the
known powers and an unknown function of a dimensionless
group.

Example: By dimensional analysis, try to obtain the distance
traversed by a projectile through air (this time include air friction
force F ).

Solution: In this case D will have an additional term, F , in its
functional form, which has a dimension of MLT −2. So we write

D = k mαuβgδF εh(θ)

Dimensional consistency demands that

[D] = [k][m]α[u]β[g ]δ[F ]ε[h(θ)]

L = Mα
(
LT −1)β (

LT −2)δ (
MLT −2)ε

= Mα+ε Lβ+δ+ε T −β−2δ−2ε

Equating the powers of this equation, we get

α+ε= 0, β+δ+ε= 1, −β−2δ−2ε= 0

Solving these yieldsβ= 2, but there remains two equationsα+ε=
0 and δ+ ε = −1 with three unknowns. In that case we express
the others in terms of one unknown, say, ε. Thus, α = −ε and
δ=−1−ε. Substituting these into the equation, we get

D = k m−ε u2 g−1−ε F εh(θ)

= k
u2

g

(
F

mg

)ε
h(θ)
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Now notice that the quantity F /(mg ) is non-dimensional.
Since it is non-dimensional, the functional dependence of D
on this quantity need not be just a power of ε; it could be any
transcendental function. Thus, the model needs to be written as

D = k
u2

g
h

(
F

mg
,θ

)
where h is a function of two variables. In order to complete the
model, directed experiments need to be performed to find the
character of this function.

8.4 Phenomenological models

A model like this—where you do not try to derive the model from
the first principles and do not seek to explain why a specific func-
tional relationship (for example, the dependence on u2/g in the
above model) occurs, but still successfully capture the essential
features of a phenomenon by a mathematical relationship—are
called phenomenological models. A phenomenological model is
a scientific model that describes the relationship between vari-
ables appearing in a phenomenon, in a way which is consistent
with fundamental theory, but is not directly derived from theory.
A phenomenological model does not attempt to explain why
the variables interact the way they do. Often phenomenological
models are developed first, which then propel theorists to work
out the underlying mechanisms of the phenomenon.

8.5 An example of mathematical modeling:
The Lotka-Volterra model

It is a common observation of field biologists that, whenever two
species occur in some ecological niche—one predator and the
other prey—then the number of individuals in each population
oscillates. For example, if in a forest there are deer and tiger, then
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sometimes the deer population would grow and the tiger pop-
ulation would fall, and at some other time the reverse happens.
Why do the populations behave in such manner and do not attain
equilibrium?

In order to get insight into such issues, one has to build a
mathematical model. First we have to identify the variables.
These are the prey population and the predator population. Let
the number of individuals in the prey population be x and that in
the predator population be y . How would these vary with time?

If there is no predator in the forest, the prey population would
grow. It is reasonable to assume, as first approximation, that
the rate of growth is proportional to the population, i.e., ẋ = ax,
where a if a constant (a parameter of the system). If tigers are
present, they will eat up the deer and so will have a negative
effect on ẋ. This will be proportional to the deer-tiger encounters,
which can be assumed to be proportional to the product x y as a
first approximation. Thus the total equation becomes

d x

d t
= ax −bx y

where b is another parameter of the system.

Now let us see what happens to the predators. If no prey
is present, the predators will die. There will be an exponential
decay of the predator population, and so we can write ẏ =−c y . If
prey are present, the predator population will rise, and the rate
of growth will be proportional to the predator-prey encounters
which can be assumed to be proportional to x y . Thus, we get the
second equation as

d y

d t
=−c y +d x y

where b is another parameter of the system.

We have thus obtained a very simple model of predator-prey
competition. Does it capture the essential features of the phe-
nomenon under consideration?

To check, we notice that the equilibrium points (for which
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ẋ = 0 and ẏ = 0) are (0, 0) and (c/d , a/b). Are these equilibrium
points stable? For this, we obtain the Jacobian matrix

J =
(

a −by −bx
d y −c +d x

)

To explore the stability of the equilibrium point at (0,0), we sub-
stitute these values in the Jacobian matrix to obtain

J0 =
(

a 0
0 −c

)

whose eigenvalues are a and −c. A positive eigenvalue implies
that this equilibrium point is unstable.

The Jacobian matrix corresponding to the other equilibrium
point is

J1 =
(

0 −bc/d
ad/b 0

)
whose eigenvalues are purely imaginary. This gives rise to si-
nusoidal solutions, and hence, any initial condition that is not
located exactly at the equilibrium point will oscillate.

This explains the bizarre phenomenon of oscillation of wild
populations. But is the model accurate? To check, one has to
cross-check against the actual data obtained by field biologists.
If the amplitude or the frequency of oscillation does not match
reality, the model needs to be improved accordingly.

What will be the natural ways of improving the model? For
that, let us take stock of the assumptions made.

Assumption 1: We have assumed that the populations are con-
tinuous variables. But in reality they are discrete (you cannot
have half a tiger). So for small populations, it would incur
significant errors. But for large populations, the assumption
would be reasonably valid.

Assumption 2: We have assumed that in the absence of preda-
tors the prey population increases exponentially. This is rea-
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sonably correct for small populations. But if the population is
large, food will become scarce, and so the population cannot
increase without bound. This is normally accounted for by
using the logistic growth model ẋ = ax(xs −x), where xs is the
value at which x ‘saturates’ if no predator is present.

Assumption 3: We have modelled the predator-prey interactions
by a simple product x y . One could think of improving the
functional relationship representing various practical situa-
tions of predator-prey interactions.

The class of models that can be formulated from such im-
provements is called the Lotka-Volterra model. These are widely
used to understand and to predict variations of wild populations.


