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minimal geodesic joining p to q such that any extension of it beyond q is not a
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Theorem (Basu, S. and Prasad, S. [1])

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N-geodesics exists joining N to q ∈ M. Then
d2(N, ·) : M → R has no directional derivative at q for vectors in direction of
those two N-geodesic.

Theorem (Basu, S. and Prasad, S. [1])
Let M be a complete Riemannian manifold and N be compact submanifold of
M. Then N is a deformation retract of M−Cu(N).

Theorem (Basu, S. and Prasad, S. [1])

The cut locus Cu(N) is a strong deformation retract of M−N. In particular,
(M,Cu(N)) is a good pair and the number of path components of Cu(N)
equals that of M−N.
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Outline of the proof of the deformation

Define

s : S(ν)→ [0,∞], s(v) := sup{t ∈ [0,∞) |γv|[0,t] is an N-geodesic},

where S(ν) is the unit normal bundle of N and [0,∞] is the one-point
compactification of [0,∞). The map s is continuous and is finite if M is
compact. Note that the cut locus is

Cu(N) = expν {s(v)v : v ∈ S(ν)} ,

where expν : ν → M, expν(p,v) := expp(v). Define an open neighborhood
U0(N) of the zero section in the normal bundle as

U0(N) := {av : 0 ≤ a < s(v), v ∈ S(ν)} .

Note that expν is a diffeomorphism on U0(N) and set
U(N) = expν(U0(N)) = M−Cu(N).
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Cut locus is G invariant

We need to show that Cu(N) is G-invariant.
Since the action is isometric, Se(N) is G-invariant.

Now in order to show that Se(N) is G-invariant, let x ∈ Se(N). So there
exists a sequence (xn)⊂ Se(N) such that xn → x, which implies
g · xn → g · x. Hence, g · x ∈ Se(N).
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Connection on principal bundle

Definition (Ehresmann connection)

Given a smooth principal G-bundle π : E → B, an Ehresmann connection on
E is a smooth subbundle H of T E, called the horizontal bundle of the
connection, such that T E = H ⊕V , where Vp = ker

(
dπp : TpE → Tπ(p)B

)
.

The bundle V is called the vertical bundle and it is independent of the
connection chosen.
dπ restricts to Hp is an isomorphism on Tπ(p)B.
dg maps Hp to Hg·p.
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Definition (Horizontal lift)

Let π : E → B be a fibre bundle with a connection H . Let γ be a smooth
curve in B through γ(0) = b. Let e ∈ E be such that π(e) = b. A horizontal lift
of γ through e is a curve γ̃ in E such that π ◦ γ̃ = γ, γ̃(0) = e, and
γ̃ ′(t) ∈ Hγ̃(t).

Proposition (Uniqueness of horizontal lift)

If γ : [−1,1]→ B is a smooth curve such that γ(0) = b and e0 ∈ π−1(b), then
there is a unique horizontal lift γ̃ through e0 ∈ E.
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Se(N)/G ⊆ Se(N/G)

γ̃ is a geodesic and l (γ̃) = d (p̃,N)
=⇒ γ̃ ′(1) ∈ Hγ̃(1) =⇒ γ̃ ′(t) ∈ Hγ̃(t)
=⇒ γ̃ is a horizontal geodesic =⇒ γ

is a geodesic.
If p̃ ∈ Se(N), then there exists two
N-geodesic, say γ̃ and η̃ . Due to
uniqueness of horizontal lift, both will
project to distinct geodesic and lengths
are same. Note that γ̃ is an
N-geodesic implies γ will be an
N/G-geodesic. Otherwise, ∃ δ which
is N/G geodesic joining p to N/G
which gives a horizontal lift δ̃ whose
length is strictly less than γ̃ , a
contradiction.
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Applications

Cut locus of complex hypersurface

Define the set X(d) =

{
[z] ∈ CPn :

n

∑
i=0

zd
i = 0

}
.

Since the partial derivatives ∂ f
∂ z j

do not vanish simultaneously on

Cn+1 −{0}, the hypersurface is nonsingular.
The above hypersurface is well studied by Kulkarni and Wood [2].

Define X̃(d) =

{
z ∈ S2n+1 :

n

∑
i=0

zd
i = 0

}
.

Theorem (Basu, S. and Prasad, S.)

The cut locus of X̃(d)⊆ S2n+1 is Z⋆(n+1)
d ×Zd S1.
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