Date: 10h00, 24 April 2019

PH4204: High Energy Physics

Duen: 16h00, 25 April 2019

- 1. SM with two doublet: For a $SU(2) \otimes U(1)$ gauge theory (i.e. SM) we have two scalar doublets Φ_1 and Φ_2 with hypercharges +1 and -1 respectively. Their electrically neutral components get a vacuum expectation value (VEV) v_1 and v_2 respectively.
 - (a) Find the mass of A^{\pm} boson in terms of two VEVs.
 - (b) Find the expressions for Z bosons and show that γ in terms of A_3 and B and show that γ remains mass-less.
 - (c) Find the Z bosons coupling to both e_L and e_R .
 - (d) Write down the mass terms of *down-type* fermions using Φ_1 and for the *up-type* fermions using Φ_2 .
 - (e) Find the Z and γ bosons coupling to both d_L and d_R , where d is the *down-quark*. How is it different from the SM case.
- 2. SM with a doublet and a triplet: For a $SU(2) \otimes U(1)$ gauge theory (i.e. SM) we have a scalar doublets Φ_1 and triplet scalar Φ_2 with hypercharges +1 and +2, respectively. Their electrically neutral components get a vacuum expectation value (VEV) v_1 and v_2 respectively.
 - (a) Find the mass of A^{\pm} boson in terms of two VEVs.
 - (b) Find the expressions for Z bosons and show that γ in terms of A_3 and B and show that γ remains mass-less.
 - (c) Find the relation between v_1 , v_2 and gauge couplings such that mass of Z boson becomes same as the mass of A^{\pm} .
- 3. SM with a triplet: For a $SU(2) \otimes U(1)$ gauge theory (i.e. SM) we have a scalar triplet Φ in place of a doublet with a hypercharges +1. One of the tree component gets a vacuum expectation value (VEV) v (to be tried for all three component one by one).
 - (a) Find the mass of A^{\pm} boson, A_3 boson and B boson for three choices of the VEV.
 - (b) Which choice of VEV leads to the masses for all gauge bosons leaving A_3 mass-less and why does this happen.
 - (c) Is it possible to have a mass-less photon candidate in this model? Explain your answer.
- 4. Model with SU(3) symmetry and two triplet scalar: For a SU(3) gauge theory we have two scalar triplet $\Phi = \{\phi_1, \phi_2, \phi_3\}^T$ and $\Psi = \{\psi_1, \psi_2, \psi_3\}^T$. The component ϕ_3 gets a vacuum expectation value (VEV) v and ψ_2 gets a VEV u.
 - (a) Find the masses of all eight gauge bosons.
 - (b) Which gauge bosons remain mass-less and why? What is the left over symmetry of the theory after scalars gets a VEV.

Weight: 16%