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Morse Functions

Let M be a smooth manifold and f : M → R be any smooth function.
1 A point p ∈ M is a critical point of f if dfp = 0. In a coordinate

neighborhood (φ = (x1, x2, . . . , xn),U) around p for all j = 1, 2, . . . , n
we have

∂(f ◦ φ−1)
∂xj

(φ(p)) = 0.

2 A critical point p is called non-degenerate if determinant of the
Hessian matrix

Hessp(f ) :=
(
∂2(f ◦ φ−1)
∂xi∂xj

(φ(p))
)

is non-zero.
3 The function f is said to be a Morse function if all the critical points

of f are non-degenerate. We denote the set of all critical points of f
by Cr(f ).
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Morse-Bott Function

Definition (Morse-Bott functions)
Let M be a Riemannian manifold. A smooth submanifold N ⊂ M is said
to be non-degenerate critical submanifold of f if N ⊆ Cr(f ) and for any
p ∈ N, Hessp(f ) is non-degenerate in the direction normal to N at p.
The function f is said to be Morse-Bott if the connected components of
Cr(f ) are non-degenerate critical submanifolds.

The Hessp(f ) is non-degenerate in the direction normal to N at p means
for any V ∈ (TpN)⊥ there exists W ∈ (TpN)⊥ such that
Hessp(f )(V ,W ) 6= 0.
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Example

Let M = R2 and N = {(x , 0) : x ∈ R}. Then the distance between a point
p ∈ R2 and N is given by

d(p,N) := inf
q∈N

d(p,q).

We shall denote by d2 the square of the distance. Consider the function

f : M → R, (x , y) 7→ d2((x , y),N) = y2.

Thus the set of critical points is the whole x -axis and

Hess(x ,0)f =
(

0 0
0 2

)

which is non-degenerate in the normal direction (y -axis).
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Cut Locus of a Point

Definition (Cut locus)
Let M be a complete Riemannian manifold and p ∈ M. If Cu(p) denotes
the cut locus of p, then a point q ∈ Cu(p) if there exists a minimal
geodesic joining p to q, any extension of which beyond q is not minimal.
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Cut Locus of a Submanifold

Definition
A geodesic γ is called a distance minimal geodesic joining N to p if there
exists q ∈ N such that γ is a minimal geodesic joining q to p and
l(γ) = d(p,N). We will refer to such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)
Let M be a Riemannian manifold and N be any non-empty subset of M. If
Cu(N) denotes the cut locus of N, then we say that q ∈ Cu(N) if there
exists an N-geodesic joining N to q such that any extension of it beyond q
is not a distance minimal geodesic.

The cut locus of a sphere in R3 is its center.
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An Example of Morse-Bott function and relation to the
Cut Locus

Let M = M(n,R), the set of n × n matrices, and N = O(n,R), set of all
orthogonal n × n matrices. We fix the standard Euclidean metric on
M(n,R) by identifying it with Rn2 . This induces a distance function given
by

d(A,B) :=
√
tr ((A− B)T (A− B)), A,B ∈ M(n,R)

Consider the distance squared function

f : M(n,R)→ R, A 7→ d2(A,O(n,R)).

We will show that f is a Morse-Bott function with critical submanifold as
O(n,R).
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The function f can be explicitly expressed as

f (A) = n + tr
(
AT A

)
− 2tr

(√
AT A

)

If A is an invertible matrix, then using the linearity of trace,

f (A) = tr
(
AT A

)
+ n − 2 sup

B∈O(n,R)
tr
(
AT B

)

If A is a diagonal matrix with positive entries, then the
maximizer will be I.
For any A ∈ GL(n,R), using the SVD and the polar
decomposition of A we conclude that the maximizer is
A
√

AT A−1.

Note: The maximizer is unique if and only if A is invertible.
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f is Morse-Bott

The map f is differentiable if and only if A is invertible.
For any A ∈ GL(n,R)

dfA = 2A− 2A
(√

AT A
)−1

= −2A
(√

AT A
−1
− I
)
.

Note that for any H

dfA(H) =
〈
−2A

(√
AT A

−1
− I
)
,H
〉

= 0 ⇐⇒ AT A = I.

The critical set of f is O(n,R).
B ∈ (TAO(n,R)⊥ if B = AW for some symmetric matrix W .
The Hessian matrix restricted to (TAO(n,R))⊥ is 2I n(n+1)

2
.
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Integral curve of −∇f

If γ(t) is an integral curve of −∇f initialized at A, then γ(0) = A and

dγ
dt = −2γ(t) + 2

(
γ(t)T

)−1√
γ(t)Tγ(t). (1)

The solution of (1) given by

γ(t) = Ae−2t + (1− e−2t)A
(√

AT A
)−1

. (2)

Note that γ(t) is a flow line which deforms GL(n,R) to O(n,R).
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Previous deformation vs Gram-Schmidt deformation

A modified curve

η(t) = A(1− t) + tA
(√

AT A
)−1

with the same image as γ, defines an actual deformation retraction of
GL(n,R) to O(n,R). Apart from its origin via the distance function, this is
a geometric deformation in the following sense. Given A ∈ GL(n,R),
consider its columns as an ordered basis. This deformation deforms the
ordered basis according to the length of the basis vectors and mutual
angles between pairs of basis vectors in a geometrically uniform manner.
This is in sharp contrast with Gram-Schmidt orthogonalization, also a
deformation of GL(n,R) to O(n,R), which is asymmetric as it never
changes the direction of the first column, the modified second column only
depends on the first two columns and so on.
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Characterization of Cut Locus

Definition (Separating set)
Let N be a subset of a Riemannian manifold M . The separating set,
denoted by Se(N), consists of all points q ∈ M such that at least two
distance minimal geodesics from N to q exist.

Franz-Erich Wolter in 1979 proved that the closure of Se(p) is
Cu(p) and hence Cu(p) is a closed set.
The same result also holds for the cut locus of a submanifold,that is,
the closure Se(N) is whole of Cu(N) and hence cut locus of a
submanifold is closed.
Now recall the example of distance squared function on M(n,R).
Using the last item, we can say that the Se(O(n,R)) is the set of all
singular matrices which is a closed set and hence the cut locus will be
the set of all singular matrices.
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Regularity of the distance squared function

Theorem
Let M be a connected, complete Riemannian manifold and N be an
embedded submanifold of M. Suppose two N-geodesics exist joining N to
q ∈ M. Then d2(N, ·) : M → R has no directional derivative at q for
vectors in direction of those two N-geodesics.



Outline of the proof

We assume that all the geodesics are arc-length
parametrized.
The directional derivative from left is 2l .

(d2)′−(q) := lim
ε→0+

(d(N, γi (l)))2 − (d(N, γi (l − ε)))2

ε

= lim
ε→0+

l2 − (l − ε)2

ε

= 2l.

Using some version of “cosine rule” we have

a2 = ε
2 + τ

2 + 2ετ cosω + K(τ)ε2
τ

2

Finally, we can show that the derivative from the
right is strictly bounded above by 2l .
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The distance squared function is Morse-Bott

Proposition

Consider the distance squared function with respect to a submanifold
N in M. Then this is a Morse-Bott function with N as the critical
submanifold.
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M − Cu(N) deforms to N

Theorem
Let M be a complete Riemannian manifold and N be compact
submanifold of M. Then N is a deformation retract of M − Cu(N).

Define

s : S(ν)→ [0,∞], s(v) := sup{t ∈ [0,∞) | γv |[0,t] is an N-geodesic},

where S(ν) is the unit normal bundle of N and [0,∞] is the one-point
compactification of [0,∞). The map s is continuous and is finite if M is
compact. Note that the cut locus is

Cu(N) = expν {s(v)v : v ∈ S(ν)} ,

where expν : ν → M, expν(p, v) := expp(v). Define an open
neighborhood U0(N) of the zero section in the normal bundle as

U0(N) := {av : 0 ≤ a < s(v), v ∈ S(ν)} .

Note that expν is a diffeomorphism on U0(N) and set
U(N) = expν(U0(N)) = M − Cu(N).
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Now consider the following diagram:

U0(N)× [0, 1] H // U0(N)
expν

��

U × [0, 1]

exp−1
ν

OO

F // U ∼= M − Cu(N)

The map F can be defined by taking the compositions

F = expν ◦H ◦ exp−1
ν .

We saw that for M = M(n,R) and N = O(n,R), the cut locus
Cu(O(n,R)) is the set of all singular matrices and M − Cu(O(n,R)),
which is the set of invertible matrices, deforms to O(n,R).
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