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Introduction
The magnetic field dominated low-β solar corona self-evolves to min-
imize magnetic stresses in response to flux emergence and driving
by the high-β photospheric and sub-photospheric plasma. This dy-
namics lead to observed events like sigmoid, solar filament forma-
tion, solar flares, and coronal mass ejections [1] [2]. Shearing of
magnetic field lines, magnetic reconnection, helicity constraints and
magnetic relaxation dynamics all play important roles in these solar
processes that create adverse space environmental conditions which
define space weather. To understand the dynamics and evolution of
magnetized plasma in the Sun’s outer atmosphere we are developing
a magnetofrictional model [3] [4] for the solar corona. The mag-
netofriction approach assumes the plasma velocity (v) is governed
by the Lorentz force, only, in the low-β regime of the corona. The
effective frictional coefficient (ν) is a result of the assumption that a
fictitious force acts in the background to neutralize the plasma mo-
tion. Here we present the model description and some initial results of
a simulation in a small box which approximates a small portion of the
solar atmosphere containing a solar active region magnetic structure.

Magnetofrictional Approach
We solve the magnetic induction equation on a spherical grid (r, θ, φ)
such that r is the radial distance from the center of the sun, θ is the
co-latitude and φ is the azimuthal angle. The basic assumptions in our
model are :

1. The coronal field is in equilibrium in the time scale of large scale
surface motions.

2. In the solar corona, magnetic forces dominate over the plasma
forces (β � 1).

3. The magnetic field is considered as a mean field.

With these assumptions, the magnetic induction equation is solved
for getting the evolution of the magnetic field in the global solar
corona. The induction equation in terms of vector potential (A) is
given as,
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Here A is the magnetic vector potential, ν is the magnetofrictional
coefficient. The second term in the velocity profile mimics the solar
wind. The diffusivity profile is inspired from Yeates and Mackay [1].

Computational domain and Boundary conditions
The evolution equation (1) is solved on a three dimensional (3D)
domain representing the solar corona in both hemispheres, where
R� ≤ r ≤ 2.5R� , 60◦ ≤ θ ≤ 100◦, and 150◦ ≤ φ ≤ 210◦. We
have used finite difference scheme. The time-stepping for our code is
first-order euler method and slope calculations are second order accu-
rate with central-difference. The grid spacing is uniform in this case
with dr = 0.015R� , dθ = 0.33◦ and dφ = 0.33◦. The number of grid
points in each direction is (101, 121, 181).

Figure 1: The shaded region shows the lower boundary of our simulation box on a
scaled sphere.
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The variables are defined on a staggered grid to avoid odd-even de-
coupling. Vector potential (A) is defined on the cell ribs while the
magnetic field (B) is defined on the cell faces and the velocity is de-
fined on the vertices. For numerical stability, CFL condition is sat-
isfied everywhere. This model uses Van-Leer slope limiter [5] for
constraining the areas of sharp gradients. We have used the following
boundary conditions for the model

1. The Sun being spherical, the longitudinal boundary is periodic.

2. At the latitudinal boundaries, we have θ = 60◦ and θ = 100◦,
Bθ = 0.

3. At the top radial boundary (r = 2.5R�), field lines are open because
of the solar wind component.

The magnetic vector potential (A) is initialized using algebraic func-
tions in cartesian-like coordinate system as below [1]. In this case the
cartesian-like coordinate system and spherical coordinate system are
related as x = φ, y = −ln(tanθ/2) and z = ln(r/R�). Here the
parameters B0 (peak magnetic field strength), ρ0 (half separation dis-
tance between poles of opposite polarity) and β (twist in the bipolar
region) are adjusted to setup the input profile.

Ax = βB0e
0.5ze−2ξ

Ay = βB0e
0.5ρ0e

−ξ

Az = −βB0e
0.5xe−2ξ

The basic algorithm is to start off with a single bipole in the computa-
tional grid and relax it to a force-free configuration. Using the stress
free configuration as input, evolve the active region further to study
the dynamics in response to photospheric driving.

Force-Free Evolution
Here we run the simulation to study the evolution of a bipolar mag-
netic field configuration. The bipolar configuration is allowed to relax
towards a force-free equilibrium in a low-β environment.

Figure 2: Relaxation of the bipole is shown along a r−θ plane at longitude φ = 80◦

Figure 3: Relaxation of the bipole is shown along a φ− θ plane at 1.015R�

Relaxation in response to Photospheric motion
Using the force-free state of the bipole as input for the simulation, we
evolve the bipole in response to a longitudinal velocity profile. Due to
the periodicity along longitudinal boundaries, the bipole comes back
into the computational domain, which is clear from Figure- 4 & 5.
Due to relaxation of field lines in a magnetic environment, the current
and magnetic energy gets amplified in this process which is evident
from Figure- 6.

Figure 4: Evolution of the bipole is shown along a r− θ plane at longitude φ = 80◦

Figure 5: Evolution of the bipole is shown along a φ− θ plane at 1.015R�

Figure 6: Variation of Current in the photosphere and Magnetic energy in the sim-
ulation domain during the simulation.

Future Work

Apart from simulating with synthetic data, we intend to make our
model data-driven. Currently, the model uses multi-threading paral-
lelization scheme. We plan to parallelize the model using OpenMPI
to run more efficiently on a full scale cluster. We also plan to carry out
global simulations of solar corona for significant fraction of a solar
cycle.
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