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Introduction
The magnetic field dominated low-β solar corona, self-evolves
to minimize magnetic stresses in response to flux emergence
and driving by the high-β photospheric and sub-photospheric
plasma. This dynamics lead to observed events like sigmoid, so-
lar filament formation, solar flares, and coronal mass ejections
[1][2]. Shearing of magnetic field lines, magnetic reconnection,
helicity conservation and magnetic relaxation dynamics all play
important roles in these solar processes that create adverse space
environmental conditions which define space weather. To under-
stand the dynamics and evolution of magnetized plasma in the
Sun’s outer atmosphere we are developing a magnetofrictional
model [3][4] for the solar coronal field. The magnetofriction
approach assumes the plasma velocity (v) is governed by the
Lorentz force, only, in the low-β regime of the corona. The ef-
fective frictional coefficient (ν) is a result of the assumption that
a fictitious force acts in the background to neutralize the plasma
motion. Here we present the model description and some ini-
tial results of a simulation in a small box which approximates a
small portion of the solar atmosphere containing a solar active
region magnetic structure.

Model & Setup

The Model
We solve the magnetic induction equation on a spherical grid
(r, θ, φ) such that r is the radial distance from the center of the
sun, θ is the co-latitude and φ is the azimuthal angle. The basic
assumptions in our model are :

1. The coronal field is in equilibrium in the time scale of large
scale surface motions.

2. In the solar corona, magnetic forces dominate over the plasma
forces (β � 1).

3. The magnetic field is considered as a mean field.

With these assumptions, the magnetic induction equation is
solved for getting the evolution of the magnetic field in the
global solar corona. The induction equation in terms of vector
potential (A) is given as,
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Here A is the magnetic vector potential, ν is the magnetofric-
tional coefficient. The second term in the velocity profile mim-
ics the solar wind. The diffusivity profile is taken from Yeates
and Mackay [1].

Initial setup
The evolution equation (1) is solved on a three dimensional
(3D) domain representing the solar corona in both hemispheres,
where R� ≤ r ≤ 2.5R� , 60◦ ≤ θ ≤ 100◦, and 150◦ ≤ φ ≤
210◦. We have used finite difference scheme. The time-stepping
for our code is first-order euler method and slope calculations are
second order accurate with central-difference. The grid spacing
is uniform in this case with dr = 0.015R� , dθ = 0.33◦ and
dφ = 0.33◦. The number of grid points in each direction is
(101, 121, 181).

Figure 1: The shaded region shows the projection of our simulation box on
a scaled sphere.

The variables are defined on a staggered grid to avoid odd-even
decoupling. Vector potential (A) is defined on the cell ribs while
the magnetic field (B) is defined on the cell faces and the veloc-
ity is defined on the vertices. For numerical stability, CFL con-
dition is satisfied everywhere. This model uses Van-Leer slope
limiter [5] for constraining the areas of sharp gradients. We have
used the following boundary conditions for the model

1. The Sun being spherical, the longitudinal boundary is peri-
odic.

2. At the latitudinal boundaries, we have θ = 60◦ and θ = 100◦,
Bθ = 0.

3. At the top radial boundary (r = 2.5R�), field lines are open
because of the solar wind component.

The magnetic vector potential (A) is initialized using algebraic
functions in cartesian-like coordinate system as below [1]. In
this case the cartesian-like coordinate system and spherical co-
ordinate system are related as x = φ, y = −ln(tanθ/2) and
z = ln(r/R�). Here the parameters B0 (peak magnetic field
strength), ρ0 (half separation distance between poles of opposite
polarity) and β (twist in the bipolar region) are adjusted to setup
the input profile.
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The basic algorithm is to start off with a single bipole in the com-
putational grid and relax it to a force-free configuration. Using
the stress free configuration as input, evolve the active region
further to study the dynamics in response to photospheric driv-
ing.

Force-Free Evolution
Here we run the simulation to study the evolution of a bipo-
lar magnetic field configuration. The bipolar configuration is
allowed to relax towards a force-free equilibrium in a low-β en-
vironment.

Figure 2: Relaxation of the bipole is shown along a r − θ plane at longitude
φ = 80◦

Figure 3: Relaxation of the bipole is shown along a φ− θ plane at 1.015R�

Relaxation in response to Photospheric motion
Using the force-free state of the bipole as input for the simula-
tion, we evolve the bipole in response to a longitudinal velocity
profile. Due to the periodicity along longitudinal boundaries,
the bipole comes back into the computational domain, which is
clear from Figure- 4 & 5. Due to relaxation of field lines in
a magnetic environment, the current and magnetic energy gets
amplified in this process which is evident from Figure- 6.

Figure 4: Evolution of the bipole is shown along a r − θ plane at longitude
φ = 80◦

Figure 5: Evolution of the bipole is shown along a φ− θ plane at 1.015R�

Figure 6: Variation of Current in the photosphere and Magnetic energy in
the simulation domain during the simulation.

Future Work

Apart from simulating with synthetic data, we intend to make
our model data-driven. Currently, the model uses thread based
parallelization scheme. We plan to parallelize the model using
MPI to run more efficiently on a full scale cluster. We also plan
to carry out global simulations of solar corona for significant
fraction of a solar cycle.
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