The Quantum and the Continuum : Einstein's Dichotomous Legacies

Talk at : Current Trends in Modern Physics, IISER Kolkata

Parthasarathi Majumdar

Department of Physics
Ramakrishna Mission Vivekananda University Belur, West Bengal, India

November 5, 2016

Legacy of the Quantum : Brownian Motion

Legacy of the Quantum : Brownian Motion

Legacy of the Quantum : Brownian Motion

Legacy of the Quantum : Brownian Motion

Legacy of the Quantum : Brownian Motion

Einstein's formula

Legacy of the Quantum : Brownian Motion

Einstein's formula

$$
\left\langle x^{2}\right\rangle_{t}=\frac{k T}{3 \pi \eta r} t
$$

Implications

■ Matter is discretely (discontinuously) distributed in space

Implications

$■$ Matter is discretely (discontinuously) distributed in space
$■ \rightarrow$ Countable degrees of freedom

Implications

$■$ Matter is discretely (discontinuously) distributed in space
$\square \rightarrow$ Countable degrees of freedom
■ Boltzmann : entropy (irreversibility) \rightarrow probability \leftrightarrow countability

Implications

■ Matter is discretely (discontinuously) distributed in space
$\square \rightarrow$ Countable degrees of freedom
■ Boltzmann : entropy (irreversibility) \rightarrow probability \leftrightarrow countability
■ Einstein: Explicit proof of existence of discreteness of matter (molecules) and their statistical behaviour

Legacy of the Quantum : Light Quantum Hypothesis

Legacy of the Quantum : Light Quantum Hypothesis
 Maxwell equations

Legacy of the Quantum : Light Quantum Hypothesis

Maxwell equations

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\sum_{l=1}^{N} e_{l} \delta^{(3)}\left(\vec{r}-\vec{r}_{l}(t)\right) \\
\nabla \times \vec{B} & =\sum_{l} e_{l} \vec{v}_{l} \delta^{(3)}\left(\vec{r}-\vec{r}_{l}(t)\right)+\frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

Legacy of the Quantum : Light Quantum Hypothesis

Maxwell equations

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\sum_{l=1}^{N} e_{l} \delta^{(3)}\left(\vec{r}-\vec{r}_{l}(t)\right) \\
\nabla \times \vec{B} & =\sum_{l} e_{l} \vec{V}_{l} \delta^{(3)}\left(\vec{r}-\vec{r}_{l}(t)\right)+\frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

Einstein :

"... we make use of continuous spatial functions to determine the electromagnetic state of space, so that a finite (countable) number of quantities (charges) cannot be considered as sufficient for the complete determination of the electromagnetic state of space."

Light Quantum Hypothesis : Einstein

Light Quantum Hypothesis : Einstein

"..the (wave) theory of light, operating with continuous spatial functions, leads to contradictions when applied to the phenomenon of emission (of light from matter: black body radiation (Bose)) and transformation of light" (into matter : photoelectric effect)

Light Quantum Hypothesis : Einstein

"..the (wave) theory of light, operating with continuous spatial functions, leads to contradictions when applied to the phenomenon of emission (of light from matter : black body radiation (Bose)) and transformation of light" (into matter : photoelectric effect)
"According to the assumption (hypothesis)..., the energy (of light) ... consists of a finite number of energy quanta localized at points of space that move without dividing, and can be absorbed or generated only as complete units."

Light Quantum Hypothesis : Einstein

"..the (wave) theory of light, operating with continuous spatial functions, leads to contradictions when applied to the phenomenon of emission (of light from matter: black body radiation (Bose)) and transformation of light" (into matter : photoelectric effect)
"According to the assumption (hypothesis)..., the energy (of light) ... consists of a finite number of energy quanta localized at points of space that move without dividing, and can be absorbed or generated only as complete units."

$$
\mathcal{E}=\hbar \omega, \vec{p}=\hbar \vec{k}
$$

Quantum Electrodynamics : in a flash

Quantum Electrodynamics : in a flash

Quantum Oscillator

QED (free photons) : Many Uncoupled Oscillators

QED (free photons) : Many Uncoupled Oscillators

QED : photons and electrons

QED : photons and electrons

Incredible Precision

Incredible Precision

$$
\begin{aligned}
a_{\mathrm{e}} & =\left(\frac{g-2}{2}\right)_{\mathrm{e}}^{Q \mathrm{QD}}=0.5 \frac{\alpha}{\pi}-0.32848\left(\frac{\alpha}{\pi}\right)^{2}+1.19\left(\frac{\alpha}{\pi}\right)^{3} \cdots \\
& =(1159652.4 \pm 0.4) \times 10^{-9} \\
a_{\mu} & =\left(\frac{g-2}{2}\right)_{\mu}^{Q D D}=0.5 \frac{\alpha}{\pi}+0.76578\left(\frac{\alpha}{\pi}\right)^{2}+24.45\left(\frac{\alpha}{\pi}\right)^{3} \ldots \\
& =(1165851.7 \pm 23) \times 10^{-9}
\end{aligned}
$$

Incredible Precision

$$
\begin{aligned}
a_{e} & =\left(\frac{g-2}{2}\right)_{e}^{Q E D}=0.5 \frac{\alpha}{\pi}-0.32848\left(\frac{\alpha}{\pi}\right)^{2}+1.19\left(\frac{\alpha}{\pi}\right)^{3} \ldots \\
& =(1159652.4 \pm 0.4) \times 10^{-9} \\
a_{\mu} & =\left(\frac{g-2}{2}\right)_{\mu}^{Q D D}=0.5 \frac{\alpha}{\pi}+0.76578\left(\frac{\alpha}{\pi}\right)^{2}+24.45\left(\frac{\alpha}{\pi}\right)^{3} \ldots \\
& =(1165851.7 \pm 23) \times 10^{-9}
\end{aligned}
$$

Major success of perturbative QFT

Incredible Precision

$$
\begin{aligned}
a_{\mathrm{e}} & =\left(\frac{g-2}{2}\right)_{e}^{\mathrm{QED}}=0 . \frac{\alpha}{\pi}-0.32848\left(\frac{\alpha}{\pi}\right)^{2}+1.19\left(\frac{\alpha}{\pi}\right)^{3} \ldots \\
& =(1159652.4 \pm 0.4) \times 10^{-9} \\
a_{\mu} & =\left(\frac{g-2}{2}\right)_{\mu}^{\mathrm{QDD}}=0.5 \frac{\alpha}{\pi}+0.76578\left(\frac{\alpha}{\pi}\right)^{2}+24.45\left(\frac{\alpha}{\pi}\right)^{3} \cdots \\
& =(1165851.7 \pm 2.3) \times 10^{-9}
\end{aligned}
$$

Major success of perturbative QFT

But how do we recover Classical \mathbf{E} and \mathbf{B} fields ?

Quantum to classical oscillator : coherent states

Quantum to classical oscillator : coherent states

$$
\begin{aligned}
\hat{a}|\alpha\rangle & =\alpha|\alpha\rangle \\
|\alpha, t\rangle & =\sum_{n=0}^{\infty} \frac{\alpha^{n} e^{-\left[i\left(n+\frac{1}{2}\right) \omega t+\left(|\alpha|^{2} / 2\right)\right]}}{\sqrt{n!}}|n\rangle \\
\langle\alpha, t| \hat{x}(t)|\alpha, t\rangle & =x_{0} \cos \omega t
\end{aligned}
$$

Quantum to classical oscillator : coherent states

$$
\begin{aligned}
\hat{a}|\alpha\rangle & =\alpha|\alpha\rangle \\
|\alpha, t\rangle & =\sum_{n=0}^{\infty} \frac{\alpha^{n} e^{-\left[i\left(n+\frac{1}{2}\right) \omega t+\left(|\alpha|^{2} / 2\right)\right]}}{\sqrt{n!}}|n\rangle \\
\langle\alpha, t| \hat{x}(t)|\alpha, t\rangle & =x_{0} \cos \omega t
\end{aligned}
$$

Minimum uncertainty states

$$
\Delta x \Delta p=\hbar
$$

Sudarshan-Glauber (coherent) States : Semiclassical QED

Sudarshan-Glauber (coherent) States: Semiclassical QED

Sudarshan-Glauber (coherent) States: Semiclassical QED

$$
\begin{aligned}
\langle S| \hat{\mathbf{E}}(x)|S\rangle & =\mathbf{E}_{c l}(x) \\
\langle S| \hat{\mathbf{B}}(x)|S\rangle & =\mathbf{B}_{c l}(x)
\end{aligned}
$$

Sudarshan-Glauber (coherent) States: Semiclassical QED

$$
\begin{aligned}
\langle S| \hat{\mathbf{E}}(x)|S\rangle & =\mathbf{E}_{c l}(x) \\
\langle S| \hat{\mathbf{B}}(x)|S\rangle & =\mathbf{B}_{c l}(x)
\end{aligned}
$$

Continuum fields \& classical electrodynamics emerge from QED in the semicl approximation

Legacy of the Continuum : Galilean Sptm (1+1 dim)

Equivalence class of positions for each instant of time

Chasing Light : Sp Rel Sptm continuum (1+1 dim)

Hyperboloid: Equivalence class of events

Chasing Light : Sp Rel Sptm continuum (1+1 dim)

Hyperboloid: Equivalence class of events
Sptm geometry : non-Euclidean but flat (global)

Chasing Light : under Gravity (using Principle of Equivalence)

Chasing Light : under Gravity (using Principle of Equivalence)

Chasing Light : under Gravity (using Principle of Equivalence)

- Light in vacuum travels along curved paths under gravity

Chasing Light : under Gravity (using Principle of Equivalence)

- Light in vacuum travels along curved paths under gravity
- Light changes colour (frequency) under gravity

Chasing Light : under Gravity (using Principle of Equivalence)

- Light in vacuum travels along curved paths under gravity
- Light changes colour (frequency) under gravity
- Light is massless \Rightarrow Sptm must be curved!?

Chasing Light : under Gravity (using Principle of Equivalence)

- Light in vacuum travels along curved paths under gravity
- Light changes colour (frequency) under gravity
- Light is massless \Rightarrow Sptm must be curved!?
- In any lab, light travels in vacuum at $3 \times 10^{5} \mathrm{~km} / \mathrm{s}$

Chasing Light : under Gravity (using Principle of Equivalence)

- Light in vacuum travels along curved paths under gravity
- Light changes colour (frequency) under gravity
- Light is massless \Rightarrow Sptm must be curved!?
- In any lab, light travels in vacuum at $3 \times 10^{5} \mathrm{~km} / \mathrm{s}$
$\square \rightarrow$ Spacetime is locally flat but globally curved

Legacy of the Continuum : General Relativity

Legacy of the Continuum : General Relativity

Can use light cones of SR locally; distant light cones have relative tilt \rightarrow sptm curvature

Legacy of the Continuum : General Relativity

Can use light cones of SR locally; distant light cones have relative tilt \rightarrow sptm curvature

Spacetime : Pseudo-Riemannian Geometry

Spacetime : Pseudo-Riemannian Geometry

Free particles and light rays follow extremal curved trajectories (geodesics)

Spacetime : Pseudo-Riemannian Geometry

Free particles and light rays follow extremal curved trajectories (geodesics)

Spacetime : Pseudo-Riemannian Geometry

Free particles and light rays follow extremal curved trajectories (geodesics)

Gravitational Force originates from Curved Sptm

What causes Sptm to curve ? Einstein's equation

What causes Sptm to curve ? Einstein's equation

$$
\begin{aligned}
\mathcal{G}_{a b} & =8 \pi G T_{a b} \\
\text { sptm curvature } & =8 \pi G \text { energymom density }
\end{aligned}
$$

What causes Sptm to curve ? Einstein's equation

$$
\begin{aligned}
\mathcal{G}_{a b} & =8 \pi G T_{a b} \\
\text { sptm curvature } & =8 \pi G \text { energymom density }
\end{aligned}
$$

■ Energy \& momentum, not just mass, generates sptm curvature

What causes Sptm to curve ? Einstein's equation

$$
\begin{aligned}
\mathcal{G}_{a b} & =8 \pi G T_{a b} \\
\text { sptm curvature } & =8 \pi G \text { energymom density }
\end{aligned}
$$

■ Energy \& momentum, not just mass, generates sptm curvature
■ Sptm geometry is DYNAMICAL!

What causes Sptm to curve ? Einstein's equation

$$
\begin{aligned}
\mathcal{G}_{a b} & =8 \pi G T_{a b} \\
\text { sptm curvature } & =8 \pi G \text { energymom density }
\end{aligned}
$$

■ Energy \& momentum, not just mass, generates sptm curvature
$■$ Sptm geometry is DYNAMICAL!
■ Matter tells sptm how to curve, sptm tells matter how to move

What causes Sptm to curve ? Einstein's equation

$$
\mathcal{G}_{a b}=8 \pi G T_{a b}
$$

sptm curvature $=8 \pi G$ energymom density

■ Energy \& momentum, not just mass, generates sptm curvature

■ Sptm geometry is DYNAMICAL!
■ Matter tells sptm how to curve, sptm tells matter how to move
Evidence of Dynamical Sptm : Gravitational waves, Expanding Universe, Black Holes

The Dichotomy between the Legacies

The Dichotomy between the Legacies

SR and GR as theories of Sptm : mathematically exact, precise, fundamental, almost pristine

The Dichotomy between the Legacies

SR and GR as theories of Sptm : mathematically exact, precise, fundamental, almost pristine Quantum contributions : deep, but approximate, often extensively statistical (tentative)

The Dichotomy between the Legacies

SR and GR as theories of Sptm : mathematically exact, precise, fundamental, almost pristine Quantum contributions : deep, but approximate, often extensively statistical (tentative)
Einstein eq. : LHS \rightarrow sptm curvature $R_{a b}-\frac{1}{2} g_{a b} R \rightarrow$ smooth tensor field

The Dichotomy between the Legacies

SR and GR as theories of Sptm : mathematically exact, precise, fundamental, almost pristine Quantum contributions : deep, but approximate, often extensively statistical (tentative)
Einstein eq. : LHS \rightarrow sptm curvature $R_{a b}-\frac{1}{2} g_{a b} R \rightarrow$ smooth tensor field
RHS \rightarrow energy momentum tensor \rightarrow quantized (fundamentally discrete, countable) !

The Dichotomy between the Legacies

SR and GR as theories of Sptm : mathematically exact, precise, fundamental, almost pristine Quantum contributions : deep, but approximate, often extensively statistical (tentative)
Einstein eq. : LHS \rightarrow sptm curvature $R_{a b}-\frac{1}{2} g_{a b} R \rightarrow$ smooth tensor field
RHS \rightarrow energy momentum tensor \rightarrow quantized (fundamentally discrete, countable) !
N SR Point particle energy momentum tensor (classical)

$$
T^{a b}(x)=\sum_{l=1}^{N} m_{l} \int d \tau u_{l}^{a} u_{l}^{b} \delta^{(4)}\left(x-\bar{x}_{l}(\tau)\right)
$$

The Dichotomy between the Quantum and the Continuum

The Dichotomy between the Quantum and the Continuum

 How can discrete bits of matter (energy and momentum) produce a smooth, continuous sptm geometry ?
The Dichotomy between the Quantum and the Continuum

 How can discrete bits of matter (energy and momentum) produce a smooth, continuous sptm geometry ?Recall : critique of Maxwell Electrodynamics motivating the LQH

The Dichotomy between the Quantum and the Continuum

 How can discrete bits of matter (energy and momentum) produce a smooth, continuous sptm geometry ?Recall : critique of Maxwell Electrodynamics motivating the LQH
Contradictions ? For LQH, Black Body Radiation suffers from 'UV Catastrophe' classically

The Dichotomy between the Quantum and the Continuum

 How can discrete bits of matter (energy and momentum) produce a smooth, continuous sptm geometry ?Recall : critique of Maxwell Electrodynamics motivating the LQH
Contradictions ? For LQH, Black Body Radiation suffers from 'UV Catastrophe' classically
Observed features of Photoelectric Effect are classically inexplicable

The Dichotomy between the Quantum and the Continuum

 How can discrete bits of matter (energy and momentum) produce a smooth, continuous sptm geometry ?Recall : critique of Maxwell Electrodynamics motivating the LQH
Contradictions ? For LQH, Black Body Radiation suffers from 'UV Catastrophe' classically
Observed features of Photoelectric Effect are classically inexplicable
GR : Matter \rightarrow Sptm geometry \rightarrow Black Holes

The Dichotomy between the Quantum and the Continuum

 How can discrete bits of matter (energy and momentum) produce a smooth, continuous sptm geometry ?Recall : critique of Maxwell Electrodynamics motivating the LQH
Contradictions ? For LQH, Black Body Radiation suffers from 'UV Catastrophe' classically
Observed features of Photoelectric Effect are classically inexplicable
GR : Matter \rightarrow Sptm geometry \rightarrow Black Holes GR : Sptm Geometry \rightarrow Matter : Big Bang

The Dichotomy between the Quantum and the Continuum

 How can discrete bits of matter (energy and momentum) produce a smooth, continuous sptm geometry ?Recall : critique of Maxwell Electrodynamics motivating the LQH
Contradictions ? For LQH, Black Body Radiation suffers from 'UV Catastrophe' classically
Observed features of Photoelectric Effect are classically inexplicable
GR : Matter \rightarrow Sptm geometry \rightarrow Black Holes GR : Sptm Geometry \rightarrow Matter: Big Bang Both are examples of Sptm singularities in GR!

Sptm Singularities : Gravitational Collapse

Sptm Singularities : Gravitational Collapse

Volume $\rightarrow 0 \Rightarrow$ (energy mom) density $\rightarrow \infty$!!

Sptm Singularities : Gravitational Collapse

$$
K<\Delta|\triangle| \ggg>\|+
$$

Volume $\rightarrow 0 \Rightarrow$ (energy mom) density $\rightarrow \infty$!!
Einstein eq. \Rightarrow sptm curvature $\rightarrow \infty$!!!

Sptm singularities : dire consequences

Sptm singularities : dire consequences

Familiar : Radiation reaction in classical ED \Rightarrow acausality or preacceleration

Sptm singularities : dire consequences

Familiar : Radiation reaction in classical ED \Rightarrow acausality or preacceleration
Maxwell ED breaks down too close to sources! Way out : QED

Sptm singularities : dire consequences

Familiar : Radiation reaction in classical ED \Rightarrow acausality or preacceleration
Maxwell ED breaks down too close to sources! Way out : QED
Far worse here : breakdown of all laws of physics !

Sptm singularities : dire consequences

Familiar : Radiation reaction in classical ED \Rightarrow acausality or preacceleration
Maxwell ED breaks down too close to sources! Way out : QED
Far worse here : breakdown of all laws of physics !

Sptm singularities : dire consequences

Familiar : Radiation reaction in classical ED \Rightarrow acausality or preacceleration
Maxwell ED breaks down too close to sources! Way out : QED
Far worse here : breakdown of all laws of physics !

Raychaudhuri Eq : Sptm geometry illdefined at singularity

Further Conundrum : Black Hole Horizon

Further Conundrum : Black Hole Horizon

Area Increase Theorem

Area Increase Theorem

Area Increase Theorem

Horizon area can never decrease : Hawking

Area Increase Theorem

Horizon area can never decrease : Hawking

 Analogue of Second Law of thermodynamics: $A_{\text {hor }} \leftrightarrow S$
Area Increase Theorem

Horizon area can never decrease : Hawking

Analogue of Second Law of thermodynamics: $A_{\text {hor }} \leftrightarrow S$ Mere analogue or more ? If more, microstates ?

Area Increase Theorem

Horizon area can never decrease : Hawking
Analogue of Second Law of thermodynamics: $A_{\text {hor }} \leftrightarrow S$ Mere analogue or more ? If more, microstates ? Black hole : exact solution of Einstein eq. !

Laws of Black Hole Mechanics : derived from GR

Laws of Black Hole Mechanics : derived from GR

Acceleration due to gravity ('surface gravity') $\kappa_{\text {hor }} \rightarrow$ constant on Horizon

Laws of Black Hole Mechanics : derived from GR

Acceleration due to gravity ('surface gravity') $\kappa_{\text {hor }} \rightarrow$ constant on Horizon

$$
\delta M=\kappa_{\text {hor }} \delta A_{\text {hor }}+\cdots
$$

Laws of Black Hole Mechanics : derived from GR

Acceleration due to gravity ('surface gravity') $\kappa_{\text {hor }} \rightarrow$ constant on Horizon

$$
\delta M=\kappa_{\text {hor }} \delta A_{\text {hor }}+\cdots
$$

Strengthens thermodyamic analogy: $\kappa_{\text {hor }} \leftrightarrow T, M \leftrightarrow U$

Laws of Black Hole Mechanics : derived from GR

Acceleration due to gravity ('surface gravity') $\kappa_{\text {hor }} \rightarrow$ constant on Horizon

$$
\delta M=\kappa_{\text {hor }} \delta A_{\text {hor }}+\cdots
$$

Strengthens thermodyamic analogy: $\kappa_{\text {hor }} \leftrightarrow T, M \leftrightarrow U$ Thermodynamics needs microstructure! Classical GR cannot provide that

Laws of Black Hole Mechanics : derived from GR

Acceleration due to gravity ('surface gravity') $\kappa_{\text {hor }} \rightarrow$ constant on Horizon

$$
\delta M=\kappa_{\text {hor }} \delta A_{\text {hor }}+\cdots
$$

Strengthens thermodyamic analogy: $\kappa_{\text {hor }} \leftrightarrow T, M \leftrightarrow U$ Thermodynamics needs microstructure! Classical GR cannot provide that
Bekenstein : Black holes must have $S_{b h} \propto A_{h o r}$, otherwise Second Law is in trouble!

Laws of Black Hole Mechanics : derived from GR

Acceleration due to gravity ('surface gravity') $\kappa_{\text {hor }} \rightarrow$ constant on Horizon

$$
\delta M=\kappa_{\text {hor }} \delta A_{\text {hor }}+\cdots
$$

Strengthens thermodyamic analogy: $\kappa_{\text {hor }} \leftrightarrow T, M \leftrightarrow U$ Thermodynamics needs microstructure! Classical GR cannot provide that
Bekenstein : Black holes must have $S_{b h} \propto A_{h o r}$, otherwise Second Law is in trouble!
Bekenstein: Microstates necessary for Black Hole Entropy must originate from quantum GR !

'Black Hole Entropy Needs QGR'

'Black Hole Entropy Needs QGR'

$$
\begin{aligned}
& S_{b h}=\xi k_{B} \frac{A_{h o r}}{A_{P}} \\
& A_{P}=I_{P}^{2}=10^{-66} \mathrm{~cm}^{2}, \xi=O(1)
\end{aligned}
$$

'Black Hole Entropy Needs QGR'

$$
\begin{aligned}
S_{b h} & =\xi k_{B} \frac{A_{h o r}}{A_{P}} \\
A_{P} & =I_{P}^{2}=10^{-66} \mathrm{~cm}^{2}, \xi=O(1)
\end{aligned}
$$

Planck length $I_{P}=\left(G \hbar / c^{3}\right)^{1 / 2} \simeq 10^{-33} \mathrm{~cm} \rightarrow$ 'length scale of quantum gravity'.

'Black Hole Entropy Needs QGR'

$$
\begin{aligned}
S_{b h} & =\xi k_{B} \frac{A_{h o r}}{A_{P}} \\
A_{P} & =I_{P}^{2}=10^{-66} \mathrm{~cm}^{2}, \xi=O(1)
\end{aligned}
$$

Planck length $I_{P}=\left(G \hbar / c^{3}\right)^{1 / 2} \simeq 10^{-33} \mathrm{~cm} \rightarrow$ 'length scale of quantum gravity'.

Since gravity is really sptm geometry, need to define quantum sptm geometry (at least for black holes) !!

'Black Hole Entropy Needs QGR'

$$
\begin{aligned}
S_{b h} & =\xi k_{B} \frac{A_{h o r}}{A_{P}} \\
A_{P} & =I_{P}^{2}=10^{-66} \mathrm{~cm}^{2}, \xi=O(1)
\end{aligned}
$$

Planck length $I_{P}=\left(G \hbar / c^{3}\right)^{1 / 2} \simeq 10^{-33} \mathrm{~cm} \rightarrow$ 'length scale of quantum gravity'.

Since gravity is really sptm geometry, need to define quantum sptm geometry (at least for black holes) !!
No complete theory yet !

'Black Hole Entropy Needs QGR'

$$
\begin{aligned}
S_{b h} & =\xi k_{B} \frac{A_{h o r}}{A_{P}} \\
A_{P} & =I_{P}^{2}=10^{-66} \mathrm{~cm}^{2}, \xi=O(1)
\end{aligned}
$$

Planck length $I_{P}=\left(G \hbar / c^{3}\right)^{1 / 2} \simeq 10^{-33} \mathrm{~cm} \rightarrow$ 'length scale of quantum gravity'.

Since gravity is really sptm geometry, need to define quantum sptm geometry (at least for black holes) !!
No complete theory yet !
Concrete proposals : Loop Quantum Gravity, Causal Dynamical Triangulations, Spin Foams, ...

LQG and Black Hole Entropy : Resolution of the Dichotomy

LQG and Black Hole Entropy : Resolution of the Dichotomy

Canonical quantization of GR : not requiring classical background sptm; non-perturbative

LQG and Black Hole Entropy : Resolution of the Dichotomy

Canonical quantization of GR : not requiring classical background sptm; non-perturbative

LQG and Black Hole Entropy : Resolution of the Dichotomy

Canonical quantization of GR : not requiring classical background sptm; non-perturbative

■ Space \rightarrow discrete, oriented, closed network of links carrying spins $j_{l}=1 / 2,1,3 / 2, \ldots$

LQG and Black Hole Entropy : Resolution of the Dichotomy

Canonical quantization of GR : not requiring classical background sptm; non-perturbative

■ Space \rightarrow discrete, oriented, closed network of links carrying spins $j_{l}=1 / 2,1,3 / 2, \ldots$
■ Vertices : invariant $S U(2)$ tensors.

LQG and Black Hole Entropy : Resolution of the Dichotomy

Canonical quantization of GR : not requiring classical background sptm; non-perturbative

■ Space \rightarrow discrete, oriented, closed network of links carrying spins $j_{l}=1 / 2,1,3 / 2, \ldots$
■ Vertices : invariant $S U(2)$ tensors.
■ Graph : quantum state of space in Spin network basis

LQG and Black Hole Entropy : Resolution of the Dichotomy

Canonical quantization of GR : not requiring classical background sptm; non-perturbative

■ Space \rightarrow discrete, oriented, closed network of links carrying spins $j_{l}=1 / 2,1,3 / 2, \ldots$
■ Vertices : invariant $S U(2)$ tensors.
■ Graph : quantum state of space in Spin network basis
■ Geom observables : bounded, discrete spectra

Area Spectrum

Area Spectrum

Area Spectrum

$$
\begin{aligned}
\hat{\mathcal{A}}_{S} & \equiv \sum_{l=1}^{N} \int_{S_{l}} \operatorname{det}^{1 / 2}\left[{ }^{2} g(\hat{E})\right] \\
a\left(j_{1}, \ldots, j_{N}\right) & =\left.8 \pi \gamma\right|_{P} ^{2} \sum_{p=1}^{N} \sqrt{j_{p}\left(j_{p}+1\right)} \\
\lim _{N \rightarrow \infty} a\left(j_{1}, \ldots . j_{N}\right) & \leq \mathcal{A}_{c l}+O\left(l_{P}^{2}\right) \text { for } j_{p} \leq \frac{k}{2}
\end{aligned}
$$

Quantum Black Hole (non-rotating)

Quantum Black Hole (non-rotating)

Horizon Description

Horizon Description

■ SU(2) Chern-Simons gauge fields on horizon with punctures carrying spin $j_{I}, I=1, \ldots, N$

Horizon Description

■ SU(2) Chern-Simons gauge fields on horizon with punctures carrying spin $j_{\prime}, I=1, \ldots, N$
■ Analogous to magnetic fields coupled to pointlike magnetic charges: 3 different kinds

Horizon Description

■ SU(2) Chern-Simons gauge fields on horizon with punctures carrying spin $j_{ı}, I=1, \ldots, N$
■ Analogous to magnetic fields coupled to pointlike magnetic charges: 3 different kinds

$$
F_{a b}^{i} \Psi=-\frac{k}{2 \pi} \sum_{p} a_{l H, a b}(p) \delta^{(2)}\left(x, x_{p}\right) J_{(p)}^{i} \psi
$$

Black Hole Entropy

Black Hole Entropy
 Count \# of states of Chern-Simons quantum gauge theory with total spin $=0$

Black Hole Entropy

Count \# of states of Chern-Simons quantum gauge theory with total spin $=0$
Dominant contribution from $j_{l}=1 / 2$ if $A_{\text {hor }} \gg A_{P}$ (macroscopic)

Black Hole Entropy

Count \# of states of Chern-Simons quantum gauge theory with total spin $=0$
Dominant contribution from $j_{l}=1 / 2$ if $A_{\text {hor }} \gg A_{P}$ (macroscopic)

$$
S_{b h}=S_{B H}-\frac{3}{2} \log S_{B H}+O\left(S_{B H}^{-1}\right), S_{B H}=k_{B} \frac{A_{h o r}}{4 A_{P}}
$$

Black Hole Entropy

Count \# of states of Chern-Simons quantum gauge theory with total spin $=0$
Dominant contribution from $j_{l}=1 / 2$ if $A_{\text {hor }} \gg A_{P}$ (macroscopic)

$$
S_{b h}=S_{B H}-\frac{3}{2} \log S_{B H}+O\left(S_{B H}^{-1}\right), S_{B H}=k_{B} \frac{A_{h o r}}{4 A_{P}}
$$

Systematic, finite corrections to Bekenstein-Hawking entropy : signature of LQG

It from Bit

It from Bit

$A_{\text {plaq }} \sim I_{P I}^{2}: A_{H} / A_{\text {plaq }} \equiv N_{H} \gg 1$

It from Bit

$A_{\text {plaq }} \sim I_{P I}^{2}: A_{H} / A_{\text {plaq }} \equiv N_{H} \gg 1$

$$
\mathcal{N}=\frac{N_{H}!}{\left(\left(N_{H} / 2\right)!\right)^{2}}-\frac{N_{H}!}{\left(N_{H} / 2+1\right)!\left(N_{H} / 2-1\right)!}
$$

Hawking radiation

Hawking radiation

Hawking: Black holes radiate like a black body at temperature $T_{\text {Haw }}=\hbar \kappa_{\text {hor }}$

Hawking radiation

Hawking : Black holes radiate like a black body at temperature $T_{\text {Haw }}=\hbar \kappa_{\text {hor }}$

Hawking radiation

Hawking: Black holes radiate like a black body at temperature $T_{\text {Haw }}=\hbar \kappa_{\text {hor }}$

Virtual eē pairs disintegrate near the horizon, some drift away

Hawking radiation

Hawking : Black holes radiate like a black body at temperature $T_{\text {Haw }}=\hbar \kappa_{\text {hor }}$

Virtual ēe pairs disintegrate near the horizon, some drift away Hawking's treatment: Semiclassical!i.e., sptm classical, matter-radiation quantal
If sptm is also quantized, is $\mathbf{b} \mathbf{h}$ radiation still thermal ?

Coherent Black Hole Radiance ?

Coherent Black Hole Radiance ?

Recall Horizon Description: CS gauge fields coupled to bulk spinnet (LQG)

$$
F_{a b}^{i} \Psi=-\frac{k}{2 \pi} \sum_{p} a_{l H, a b}(p) \delta^{(2)}\left(x, x_{p}\right) J_{(p)}^{i} \Psi
$$

Coherent Black Hole Radiance ?

Recall Horizon Description: CS gauge fields coupled to bulk spinnet (LQG)

$$
F_{a b}^{i} \Psi=-\frac{k}{2 \pi} \sum_{p} a_{l H, a b}(p) \delta^{(2)}\left(x, x_{p}\right) J_{(p)}^{i} \Psi
$$

Modify RHS : couple bulk matter QFT to horizon CS gauge theory

Coherent Black Hole Radiance ?

Recall Horizon Description: CS gauge fields coupled to bulk spinnet (LQG)

$$
F_{a b}^{i} \Psi=-\frac{k}{2 \pi} \sum_{p} a_{l H, a b}(p) \delta^{(2)}\left(x, x_{p}\right) J_{(p)}^{i} \Psi
$$

Modify RHS : couple bulk matter QFT to horizon CS gauge theory
Since interactions are only between pure quantum states, any radiation should be coherent !

Coherent Black Hole Radiance ?

Recall Horizon Description: CS gauge fields coupled to bulk spinnet (LQG)

$$
F_{a b}^{i} \Psi=-\frac{k}{2 \pi} \sum_{p} a_{l H, a b}(p) \delta^{(2)}\left(x, x_{p}\right) J_{(p)}^{i} \Psi
$$

Modify RHS : couple bulk matter QFT to horizon CS gauge theory
Since interactions are only between pure quantum states, any radiation should be coherent !
Speculate : coarse-graining (averaging) over horizon states \Rightarrow Thermal radiation

Coherent Black Hole Radiance ?

Recall Horizon Description: CS gauge fields coupled to bulk spinnet (LQG)

$$
F_{a b}^{i} \Psi=-\frac{k}{2 \pi} \sum_{p} a_{l H, a b}(p) \delta^{(2)}\left(x, x_{p}\right) J_{(p)}^{i} \Psi
$$

Modify RHS : couple bulk matter QFT to horizon CS gauge theory
Since interactions are only between pure quantum states, any radiation should be coherent !
Speculate : coarse-graining (averaging) over horizon states \Rightarrow Thermal radiation If so : resolution of Information Loss Puzzle !

Fundamental Constants and Theories in Physics

Fundamental Constants and Theories in Physics

■ $G \Rightarrow$ Newtonian Gravity; $c \Rightarrow$ Sp Rel; $\hbar \Rightarrow$ Non Rel Quant Mech

Fundamental Constants and Theories in Physics

■ $G \Rightarrow$ Newtonian Gravity; $c \Rightarrow$ Sp Rel; $\hbar \Rightarrow$ Non Rel Quant Mech
■ G, c as in $2 G M / c^{2} \Rightarrow$ Gen Rel; \hbar, e, c as in $\alpha=e^{2} / \hbar c \Rightarrow$ SR Quant Electrodyn

Fundamental Constants and Theories in Physics

■ $G \Rightarrow$ Newtonian Gravity; $c \Rightarrow$ Sp Rel; $\hbar \Rightarrow$ Non Rel Quant Mech
■ G, c as in $2 G M / c^{2} \Rightarrow$ Gen Rel; \hbar, e, c as in $\alpha=e^{2} / \hbar c \Rightarrow$ SR Quant Electrodyn
■ Masses: electron \rightarrow Yukawa couplings in EW Theory; proton $\rightarrow \Lambda_{Q C D}$ in QCD

Fundamental Constants and Theories in Physics

■ $G \Rightarrow$ Newtonian Gravity; $c \Rightarrow$ Sp Rel; $\hbar \Rightarrow$ Non Rel Quant Mech
■ G, c as in $2 G M / c^{2} \Rightarrow$ Gen Rel; \hbar, e, c as in $\alpha=e^{2} / \hbar c \Rightarrow$ SR Quant Electrodyn
■ Masses: electron \rightarrow Yukawa couplings in EW Theory; proton $\rightarrow \Lambda_{\text {QCD }}$ in QCD
■ What about a formula involving $G, c, \hbar, \Lambda_{Q C D}$? Does this occur in Physics ?

Origin of Stellar masses (S Chandrasekhar, Nobel Lecture 1983)

Origin of Stellar masses (S Chandrasekhar, Nobel Lecture 1983)

$$
\begin{aligned}
M_{*} & =\xi\left(\frac{c \hbar}{G}\right)^{3 / 2} \frac{1}{m_{\text {proton }}^{2}} \\
& =\xi\left(\frac{M_{P}}{\Lambda_{Q C D}}\right)^{2} M_{P}, \xi \sim 20-30
\end{aligned}
$$

Origin of Stellar masses (S Chandrasekhar, Nobel Lecture 1983)

$$
\begin{aligned}
M_{*} & =\xi\left(\frac{c \hbar}{G}\right)^{3 / 2} \frac{1}{m_{\text {proton }}^{2}} \\
& =\xi\left(\frac{M_{P}}{\Lambda_{Q C D}}\right)^{2} M_{P}, \xi \sim 20-30
\end{aligned}
$$

' ...the combination of natural constants (above), providing a mass of proper magnitude for the measurement of stellar masses, is at the base of a physical theory of stellar structure.'

Origin of Stellar masses (S Chandrasekhar, Nobel Lecture 1983)

$$
\begin{aligned}
M_{*} & =\xi\left(\frac{c \hbar}{G}\right)^{3 / 2} \frac{1}{m_{\text {proton }}^{2}} \\
& =\xi\left(\frac{M_{P}}{\Lambda_{Q C D}}\right)^{2} M_{P}, \xi \sim 20-30
\end{aligned}
$$

' ...the combination of natural constants (above), providing a mass of proper magnitude for the measurement of stellar masses, is at the base of a physical theory of stellar structure.'
Intricate interplay between QCD and Quantum Gravity !?

Origin of Stellar masses (S Chandrasekhar, Nobel Lecture 1983)

$$
\begin{aligned}
M_{*} & =\xi\left(\frac{c \hbar}{G}\right)^{3 / 2} \frac{1}{m_{\text {proton }}^{2}} \\
& =\xi\left(\frac{M_{P}}{\Lambda_{Q C D}}\right)^{2} M_{P}, \xi \sim 20-30
\end{aligned}
$$

' ...the combination of natural constants (above), providing a mass of proper magnitude for the measurement of stellar masses, is at the base of a physical theory of stellar structure.'

Intricate interplay between QCD and Quantum Gravity !?
Strong implications for theory of neutron star masses : std approaches tend to ignore this interplay !

Origin of Stellar masses (S Chandrasekhar, Nobel Lecture 1983)

$$
\begin{aligned}
M_{*} & =\xi\left(\frac{c \hbar}{G}\right)^{3 / 2} \frac{1}{m_{\text {proton }}^{2}} \\
& =\xi\left(\frac{M_{P}}{\Lambda_{Q C D}}\right)^{2} M_{P}, \xi \sim 20-30
\end{aligned}
$$

' ...the combination of natural constants (above), providing a mass of proper magnitude for the measurement of stellar masses, is at the base of a physical theory of stellar structure.'

Intricate interplay between QCD and Quantum Gravity !?
Strong implications for theory of neutron star masses : std approaches tend to ignore this interplay !
Current Interest : Black hole entropic approach to critical NS mass

Outlook

Outlook

■ LQG Corrections \Rightarrow criterion for thermal stability of radiant black holes

Outlook

■ LQG Corrections \Rightarrow criterion for thermal stability of radiant black holes
■ Black Hole singularity resolution: in progress

Outlook

■ LQG Corrections \Rightarrow criterion for thermal stability of radiant black holes
■ Black Hole singularity resolution : in progress
■ LQ Cosmology: BB singularity replaced by bounce in minisuperspace models

Outlook

■ LQG Corrections \Rightarrow criterion for thermal stability of radiant black holes
■ Black Hole singularity resolution : in progress
$■$ LQ Cosmology: BB singularity replaced by bounce in minisuperspace models
■ Speculation: Resolution of Information Loss Puzzle may not be out of reach

Outlook

■ LQG Corrections \Rightarrow criterion for thermal stability of radiant black holes

■ Black Hole singularity resolution : in progress
$■$ LQ Cosmology: BB singularity replaced by bounce in minisuperspace models
■ Speculation: Resolution of Information Loss Puzzle may not be out of reach

■ Conclude : quantum space is discrete and has statistical properties (entropy)

Outlook

■ LQG Corrections \Rightarrow criterion for thermal stability of radiant black holes

■ Black Hole singularity resolution: in progress
$■$ LQ Cosmology: BB singularity replaced by bounce in minisuperspace models
■ Speculation : Resolution of Information Loss Puzzle may not be out of reach

■ Conclude : quantum space is discrete and has statistical properties (entropy)
■ Einsteinian sptm continuum is emergent !

