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Implications

Matter is discretely (discontinuously)

distributed in space

→ Countable degrees of freedom

Boltzmann : entropy (irreversibility) →
probability ↔ countability

Einstein : Explicit proof of existence of

discreteness of matter (molecules) and their

statistical behaviour
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Legacy of the Quantum : Light Quantum Hypothesis

Maxwell equations

∇ · ~E =
N∑
I=1

eI δ
(3)(~r − ~̄r I (t))

∇× ~B =
∑
I

eI~vI δ
(3)(~r − ~̄r I (t)) +

∂~E

∂t

Einstein :
“... we make use of continuous spatial functions to determine the
electromagnetic state of space, so that a finite (countable) number of
quantities (charges) cannot be considered as sufficient for the
complete determination of the electromagnetic state of space.”
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Light Quantum Hypothesis : Einstein

“..the (wave) theory of light, operating with continuous
spatial functions, leads to contradictions when applied to
the phenomenon of emission (of light from matter : black
body radiation (Bose)) and transformation of light” (into
matter : photoelectric effect)

“According to the assumption (hypothesis)..., the energy
(of light) ... consists of a finite number of energy quanta
localized at points of space that move without dividing,
and can be absorbed or generated only as complete units.”

E = ~ ω , ~p = ~ ~k
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Quantum Electrodynamics : in a flash

Quantum Oscillator
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QED (free photons) : Many Uncoupled Oscillators
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QED : photons and electrons
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Incredible Precision

Major success of perturbative QFT

But how do we recover Classical E and B fields ?
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Quantum to classical oscillator : coherent states

â|α〉 = α|α〉

|α, t〉 =
∞∑
n=0

αne−[i(n+
1
2 )ωt+(|α|2/2)]
√
n!

|n〉

〈α, t|x̂(t)|α, t〉 = x0 cosωt

Minimum uncertainty states

∆x ∆p = ~
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Sudarshan-Glauber (coherent) States : Semiclassical QED

〈S |Ê(x)|S〉 = Ecl(x)

〈S |B̂(x)|S〉 = Bcl(x)

Continuum fields & classical electrodynamics emerge from
QED in the semicl approximation
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Legacy of the Continuum : Galilean Sptm (1+1 dim)

Equivalence class of positions for each instant of time
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Chasing Light : Sp Rel Sptm continuum (1+1 dim)

Hyperboloid : Equivalence class of events

Sptm geometry : non-Euclidean but flat (global)
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Chasing Light : under Gravity (using Principle of Equivalence)

Light in vacuum travels along curved paths under gravity

Light changes colour (frequency) under gravity

Light is massless ⇒ Sptm must be curved ! ?

In any lab, light travels in vacuum at 3× 105km/s

→ Spacetime is locally flat but globally curved
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Legacy of the Continuum : General Relativity

Can use light cones of SR locally; distant light cones have
relative tilt → sptm curvature
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Spacetime : Pseudo-Riemannian Geometry

Free particles and light rays follow extremal curved
trajectories (geodesics)

Gravitational Force originates from Curved Sptm
Geomtry
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What causes Sptm to curve ? Einstein’s equation

Gab = 8πGTab

sptm curvature = 8πG energymom density

Energy & momentum, not just mass, generates sptm
curvature

Sptm geometry is DYNAMICAL !

Matter tells sptm how to curve, sptm tells matter how
to move

Evidence of Dynamical Sptm : Gravitational waves,
Expanding Universe, Black Holes
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The Dichotomy between the Legacies

SR and GR as theories of Sptm : mathematically exact,
precise, fundamental, almost pristine
Quantum contributions : deep, but approximate, often
extensively statistical (tentative)
Einstein eq. : LHS → sptm curvature Rab − 1

2gabR →
smooth tensor field
RHS → energy momentum tensor → quantized
(fundamentally discrete, countable) !

N SR Point particle energy momentum tensor (classical)

T ab(x) =
N∑
I=1

mI

∫
dτuaI u

b
I δ

(4)(x − x̄I (τ))
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The Dichotomy between the Quantum and the Continuum

How can discrete bits of matter (energy and
momentum) produce a smooth, continuous sptm
geometry ?
Recall : critique of Maxwell Electrodynamics motivating
the LQH
Contradictions ? For LQH, Black Body Radiation suffers
from ‘UV Catastrophe’ classically
Observed features of Photoelectric Effect are classically
inexplicable

GR : Matter → Sptm geometry → Black Holes
GR : Sptm Geometry → Matter : Big Bang
Both are examples of Sptm singularities in GR !
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Sptm Singularities : Gravitational Collapse

Volume → 0⇒ (energy mom) density →∞ !!

Einstein eq. ⇒ sptm curvature →∞ !!!
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Sptm singularities : dire consequences

Familiar : Radiation reaction in classical ED ⇒ acausality
or preacceleration
Maxwell ED breaks down too close to sources ! Way out :
QED
Far worse here : breakdown of all laws of physics !

Raychaudhuri Eq : Sptm geometry illdefined at
singularity
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Further Conundrum : Black Hole Horizon
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Area Increase Theorem

Horizon area can never decrease : Hawking

Analogue of Second Law of thermodynamics : Ahor ↔ S

Mere analogue or more ? If more, microstates ?
Black hole : exact solution of Einstein eq. !
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Laws of Black Hole Mechanics : derived from GR

Acceleration due to gravity (‘surface gravity’) κhor →
constant on Horizon

δM = κhorδAhor + · · ·

Strengthens thermodyamic analogy : κhor ↔ T , M ↔ U

Thermodynamics needs microstructure ! Classical GR
cannot provide that

Bekenstein : Black holes must have Sbh ∝ Ahor ,
otherwise Second Law is in trouble !

Bekenstein : Microstates necessary for Black Hole
Entropy must originate from quantum GR !
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‘Black Hole Entropy Needs QGR’

Sbh = ξ kB
Ahor

AP

AP = l2P = 10−66 cm2 , ξ = O(1)

Planck length lP = (G~/c3)1/2 ' 10−33 cm→ ‘length
scale of quantum gravity’.

Since gravity is really sptm geometry, need to define
quantum sptm geometry (at least for black holes) !!

No complete theory yet !

Concrete proposals : Loop Quantum Gravity,
Causal Dynamical Triangulations, Spin Foams, ...
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LQG and Black Hole Entropy : Resolution of the Dichotomy

Canonical quantization of GR : not requiring classical
background sptm; non-perturbative

Space → discrete, oriented, closed network of links carrying spins
jl = 1/2, 1, 3/2, ....

Vertices : invariant SU(2) tensors.

Graph : quantum state of space in Spin network basis

Geom observables : bounded, discrete spectra
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Area Spectrum

ÂS ≡
N∑
I=1

∫
SI

det1/2[2g(Ê )]

a(j1, . . . , jN) = 8πγl2P

N∑
p=1

√
jp(jp + 1)

lim
N→∞

a(j1, ....jN) ≤ Acl + O(l2P) for jp ≤
k

2
Equispaced ∀jp = 1/2
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Quantum Black Hole (non-rotating)
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Horizon Description

SU(2) Chern-Simons gauge fields on horizon with
punctures carrying spin jI , I = 1, . . . ,N

Analogous to magnetic fields coupled to pointlike
magnetic charges : 3 different kinds

F i
abΨ = − k

2π

∑
p

aIH,ab(p) δ(2)(x , xp) J i(p)Ψ
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Black Hole Entropy

Count # of states of Chern-Simons quantum gauge
theory with total spin = 0
Dominant contribution from jl = 1/2 if Ahor >> AP

(macroscopic)

Sbh = SBH −
3

2
log SBH + O(S−1BH) , SBH = kB

Ahor

4AP

Systematic, finite corrections to Bekenstein-Hawking
entropy : signature of LQG
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It from Bit

Aplaq ∼ l2Pl : AH/Aplaq ≡ NH >> 1

N =
NH !

((NH/2)!)2
− NH !

(NH/2 + 1)!(NH/2− 1)!
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Hawking radiation

Hawking : Black holes radiate like a black body at temperature
THaw = ~κhor

Virtual eē pairs disintegrate near the horizon, some drift away
Hawking’s treatment : Semiclassical ! i.e., sptm classical,
matter-radiation quantal
If sptm is also quantized, is b h radiation still thermal ?
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Virtual eē pairs disintegrate near the horizon, some drift away
Hawking’s treatment : Semiclassical ! i.e., sptm classical,
matter-radiation quantal
If sptm is also quantized, is b h radiation still thermal ?

PM (RKMVU) IISER-K 5 November 2016 33 / 37



Hawking radiation

Hawking : Black holes radiate like a black body at temperature
THaw = ~κhor
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Coherent Black Hole Radiance ?

Recall Horizon Description : CS gauge fields coupled to
bulk spinnet (LQG)

F i
abΨ = − k

2π

∑
p

aIH,ab(p) δ(2)(x , xp) J i(p)Ψ

Modify RHS : couple bulk matter QFT to horizon CS
gauge theory
Since interactions are only between pure quantum
states, any radiation should be coherent !
Speculate : coarse-graining (averaging) over
horizon states ⇒ Thermal radiation
If so : resolution of Information Loss Puzzle !
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Fundamental Constants and Theories in Physics

G ⇒ Newtonian Gravity; c ⇒ Sp Rel; ~⇒ Non Rel
Quant Mech

G , c as in 2GM/c2 ⇒ Gen Rel; ~, e, c as in
α = e2/~c ⇒ SR Quant Electrodyn

Masses : electron → Yukawa couplings in EW Theory;
proton → ΛQCD in QCD

What about a formula involving G , c , ~,ΛQCD ?
Does this occur in Physics ?
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Origin of Stellar masses (S Chandrasekhar, Nobel Lecture 1983)

M∗ = ξ

(
c~
G

)3/2
1

m2
proton

= ξ

(
MP

ΛQCD

)2

MP , ξ ∼ 20− 30

‘...the combination of natural constants (above), providing a mass of
proper magnitude for the measurement of stellar masses, is at the
base of a physical theory of stellar structure.’

Intricate interplay between QCD and Quantum Gravity !?

Strong implications for theory of neutron star masses : std
approaches tend to ignore this interplay !

Current Interest : Black hole entropic approach to critical NS
mass

PM (RKMVU) IISER-K 5 November 2016 36 / 37



Origin of Stellar masses (S Chandrasekhar, Nobel Lecture 1983)

M∗ = ξ

(
c~
G

)3/2
1

m2
proton

= ξ

(
MP

ΛQCD

)2

MP , ξ ∼ 20− 30

‘...the combination of natural constants (above), providing a mass of
proper magnitude for the measurement of stellar masses, is at the
base of a physical theory of stellar structure.’

Intricate interplay between QCD and Quantum Gravity !?

Strong implications for theory of neutron star masses : std
approaches tend to ignore this interplay !

Current Interest : Black hole entropic approach to critical NS
mass

PM (RKMVU) IISER-K 5 November 2016 36 / 37



Origin of Stellar masses (S Chandrasekhar, Nobel Lecture 1983)

M∗ = ξ

(
c~
G

)3/2
1

m2
proton

= ξ

(
MP

ΛQCD

)2

MP , ξ ∼ 20− 30

‘...the combination of natural constants (above), providing a mass of
proper magnitude for the measurement of stellar masses, is at the
base of a physical theory of stellar structure.’

Intricate interplay between QCD and Quantum Gravity !?

Strong implications for theory of neutron star masses : std
approaches tend to ignore this interplay !

Current Interest : Black hole entropic approach to critical NS
mass

PM (RKMVU) IISER-K 5 November 2016 36 / 37



Origin of Stellar masses (S Chandrasekhar, Nobel Lecture 1983)

M∗ = ξ

(
c~
G

)3/2
1

m2
proton

= ξ

(
MP

ΛQCD

)2

MP , ξ ∼ 20− 30

‘...the combination of natural constants (above), providing a mass of
proper magnitude for the measurement of stellar masses, is at the
base of a physical theory of stellar structure.’

Intricate interplay between QCD and Quantum Gravity !?

Strong implications for theory of neutron star masses : std
approaches tend to ignore this interplay !

Current Interest : Black hole entropic approach to critical NS
mass

PM (RKMVU) IISER-K 5 November 2016 36 / 37



Origin of Stellar masses (S Chandrasekhar, Nobel Lecture 1983)

M∗ = ξ

(
c~
G

)3/2
1

m2
proton

= ξ

(
MP

ΛQCD

)2

MP , ξ ∼ 20− 30

‘...the combination of natural constants (above), providing a mass of
proper magnitude for the measurement of stellar masses, is at the
base of a physical theory of stellar structure.’

Intricate interplay between QCD and Quantum Gravity !?

Strong implications for theory of neutron star masses : std
approaches tend to ignore this interplay !

Current Interest : Black hole entropic approach to critical NS
mass

PM (RKMVU) IISER-K 5 November 2016 36 / 37



Origin of Stellar masses (S Chandrasekhar, Nobel Lecture 1983)

M∗ = ξ

(
c~
G

)3/2
1

m2
proton

= ξ

(
MP

ΛQCD

)2

MP , ξ ∼ 20− 30

‘...the combination of natural constants (above), providing a mass of
proper magnitude for the measurement of stellar masses, is at the
base of a physical theory of stellar structure.’

Intricate interplay between QCD and Quantum Gravity !?

Strong implications for theory of neutron star masses : std
approaches tend to ignore this interplay !

Current Interest : Black hole entropic approach to critical NS
mass

PM (RKMVU) IISER-K 5 November 2016 36 / 37



Outlook

LQG Corrections ⇒ criterion for thermal stability of
radiant black holes

Black Hole singularity resolution : in progress

LQ Cosmology : BB singularity replaced by bounce in
minisuperspace models

Speculation : Resolution of Information Loss Puzzle
may not be out of reach

Conclude : quantum space is discrete and has
statistical properties (entropy)

Einsteinian sptm continuum is emergent !
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