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Abstract

Associated to every closed, embedded submanifold N of a connected Riemannian
manifold M , there is the distance function dN which measures the distance of
a point in M from N . We analyze the square of this function and show that it
is Morse-Bott on the complement of the cut locus Cu(N) of N , provided M is
complete. Moreover, the gradient flow lines provide a deformation retraction of
M − Cu(N) to N . If M is a closed manifold, then we prove that the Thom space
of the normal bundle of N is homeomorphic to M/Cu(N). We also discuss several
interesting results which are either applications of these or related observations
regarding the theory of cut locus. These results include, but are not limited to, a
computation of the local homology of singular matrices, a classification of the ho-
motopy type of the cut locus of a homology sphere inside a sphere, a deformation
of the indefinite unitary group U(p, q) to U(p)×U(q) and a geometric deformation
of GL(n,R) to O(n,R) which is different from the Gram-Schmidt retraction.

If a compact Lie group G acts on a Riemannian manifold M freely then M/G is a
manifold. In addition, if the action is isometric, then the metric of M induces a
metric on M/G. We show that if N is a G-invariant submanifold of M , then the
cut locus Cu(N) is G-invariant, and Cu(N)/G = Cu(N/G) in M/G. An application
of this result to complex projective hypersurfaces has been provided.
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Chapter 1
Introduction

On a Riemannian manifold M , the distance function dN(·) := d(N, ·) from
a closed subset N is fundamental in the study of variational problems. For in-
stance, the viscosity solution of the Hamilton-Jacobi equation is given by the flow
of the gradient vector of the distance function dN , when N is the smooth bound-
ary of a relatively compact domain in manifolds; see [Li and Nirenberg, 2005,
Mantegazza and Mennucci, 2003]. Although the distance function dN is not dif-
ferentiable at N , squaring the function removes this issue. Associated to N and
the distance function dN is a set Cu(N), the cut locus of N in M . The cut locus of
a point (submanifold) consists of all points such that a distance minimal geodesic
(see Definitions 2.3.2 and 3.1.2) starting at the point (submanifold) fails its dis-
tance minimality property. The aim of the thesis is to explore the topological and
geometric properties of cut locus of a submanifold.

1.1 A survey of the cut locus

This section is devoted to the literature survey and a discussion of some
known results.

Cut locus of a point, a notion initiated by Henri Poincaré [Poincaré, 1905],
has been extensively studied (see [Kobayashi, 1967] for a survey as well as
[Buchner, 1977], [Myers, 1935], [Sakai, 1996], and [Wolter, 1979]). Prior to
Poincaré it had appeared implicitly in a paper [von Mangoldt, 1881]. Other arti-
cles [Whitehead, 1935] and [Myers, 1935, Myers, 1936] describe topological be-
havior of the cut locus. Due to its topological properties, it became an important
tool in the field of Riemannian geometry or Finsler geometry. We list a few ref-
erences like [Klingenberg, 1959], [Rauch, 1959], and [Cheeger and Ebin, 1975,
Chapter 5] for a detailed study of cut locus of a point. We also mention the work
around the Blaschke conjecture which uses the geometry of the cut locus of a
point, see [Besse, 1978, McKay, 2015]. A great source of reference for articles re-
lated to cut loci is [Sakai, 1984, §4]. Further, articles [Sakai, 1977, Sakai, 1978,
Sakai, 1979] and [Takeuchi, 1978, Takeuchi, 1979] discussed cut loci in symmet-
ric spaces. For questions on the triangulability of cut loci and differential topologi-
cal aspects, see [Buchner, 1977, Singer and Gluck, 1976, Gluck and Singer, 1978,
Wall, 1977].

1



2 CHAPTER 1. INTRODUCTION

Cut locus of submanifolds was first studied by René Thom [Thom, 1972].
We mention some references for cut locus of submanifolds where it has been an-
alyzed via the Eikonal equations and Hamilton-Jacobi equation, for example, see
[Angulo Ardoy and Guijarro, 2011, Mantegazza and Mennucci, 2003] as well as
analyzed via topological methods, for example, see [Flaherty, 1965, Ozols, 1974,
Singh, 1987a, Singh, 1987b, Singh, 1988].

1.2 Overview of results

Suitable simple examples indicate that M − Cu(N) topologically deforms to
N . One of our main results is the following (Theorem 4.3.5).

Theorem A. Let N be a closed embedded submanifold of a complete Riemannian
manifold M and d : M → R denote the distance function with respect to N . If
f = d2, then its restriction to M − Cu(N) is a Morse-Bott function, with N as
the critical submanifold. Moreover, M − Cu(N) deforms to N via the gradient
flow of f .

It is observed that this deformation takes infinite time. To obtain a strong defor-
mation retract, one reparameterizes the flow lines to be defined over [0, 1]. It can
be shown (Lemma 4.3.1) that the cut locus Cu(N) is a strong deformation retract
of M − N . A primary motivation for Theorem A came from understanding the
cut locus of N = O(n,R) inside M = M(n,R), equipped with the Euclidean met-
ric. We show in Section 3.2 that the cut locus is the set Sing of singular matrices
and the deformation of its complement is not the Gram-Schmidt deformation but
rather the deformation obtained from the polar decomposition, i.e., A ∈ GL(n,R)

deforms to A
(√

ATA
)−1. Combining with a result of J. J. Hebda [Hebda, 1983,

Theorem 1.4] we are able to compute the local homology of Sing (cf Lemma 3.2.4
and Corollary 3.2.1).

Theorem B. For A ∈M(n,R)

Hn2−1−i(Sing, Sing − A;G) ∼= H̃ i(O(n− k,R);G)

where A ∈ Sing has rank k < n and G is any abelian group.

When the cut locus is empty, we deduce that M is diffeomorphic to the normal
bundle ν of N in M . In particular, M deforms to N . Among applications, we
discuss two families of examples. We reprove the known fact that GL(n,R) de-
forms to O(n,R) for any choice of left-invariant metric on GL(n,R) which is right-
O(n,R)-invariant. However, this deformation is not obtained topologically but by
Morse-Bott flows. For a natural choice of such a metric, this deformation (5.2) is
not the Gram-Schmidt deformation, but one obtained from the polar decomposi-
tion. We also consider U(p, q), the group preserving the indefinite form of signa-
ture (p, q) on Cn. We show (Theorem 5.2.1) that U(p, q) deforms to U(p)×U(q) for
the left-invariant metric given by 〈X, Y 〉 := tr(X∗Y ). In particular, we show that
the exponential map is surjective for U(p, q) (Corollary 5.2.1). To our knowledge,



1.2. OVERVIEW OF RESULTS 3

this method is different from the standard proof.

For a Riemannian manifold we have the exponential map at p ∈ M , expp :
TpM → M . Let ν denote the normal bundle of N in M . We will modify the
exponential map (see §4.3.2) to define the rescaled exponential ẽxp : D(ν) → M ,
the domain of which is the unit disk bundle of ν. The main result (Theorem 4.3.2)
here is the observation that there is a connection between the cut locus Cu(N) and
Thom space Th(ν) := D(ν)/S(ν) of ν.

Theorem C. Let N be an embedded submanifold inside a closed, connected
Riemannian manifold M . If ν denotes the normal bundle of N in M , then there
is a homeomorphism

ẽxp : D(ν)/S(ν)
∼=−→M/Cu(N).

This immediately leads to a long exact sequence in homology (see (4.8))

· · · → Hj(Cu(N))
i∗−→ Hj(M)

q−→ H̃j(Th(ν))
∂−→ Hj−1(Cu(N))→ · · · .

This is a useful tool in characterizing the homotopy type of the cut locus. We list a
few applications and related results.

Theorem D. LetN be a homology k-sphere embedded in a Riemannian manifold
Md homeomorphic to Sd.

1. If d ≥ k + 3, then Cu(N) is homotopy equivalent to Sd−k−1. Moreover, if
M,N are real analytic and the embedding is real analytic, then Cu(N) is
a simplicial complex of dimension at most d− 1.

2. If d = k + 2, then Cu(N) has the homology of S1. There exists homology
3-spheres in S5 for which Cu(N) ' S1. However, for non-trivial knots K
in S3, the cut locus is not homotopy equivalent to S1.

The above results are a combination of Theorem 4.3.3, Theorem 4.3.1 and
Example 4.3.3. In general, the structure of the cut locus may be wild (see
[Gluck and Singer, 1978], [Itoh and Sabau, 2016], and [Itoh and Vîlcu, 2015]).
S. B. Myers [Myers, 1935] had shown that if M is a real analytic sphere, then
Cu(p) is a finite tree each of whose edge is an analytic curve with finite length.
Buchner [Buchner, 1977] later generalized this result to cut locus of a point in
higher dimensional manifolds. Theorem 4.3.1, which states that the cut locus of
an analytic submanifold (in an analytic manifold) is a simplicial complex, is a nat-
ural generalization of Buchner’s result (and its proof). We attribute it to Buchner,
although it is not present in the original paper. This analyticity assumption also
helps us to compute the homotopy type of the cut locus of a finite set of points in
any closed, orientable, real analytic surface of genus g (Theorem 4.3.4). In Exam-
ple 4.3.3 we make some observations about the cut locus of embedded homology
spheres of codimension 2. This includes the case of real analytic knots in the round
sphere S3.

Let M be a closed Riemannian manifold and G be any compact Lie group
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acting on M freely. Then it is known that M/G is a manifold. Further, if the
action is isometric, then the metric on M induces a metric on M/G. If N is any
G-invariant submanifold of M , then N/G is a submanifold of M/G. If the ac-
tion is isometric, then we provide an equality between Cu(N)/G and Cu(N/G)
(Theorem 6.1.1).

Theorem E. Let M be a closed and connected Riemannian manifold and G
be any compact Lie group which acts on M freely and isometrically. Let N be
any G-invariant closed submanifold of M , then we have an equality

Cu(N)/G = Cu(N/G).

1.3 Outline of Chapter 2

The majority of this chapter is an overview of recalling some basic results in
Riemannian geometry and differential topology. This chapter also deals with some
known results for cut locus of a point. Although this chapter may be interesting to
read and help clarify the concepts, the experts can skip the details.

§2.1 Fermi coordinates

Fermi coordinates are important for studying the geometry of submanifolds.
In this coordinate system the metric is rectangular and the derivative of metric
vanishes at each point of a curve. It makes the calculations much simpler. This
section is devoted to recalling the construction of Fermi coordinates in a tubular
neighborhood of a submanifold of a Riemannian manifold. This requires us to
define the exponential map restricted to the normal bundle. We have recollected
some results which will be used to study the distance squared function from a
submanifold. For example, it is shown that the distance squared function from a
submanifold is sum of squares of Fermi coordinates in a tubular neighborhood of
the submanifold.

§2.2 Morse-Bott theory

In order to study the space via critical points of some real valued function on
that space, Morse theory plays an important role. If non-degenerate critical points
are replaced by non-degenerate critical submanifolds (see Definition 2.2.5), then a
generalization of Morse theory comes into the picture – Morse-Bott theory. In this
section, we have recalled the definition of a Morse function and some examples of
Morse functions. In §2.2.2 we have discussed Morse-Bott theory motivated by an
example.

§2.3 Cut locus and conjugate locus

In a Riemannian manifold M a geodesic γ joining p, q ∈ M is said to be
distance minimal if l(γ) = d(p, q), where d is the Riemannian distance. Cut locus
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of a point captures all points in M beyond which geodesics fail to be distance
minimal. In §2.3.1 we have discussed numerous example of cut locus of a point.
Characterizations of cut locus has been discussed in terms of conjugate points
(points p and q are said to be conjugate along a geodesic γ if there exists a non-
vanishing Jacobi field vanishes at p and q) and number of geodesics joining the
two points (Theorem 2.3.1). In particular, it says that a cut point is either the first
conjugate point or there exists more than one geodesic joining the point and the
cut point. We also have a characterization which shows the existence of a closed
geodesic (Theorem 2.3.6). One of the result [Wolter, 1979, Theorem 1] is very
important to find the cut points, which says that the cut locus of a point is the
closure of points which can be joined by more than one geodesic (Theorem 2.3.3).

1.4 Outline of Chapter 3

This chapter serves as a motivation for the results of the subsequent chap-
ters. It includes a detailed discussion of cut locus of submanifolds with numerous
examples.

§3.1 Cut locus of submanifolds

To define cut locus of subset of a Riemannian manifold, one needs to de-
fine distance minimal geodesic starting from the subset. This section starts with
defining the same (Definition 3.1.1) and then the cut locus of a subset is similarly.
Example 3.1.9 shows that the cut locus need not be a manifold. Example 3.1.5
shows that the topological join of Sk and Sn−k−1 is induced from cut locus by
showing that Cu(Ski ) = Sn−k−1l , where Ski ↪→ Sn denote the embedding of the
k-sphere in the first k + 1 coordinates and Sn−k−1l denote the embedding of the
(n − k − 1)-sphere in the last n − k coordinates. In §3.1.1 we have defined the
separating set of a subset which consists of all points which have more than one
distance minimal geodesic joining the subset. In Example 3.1.6 we have shown
that the cut locus is strictly bigger than the separating set.

§3.2 An illuminating example

The main aim of this section is to find the cut locus of the set of all n × n
orthogonal matrices. We have shown that the cut locus is the set of all singular
matrices by showing that it is the separating set. We also analyzed the regularity
of distance squared function on the singular set and outside the singular set, set of
all invertible matrices. In fact, we have shown that the distance squared function
is differentiable at A if and only if A ∈ GL(n,R) In this section we have also shown
that GL(n,R) deforms to the set of all orthogonal matrices, but we noted that this
deformation is different from one we obtained via Gram-Schmidt. We will also
prove Theorem B.
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1.5 Outline of Chapter 4

This chapter is based on joint work with Basu [Basu and Prasad, 2021]. Here
we have explored some topological properties (relation with the Thom space (The-
orem 4.3.2), homology and homotopy groups of cut locus) and geometric prop-
erties (regularity of the distance squared function §4.1, complement of cut locus
deforms to the submanifold (Theorem 4.3.5)).

§4.1 Regularity of distance squared function

This section is motivated by the example of cut locus of O(n,R) in M(n,R)
(§3.2). We proved that the distance squared function is not differentiable on the
separating set (Lemma 4.1.1). We have also shown by an example that the dis-
tance squared function can be differentiable on points which are cut points but
not separating points (Example 4.1.1).

§4.2 Characterizations of Cu(N)

We have discussed two characterizations of cut locus. One in terms of first
focal points (Definition 4.2.2) and number of geodesics joining the submanifold
to the cut points (Theorem 4.2.1) and other is in terms of separating set (Theo-
rem 4.2.2). The latter one is important for computation viewpoint. Let ν denotes
the normal bundle of N and S(ν) be the unit sphere bundle. Consider a map

ρ : S(ν)→ [0,∞),

v 7→ sup{t ∈ [0,∞) : γv|[0,t] is a distance minimal geodesic from N}
where γv means γ′(0) = v (also see (4.4)).

Theorem. Let u ∈ S(ν). A positive real number T is ρ(u) if and only if γu :
[0, T ] is a distance minimal geodesic from N and at least one of the following
holds:

(i) γu(T ) is the first focal point of N along γu,

(ii) there exists v ∈ S(ν) with v 6= u such that γv(T ) = γu(T ).

Theorem. Let Cu(N) be the cut locus of a compact submanifold N of a com-
plete Riemannian manifold M . The subset Se(N), the set of all points in M
which can be joined by at least two distance minimal geodesic starting from
N , of Cu(N) is dense in Cu(N).

§4.3 Topological properties

In this section we start by showing that the cut locus is a simplicial complex
for an analytic pair (following Buchner [Buchner, 1977]). In §4.3.2 we prove The-
orem C and discuss some applications including Theorem D. We end this section
by proving one of the main theorem Theorem A.
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1.6 Outline of Chapter 5

We apply our study of gradient of distance squared function to two families
of Lie groups - GL(n,R) and U(p, q). With a particular choice of left-invariant Rie-
mannian metric which is right-invariant with respect to a maximally compact sub-
groupK, we analyze the geodesics and the cut locus ofK. In both cases, we obtain
that G deforms to K via Morse-Bott flow (Lemma 5.1.1 and Theorem 5.2.1). Al-
though these results are deducible from classical results of Cartan and Iwasawa,
our method is geometric and specific to suitable choices of Riemannian metrics. It
also makes very little use of structure theory of Lie algebras.

1.7 Outline of Chapter 6

Consider a Riemannian manifold M on which a compact Lie group G acts
freely. It is well known that the quotient M/G is a manifold. This chapter is
devoted to the study of cut locus of a G-invariant submanifold N inside M . We
will prove Theorem E. As an application of Theorem E, we have shown some
examples of cut locus in orbit space. We also discuss an application to complex
hypersurfaces. Let π : S2n+1 → CPn be the quotient map. If

X(d) =

{
[z0 : z1 : · · · : zn] ∈ CPn :

n∑
i=0

zdi = 0

}

and X̃(d) := π−1(X(d)), then we make the following conjecture.

Conjecture. The cut locus of X̃(d) ⊆ S2n+1 is Z?(n+1)
d ×Zd S1, where ×Zd is the

diagonal action of Zd and ? denotes the topological join of spaces.

We prove the above conjecture for two families: d = 2, n arbitrary (Theorem 6.3.1)
and n = 1, d arbitrary (Theorem 6.3.2).
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2.1 Fermi coordinates

In this section we give a brief overview of the Fermi coordinates which are
generalizations of normal coordinates in Riemannian geometry. To study the dis-
tance squared function from a submanifold N of a Riemannian manifold M , it is
essential to analyze the local geometry of M around N . For this the Fermi coordi-
nates are the most convenient tool. In 1922, Enrico Fermi [Fermi, 1922] came up
with a coordinate system in which the Christoffel symbols vanish along geodesics
which makes the metric simpler. For an extensive reading we refer to the book
[Gray, 2004, Chapter 2] and an article [Manasse and Misner, 1963].

2.1.1 Normal exponential map

Let N be an embedded submanifold of a Riemannian manifold M . We define
the normal bundle, denoted by ν,

ν :=
{

(p, v) : p ∈ N and v ∈ (TpN)⊥
}
,

9
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where (TpN)⊥ is the orthogonal complement of TpN . Indeed, ν is a subbundle
of the restriction of the tangent bundle TM to N . We can restrict the usual ex-
ponential map of the Riemannian manifold to the normal bundle to define the
exponential map of the normal bundle. We define the exponential map of the nor-
mal bundle as follows:

expν : ν →M, (p, v) 7→ expp(v), (2.1)

where expp : TpM → M is the exponential map of M . We may write expν(v) in
short and call this the normal exponential map. Note that we can identify N as the
zero section of the normal bundle and hence N can be assumed to be submanifold
of ν.

Lemma 2.1.1. [Gray, 2004, Lemma 2.3] Let M be a Riemannian manifold
and N be any embedded submanifold. Then the normal exponential map
expν : ν → M is a diffeomorphism from a neighbourhood of N ⊆ ν onto a
neighbourhood of N ⊆M .

Using the above lemma, let UN be the largest open neighbourhood of N ⊆ ν for
which expν is a diffeomorphism. We shall later be able to describe this neighbour-
hood in terms of a function ρ (4.4). We now ready to define the Fermi coordinates.

2.1.2 Fermi coordinate system

To define a system of Fermi coordinates, we need an arbitrary system of
coordinates (y1, · · · , yk) defined in a neighborhood O ⊆ N of p ∈ N together with
orthogonal sections Ek+1, · · · ,En of the restriction on ν to O.

De�nition 2.1.1 (Fermi coordinates). The Fermi coordinates (x1, · · · , xn) ofN ⊆
M centered at p (relative to a given coordinate (y1, · · · , yk) on N and given
orthogonal sections Ek+1, · · · ,En of ν) are defined by

xl

(
expν

( n∑
i=k+1

τiEi (p
′)

))
= yl (p

′) , l = 1, · · · , k

xm

(
expν

( n∑
i=k+1

τiEi (p
′)

))
= τm, m = k + 1, · · · , n

for p′ ∈ O provided the numbers τk+1, · · · , τn are small enough so that
τk+1Ek+1 (p′) + · · ·+ τnEn (p′) ∈ UN .

As the normal exponential map is a diffeomorphism on the set UN ,
(x1, · · · , xk, xk+1 , · · · , xn) defines a coordinate system near p. In fact, the re-
strictions to N of coordinate vector fields ∂/∂xk+1, . . . , ∂/∂xn are orthonormal.
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Lemma 2.1.2. Let γ be a unit speed geodesic normal to N with γ(0) = p ∈ N .
If v = γ′(0), then there exists a system of Fermi coordinates (x1, · · · , xn) such
that whenever (p, tv) ∈ UN , we have

∂

∂xk+1

∣∣∣∣
γ(t)

= γ′(t),

∂

∂xl

∣∣∣∣
p

∈ TpN, and
∂

∂xi

∣∣∣∣
p

∈ (TpN)⊥

for 1 ≤ l ≤ k and k + 1 ≤ i ≤ n. Furthermore, for 1 ≤ j ≤ n

(xj ◦ γ)(t) = tδj(k+1).

The following object will be useful while studying the distance squared func-
tion from a submanifold N .

De�nition 2.1.2. Let N be a submanifold of a Riemannian manifold and let
(x1, · · · , xn) be a system of Fermi coordinates for N . We define ∆(x1, · · · , xn)
to be the non-negative number satisfying

∆2 =
n∑

i=k+1

x2i .

Lemma 2.1.3. Let p ∈ N . The ∆ is independent of the choice of Fermi coor-
dinates at p.

Proof. Let (x′1, · · · , x′n) be another system of Fermi coordinates at p, and let{
E′k+1, · · · ,E′n

}
be the orthonormal sections of ν that give rise to it. We can write

E′j =
n∑

i=k+1

aijEi

where (aij) is a matrix of functions in the orthogonal group O(n− k) with each aji
being a smooth function on N. Now,

xm

(
expν

(
n∑

j=k+1

τ ′jE
′
j

))
= xm

(
expν

(
n∑

j=k+1

τ ′j

n∑
i=k+1

aijEi

))

= xm

(
expν

( n∑
i=k+1

( n∑
j=k+1

aijτ
′
j

)
Ei

))

=
n∑

l=k+1

amlτ
′
l

=
n∑

l=k+1

amlx
′
l

(
expν

( n∑
j=k+1

τ ′jE
′
j

))
.
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Therefore, we have

xm =
n∑

l=k+1

amlx
′
l, m = k + 1, · · · , n. (2.2)

Now consider,

n∑
m=k+1

x2m =
n∑

m=k+1

(
n∑

l=k+1

amlx
′
l

)2

=
n∑

m=k+1

(
n∑

l=k+1

n∑
j=k+1

(amlx
′
l)(amjx

′
j)

)

=
n∑

l=k+1

n∑
j=k+1

(
n∑

m=k+1

amlamj

)
x′lx
′
j

=
n∑

l=k+1

n∑
j=k+1

δljx
′
lx
′
j

=
n∑

m=k+1

(x′m)
2
.

2.2 Morse-Bott theory

This section will be devoted to a generalization of Morse function in which
we study the space by looking at the critical points of a smooth real valued func-
tion. We will briefly recall Morse functions with a couple of examples, and then we
will define Morse-Bott functions. The reference for this section will be the original
article by Raoul Bott [Bott, 1954] and the book [Banyaga and Hurtubise, 2004,
Section 3.5].

2.2.1 Morse functions

Broadly the “functions” and “spaces” are objects of study in analysis and ge-
ometry respectively. However, these two objects are related to each other. For
example, on a line we can have functions like f(x) = x, g(x) = x2 which takes
arbitrarily large values, whereas on the circle there does not exist any function
which takes arbitrarily large value. In this way, we are able to differentiate circles
with lines by seeing functions on them. Morse theory studies relations between
shape of space and function defined on this space. We study the critical points of a
function defined on spaces to find out information on the space. More specifically,
in Morse theory we study the topology of smooth manifolds by analyzing the criti-
cal point of a smooth real valued function. If f : M → R is a smooth function on a
smooth manifold M , then using Morse theory we can find a CW-complex which is
homotopy equivalent to M and the CW-complex has one cell for each critical point
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of f . For a detailed study of Morse theory we refer to the book [Milnor, 1963] by
John Milnor.

De�nition 2.2.1 (Critical Points). Let M and N be two smooth manifolds of
dimension m and n respectively. A point p ∈ M is said to be critical point of a
smooth function f : M → N if the differential map

dfp : TpM → Tf(p)N

does not have full rank.

We confine our study to real-valued functions. In this case the above is equivalent
to dfp ≡ 0. In a coordinate neighborhood (φ = (x1, x2, . . . , xn), U) around p, we
have

∂(f ◦ φ−1)

∂xj
(φ(p)) = 0, j = 1, · · · , n. (2.3)

At a critical point of f : M → R, we define the Hessian which is similar to the
second derivative of the function.

De�nition 2.2.2 (Hessian of f at p). Let f : M → R be any smooth real valued
function and p be any critical point of f . The Hessian of f at p is the map

Hessp(f) : TpM × TpM → R, Hessp(f)(V,W ) = Ṽ ·
(
W̃ · f

)
(p), (2.4)

where Ṽ and W̃ are any extensions of V and W respectively.

Note that the Hessian is a bilinear form of V and W . Consider

V ·
(
W̃ · f

)
(p)−W ·

(
Ṽ · f

)
(p) =

[
Ṽ , W̃

]
p
· f

= dfp

([
Ṽ , W̃

]
p

)
= 0.

Thus, Hessian is a symmetric bilinear form on TpM × TpM . The above compu-
tation, in particular, also proves that the definition is well defined, that is, it is
independent of the choice of extension.

Any critical point is categorized by looking at the value of Hessian at that
point.

De�nition 2.2.3. A critical point p ∈ M of a smooth function f : M → R
is said to be non-degenerate if the Hessian is non-degenerate. Otherwise, we
call p to be a degenerate critical point. The index of a non-degenerate critical
point p is the dimension of the subspace of the maximum dimension on which
Hesspf is negative definite.

For example, the function f : R → R x 7→ x2 has 0 a critical point which is
non-degenerate but 0 is the degenerate critical point of the function f(x) = x3.
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De�nition 2.2.4. A smooth function f : M → R is said to be a Morse function
if all its critical points are non-degenerate.

Example 2.2.1. The function

f : R2 → R, (x, y) 7→ x2 − 3xy2

is not a Morse function, as the critical point (0, 0) is not non-degenerate.
Example 2.2.2 (Height function on sphere). The height function on the n-sphere is
a Morse function with critical points N = (0, 0, · · · , 1) and S = (0, 0, · · · ,−1). The
index of N and S is n and 0 respectively.

f

−1

0

1

z

N

S

Figure 2.1: Height function on the 2-sphere is a Morse function with two non-
degenerate critical points with index 2 and 0.

For this, let

φ1 : Sn \ {N} → Rn, (x1, · · · , xn+1) 7→
(

x1
1− xn+1

, · · · , xn
1− xn+1

)
, and

φ2 : Sn \ {S} → Rn, (x1, · · · , xn+1) 7→
(

x1
1 + xn+1

, · · · , xn
1 + xn+1

)
be two charts of Sn. The inverse is given by

φ−11 (y) =

(
2y1

‖y‖2 + 1
, · · · , 2yn

‖y‖2 + 1
,
‖y‖2 − 1

‖y‖2 + 1

)

φ−11 (y) =

(
2y1

‖y‖2 + 1
, · · · , 2yn

‖y‖2 + 1
,−‖y‖

2 − 1

‖y‖2 + 1

)
.

From equation (2.3), the critical points of f will be the critical points of ψi =
f ◦ φ−1i : Rn → R, i = 1, 2. Note that

ψ1(x) =
‖x‖2 − 1

‖x‖2 + 1
, and ψ2(x) = −‖x‖

2 − 1

‖x‖2 + 1
, x ∈ Rn.

=⇒ (dψ1)x =
4x

(‖x‖+ 1)2
, and (dψ2)x = − 4x

(‖x‖+ 1)2
.
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Therefore, the critical points are φ−11 (0) = S in Sn \ {N} and φ−12 (0) = N in
Sn \ {N}. Note that

HessS(f) =

(
∂2ψ1

∂xi∂xj
(0)

)
1≤i,j≤n

= 4In×n, and

HessN(f) =

(
∂2ψ1

∂xi∂xj
(0)

)
1≤i,j≤n

= −4In×n.

Hence, both critical points are non-degenerate and index of N and S is n and 0
respectively.
Example 2.2.3 (Height function on torus). If a and b be two positive real numbers
with 0 < b < a, then the torus is

T =:

{
(x, y, z) : x2 +

(√
y2 + z2 − a

)2
= b2

}
.

The function
f : T→ R, (x, y, z) 7→ z

is a Morse function with critical points (0, 0,±(a+ b)) and (0, 0,±(a− b)).

f

z

Figure 2.2: Height function on torus is a Morse function with four non-degenerate
critical points

2.2.2 Morse-Bott functions

Morse-Bott functions are generalizations of Morse functions where we are
allowed to have critical set need not be isolated but may form a submanifold. For
example, let a torus be kept horizontally (a donut is kept in a plate). If f is the
height function on the torus, then there are two critical submanifolds, the top and
bottom circles.

Let M be a Riemannian manifold and f be any real valued smooth function
onM . Let Cr(f) denotes the set of all critical points of f andN be any submanifold
of M which is contained in Cr(f). For any point p ∈ M we have the following
decomposition:

TpM = TpN ⊕ νpN,
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where νpN is the normal bundle at p. Note that if p ∈ N then for any V ∈ TpN
and W ∈ TpM the Hessian vanishes, i.e., Hessp(f)(V,W ) = 0. Therefore, Hessp(f)
induces a symmetric bilinear form on νpN . Now we can define non-degenerate
critical submanifold similar to the non-degenerate critical points.

De�nition 2.2.5 (Non-degenerate critical submanifold). Let N ⊂ M be a sub-
manifold of a Riemannian manifold M . Then N is said to be non-degenerate
critical submanifold of f if N ⊆ Cr(f) and for any p ∈ N the Hessian, Hessp(f)
is non-degenerate in the direction normal to N at p.

In the above definition, by Hessp(f) is non-degenerate in the direction nor-
mal to N at p we mean that for any V ∈ νpN there exists W ∈ νpN such that
Hessp(f)(V,W ) 6= 0.

De�nition 2.2.6 (Morse-Bott functions). The function f : M → R is said to be
Morse-Bott if the connected components of Cr(f) are non-degenerate critical
submanifolds.

Example 2.2.4. Let f : M → R be a Morse function. Then the critical subman-
ifolds are zero-dimensional and hence the Hessian Hessp(f) at any critical point
p is non-degenerate in every direction as all the directions are normal. So f is
Morse-Bott with critical submanifolds as critical points.

Example 2.2.5. Any constant function defined on a smooth manifold M is a
Morse-Bott function with critical submanifold M .

Example 2.2.6. Let M = R2. Define

f : M → R, (x, y) 7→ x4.

Then the derivative map

df(x,y) =
(
4x3, 0

)
= (0, 0) =⇒ x = 0.

Thus, the critical set is {(x, y) : x = 0} which is y-axis. Now the Hessian at (0, y)
will be

Hess(0,y)(f) =

(
0 0
0 0

)
,

which is degenerate in every direction and hence it is not a Morse-Bott function.

Example 2.2.7. Let M = R2 with the Euclidean distance dist and N = {(x, x) :
x ∈ R}. Consider the function

f : M → R, (x, y) 7→ dist2((x, y), N) =
(x− y)2

2
.
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(x, y)

x−
y√

2

y
=
x

Figure 2.3: Distance of (x, y) from the line y = x.

So we have

df(x,y) = (x− y, y − x) = 0 =⇒ x = y.

Thus, the critical submanifold is N . Now to see whether it is non-degenerate or
not in the normal direction, we need to compute the Hessian. Let (p, p) ∈ N be
any critical point.

Hess(p,p)(f) =

(
1 −1
−1 1

)
.

Note that for any v = (a,−a) ∈
(
T(p,p)N

)⊥ with v 6= 0, we have

Hess(p,p)(f)(v,v) = vTHess(p,p)(f)v = 4a2 6= 0.

Thus, the given function is Morse-Bott.
Example 2.2.8. Let M = Rn+1 with the Euclidean metric d. If N = Sn be the unit
sphere, then the distance between a point p ∈ Rn+1 and N is given by

dist(p, N) := inf
q∈N

dist(p,q).

We shall denote by d2 the square of the distance. Now consider the function

f : M → R, x 7→ dist2(x, N) = (‖x‖ − 1)2 .

1

x

‖x‖ − 1

x 1− ‖x‖

Figure 2.4: Distance of x from the unit circle.



18 CHAPTER 2. PRELIMINARIES

The function f : M − {0} is a Morse-Bott function with N = Sn as the critical
submanifold. We will see a general version of this example in Chapter 4.
Example 2.2.9. Consider the function

f : S2 → R, (x, y, z) 7→ z2.

It is square of the height function discussed in the Example 2.2.8. We claim that
f is a Morse-Bott function with critical set as N = (0, 0, 1), S = (0, 0,−1) and the
equator E = {(x, y, 0) : x2 + y2 = 1}.

f

−1

0

1

z2

N

S

E

Figure 2.5: Square of the height function on sphere has three critical submani-
folds; north pole, south pole and the equator circle.

We take the charts on S2 as given in Example 2.2.2. So we have

ψ1 : R2 → R, p = (x, y) 7→

(
‖p‖2 − 1

1 + ‖p‖2

)2

, and

ψ2 : R2 → R, p = (x, y) 7→

(
1− ‖p‖2

1 + ‖p‖2

)2

.

The critical points are

dψ1p = (0, 0) =⇒
8
(
‖p‖2 − 1

)(
1 + ‖p‖2

)3 p = 0

=⇒ ‖p‖ = 1 or p = 0.

Similarly, ψ2 gives the same condition and hence the critical set will be N,S,
and E (Figure 2.5). It is clear that the two submanifolds {N} and {S} are non-
degenerate. To show that E is non-degenerate, we calculate the Hessian matrix at
any point of E, say p = (x, y, 0). The Hessian with respect to the above charts is
given by

Hessp(f) =

(
2x2 2xy
2xy 2y2

)
.

Note that for any p ∈ E the normal space (TpE)⊥ is spanned by (0, 0, 1). Since we
have

TpS2 = TpE ⊕ (TpE)⊥ = span{(−y, x, 0)} ⊕ span{(0, 0, 1)}.
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We need to show that for any v(0, 0, α) with α 6= 0, there exists w(0, 0, β) such that
Hessp(f)(v,w) 6= 0. For that we will identify TpS2 with R2 Consider two curves γ
and η passing through p.

γ(t) = {(x cos t− y sin t, y cos t+ x sin t, 0) : 0 ≤ t ≤ 2π}
η(t) = {(x cos t, y cos t, sin t) : 0 ≤ t ≤ 2π} .

Note that γ′(0) = (−y, x, 0) = v1 and η′(0) = (0, 0, 1) = v2. So we have

dφ1p (v1) =
d

dt
(φ1 ◦ γ) (t)

∣∣
t=0

= (−y, x)

dφ1p (v2) =
d

dt
(φ1 ◦ η) (t)

∣∣
t=0

= (−x,−y).

γ

η

p

v1

v2

Figure 2.6: The curves γ and η passing through p

So, we can define an isomorphism between

TpS2 → R2, (−y, x, 0) 7→ (−y, x) and (0, 0, 1) 7→ (−x,−y).

Now note that

Hessp((−x,−y), (−x,−y)) = (−x,−y)

(
2x2 2xy
2xy 2y2

)(
−x
−y

)
= (−x,−y)

(
−2x3 −2xy2

−2x2y −2y3

)
= 2x4 + 2x2y2 + 2x2y2 + 2y4

= 2
(
x2 + y2

)2
= 2.

Thus, Hessian is non-degenerate in the normal direction and hence it is a Morse-
Bott functions.

Remark 2.2.1. The above example, in particular, shows that the critical submani-
folds may have different dimensions.

Example 2.2.10. Let f : M → R be a Morse-Bott function. If π : X → M is any
smooth fiber bundle, then the composition π◦f : X →M is a Morse-Bott function.

The trace function on SO(n,R), U(n,C) and Sp(n,C) is a Morse-Bott function (cf
[Banyaga and Hurtubise, 2004, page 90, Exercise 22]).
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2.3 Cut locus and conjugate locus

Let M be a complete Riemannian manifold and p ∈ M . Let γ be a geodesic
such that γ(0) = p. A cut point of p along the geodesic γ is the first point q on γ
such that for any point q̃ on γ beyond q, there exists a geodesic γ̃ joining p to q̃
such that l (γ̃) < l(γ), where l(γ) is the length of γ. In simple words, q is the first
point beyond which γ stops to minimize the distance. In this section we will recall
the definition of cut locus of a point with some examples. We will also mention
some important results which will be generalized in the upcoming chapters. The
main references for this section are books [Sakai, 1996, Chapter 3, Section 4] and
[Cheeger and Ebin, 1975, Chapter 5].

2.3.1 Cut locus of a point

Let M be a Riemannian manifold and p, q ∈ M be two points. If there exists
a piecewise differentiable curve joining them, then using the Riemannian metric
we can measure the length of the curve. We now consider all possible curves join-
ing these points. Then the distance between p and q is the infimum of the length
of all (piecewise differentiable) curves joining p and q. This distance induces a
metric. We call M to be complete Riemannian manifold if (M,d) is a complete
metric space. From now onwards, we always consider M to be a complete Rie-
mannian manifold. A geodesic γ(t), t ∈ [a, b] is said to be extendable if it can be
extended to a geodesic γ(t), t ∈ [c, d] ) [a, b]. A Riemannian manifold is said
to be geodesically complete if any geodesic can be extendable for all t ∈ R. Then
the Hopf-Rinow Theorem [Hopf and Rinow, 1931] says that these two notions of
completeness are equivalent. If a manifold is not complete, then we can not al-
ways extend a geodesic. For example, R2 \ {0} is not complete and the geodesic
γ(t) = t, t > 0 is not extendable in the negative x-axis. This problem does not
arise if the manifold is complete. The more is true which says that M is complete
if and only if every geodesic can be extended for infinite time. The completeness
of M also guarantees that any two points can be joined by a distance minimal
geodesic which is defined as follows.

De�nition 2.3.1 (Distance minimal geodesic). A geodesic joining p and q is said
to be distance minimal if the length of the geodesic is equal to the distance
between these points, i.e., l(γ) = d(p, q).

We shall now define the cut locus, Cu(p) of a point p in a complete Rieman-
nian manifold M . The notion of cut locus was first introduced for convex surfaces
by Henri Poincaré [Poincaré, 1905] in 1905 under the name la ligne de partage
meaning the dividing line.

De�nition 2.3.2 (Cut locus of a point). Let M be a complete Riemannian man-
ifold and p ∈ M . If Cu(p) denotes the cut locus of p, then a point q ∈ Cu(p) if
there exists a minimal geodesic joining p to q any extension of which beyond
q is not minimal.
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Consider the set

S = {s > 0 : γ(t), 0 ≤ t ≤ s is a distance minimal geodesic}.

If S = (0, t0), then γ(t0) is the cut point of p along γ, and if S = (0,∞), then the
point p does not have a cut locus along γ(t).

Note that if q0 is a point on the geodesic γ(t) which comes after the cut point, i.e.,
q = γ(t0) and q0 = γ(t), t > t0, then there is a geodesic η(t) joining p to q0 such
that l(η) < l(γ) (see Figure 2.7).

p

q

q0

γη

M

l(η) < l(γ)

Figure 2.7: A point which is beyond cut point can be joined by a shorter geodesic

If q0 comes before the cut point q, then we can not find any geodesic shorter than
γ joining p to q0. Moreover, we even can not find another geodesic η joining p to
q0 such that l(γ) = l(η). So we can say that if q0 is coming before cut point, then γ
is the only minimal geodesic joining p to q0. To prove this fact, we assume that if
η is another geodesic joining p to q0 such that l(γ) = l(η) then

δ(t) =

{
η(t), 0 ≤ t ≤ t1

γ(t), 0 ≤ t1 ≤ t0

is a curve such that l(δ) = d(p, q) = l(γ). Choose two points q1 and q2 sufficiently
close to q0 as shown in Figure 2.8. Then α is a distance minimal geodesic joining
points q1 and q2 and hence we got a curve ζ which is η from p to q1, α from q1 to q2
and γ from q2 to q. Note that l(ζ) is less than the distance between p and q, which
is a contradiction.

We now will discuss some examples.

Example 2.3.1. Let M = Rn be the n-Euclidean plane equipped with the Eu-
clidean metric. The cut locus of any point is a null set because any geodesic never
fails to satisfy its distance minimizing property.

Example 2.3.2 (Cut locus of a point in n-sphere). Let M = Sn be the n-sphere with
the round metric. The geodesics are great circles. The cut locus of the south pole
is the north pole.
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p

q

q0

γη

q1

q2

α

Figure 2.8: If a point appears before the cut point along the geodesic, then it can
not be joined by two or more minimal geodesics

0

q1

q2

Geodesic never fails
to be distance minimal

Figure 2.9: Cut locus of (0, 0) in R2

N

S

(a)

N

S

P

(b)

N

S

P

(c)

Figure 2.10: Cut locus of south pole in S2
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In Figure 2.10 we have proven the claim. If γ is a geodesic from south pole S to
north pole N , then the length of γ is π which is also the distance between these
two points. Extending this geodesic beyond N (Figure 2.10b) makes its length
more than π, whereas the distance between S to P is less than π (Figure 2.10c).

Example 2.3.3 (Flat torus). Consider [0, 1] × [0, 1] ⊆ R2. We identify (x, 0) with
(x, 1) and (0, y) with (1, y) where x, y ∈ [0, 1]. The obtained quotient space is the
flat torus. The metric is naturally induced from the Euclidean metric and hence
the geodesics are straight lines. If p be the center

(
1
2
, 1
2

)
, then the cut locus is the

wedge of two circles.

p
γ

η

(a) Extending γ beyond the blue line
fails to be distance minimal

(b) cut locus of p

Figure 2.11: Cut locus of a point in a flat torus

Example 2.3.4 (Real projective planes). We obtain the real projective plane RPn
by identifying the antipodal points of the round sphere Sn. The metric on RPn is
induced from the metric on Sn. If π : Sn → RPn, p,−p 7→ [p], then

〈X, Y 〉[p] =:
〈
(dπp)

−1 (X), (dπp)
−1 (Y )

〉
p

is a metric on RPn. Since the antipodal map is an isometry of Sn, the map π is
a local isometry. Let [p] ∈ RPn such that it is the image of north and south pole
under the map π. Then the image of the equator of Sn under the quotient map
π, RPn−1, is the cut locus of [p]. We will see a generalization of similar result in
Chapter 6.

Example 2.3.5 (Cut locus a point in cylinder). Note that for a given point p if more
than one distance minimal geodesic joining p and q exists, then q is a cut point.
Using this, we observed that the cut locus of a point in cylinder is a line (shown in
Figure 2.12). We also note that the point −p is the closest point and there exists
a closed geodesic passing through −p starting and ending at p. This fact is more
generally true (see Theorem 2.3.6). Generalizing this example, the cut locus of a
point (p,v) ∈ Sn × Rm with the product metric is {−p} × Rm.
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p
Cu(p)

Figure 2.12: Cut locus of a point in a cylinder

2.3.2 Conjugate locus of a point

Let M be a Riemannian manifold and γ be any curve defined on [a, b]. A
variation of γ is a function Γ : [a, b]× (−ε, ε)→M such that Γ(t, 0) = γ(t). So Γ is
a one-parameter family of curves γs(t) := Γ(t, s). If each of γs is a geodesic, then
we call it is a geodesic variation . In this section by variation we mean the geodesic

variation. The variation field
∂Γ

∂s
(t, 0) is called a Jacobi field and we will denote it

by J(t).

Let γ be a geodesic. We say that a point q ∈M on γ is conjugate to p ∈M if
we can find a variation γs of γ such that γs(0) = p for s ∈ (−ε, ε) and each of the
geodesic γs meet infinitesimally at q. That is, if γ(t0) = q, then

∂γs
∂t

∣∣∣∣
(t,s)=(0,0)

= 0 =
∂γs
∂t

∣∣∣∣
(t,s)=(t0,0)

.

The conjugate points can be defined in two more equivalent ways. One of them
uses the Jacobi field and other uses the exponential map. Recall that a Jacobi field
along a geodesic γ satisfies

∇γ̇∇γ̇J +R (γ̇, J) γ̇ = 0,

where R is the Riemann curvature tensor.

De�nition 2.3.3 (Conjugate points in terms of Jacobi �elds). A point p is said to
be conjugate to q along a geodesic γ if there exists a non-vanishing Jacobi field
along γ which vanishes at p and q.

p
q

γ

J

Figure 2.13: p and q are conjugate to each other along γ
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De�nition 2.3.4 (Conjugate points in terms of exponential map). For a point
p ∈ M we say that v ∈ TpM is a tangent conjugate point of p if the derivative
of the exponential map is singular at v i.e., det

(
d
(
expp

)
v

)
= 0. The point q :=

expp(v) is said to be conjugate point of p along the geodesic γ(t) = expp(tv).

For a proof of equivalence of these three definitions we refer the reader to books
on Riemannian geometry, for example see [do Carmo, 1992].

The multiplicity of a conjugate point is defined to be the nullity of d(expp)v.
If nullity is one, then we say it is first conjugate point.

Example 2.3.6. Let M = Rn with the Euclidean metric, then there are no conju-
gate points along any geodesic.

Example 2.3.7. If M = Sn with the round metric, then any antipodal points are
conjugate to each other along any great circles. In particular, south pole and north
poles are conjugate to each other.

Example 2.3.8. If M is a flat torus, then there are no conjugate points along any
geodesic. Recall that metric is flat if and only if the Riemann curvature tensor R
vanishes, which implies the Jacobi field is affine and vanishes at two points forced
it to be zero everywhere. This example, in particular, proves that if M is flat, then
there are no conjugate points along any geodesic.

Example 2.3.9. Let M be the real projective plane, RPn, with the metric induced
from Sn. Here any point p is conjugate to itself along any geodesic.

2.3.3 Some results involving cut and conjugate locus

We will present some results related to the two concepts. As most of the re-
sults are standard, we will not provide proofs. Instead, we will mention references
for each.

The following result is one of the most important characterization of cut
locus in terms of first conjugate point.

Theorem 2.3.1. [Sakai, 1996, Chapter 3, Proposition 4.1] Let γ be a unit
speed geodesic. Then q = γ(t0) is a cut point of p = γ(0) along γ if either of
the following holds.

(i) The point q = γ(t0) is the first conjugate point of p along γ.

(ii) There exists at least two distance minimal geodesic joining p to q.

The next result is also a relation between the two loci. In particular, it states that
the cut point of p always comes before (if not the same) the conjugate point.

Theorem 2.3.2. [Kobayashi, 1967, Theorem 4.1] Let γ be a unit speed
geodesic starting at p. Let q = γ(t0) be the first conjugate point along γ.
Then γ is not a distance minimal geodesic beyond q.
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There is one more characterization of the cut locus in terms of number of geodesics
joining the point to the cut point. For p ∈M we define the set Se(p) as

Se(p) :=

{
q ∈M

∣∣∣∣∣ there exists at least two distance
minimal geodesics joining p to q

}
(2.5)

Note that Se(p) ⊆ Cu(p). Franz-Erich Wolter in 1979 showed that the closure of
Se(p) is the cut locus.

Theorem 2.3.3. [Wolter, 1979, Theorem 1] Let M be a complete Riemannian
manifold and p be any point in M . Then

Se(p) = Cu(p).

The above theorem, in particular, shows that the cut locus of a point is a closed
set. He also proved that the distance squared function from the point p is not
differentiable on the set Se.

Theorem 2.3.4. [Wolter, 1979, Lemma 1] Let d2(p, ·) denotes the square of
the distance from the point p. Let q ∈ Se(p) and let γ1 and γ2 be two distance
minimal geodesics joining p to q. Then the directional derivative of d2(p, ·)
does not exist at q in the direction of γi, i = 1, 2.

For some special point of the cut locus of p we can improve Theorem 2.3.1.

Theorem 2.3.5. [Kobayashi, 1967, Theorem 4.4] Let q be a cut point of p and
we assume that it is the closest point of p. Then q is either conjugate to p along
a minimal geodesic joining these two points, or q is the mid-point of a closed
geodesic starting and ending at p.

We can even make the above theorem sharper if we provide an additional condi-
tion.

Theorem 2.3.6. [Kobayashi, 1967, Theorem 4.5] Let p be any point in M
such that d(p,Cu(p)) is the smallest and q be any cut point closest to p. Then
either q is conjugate to p with respect to a distance minimal geodesic joining p
and q or q is the mid-point of a closed geodesic starting and ending smoothly
at p.
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The cut locus of a point plays an important role in analyzing the local struc-
ture of a Riemannian manifold M . In the last chapter we had studied cut locus of
a point, conjugate locus and some of their properties. Similarly, one can ask about
the notion of cut locus for a non-empty subset of M . In order to give a similar def-
inition, we need to first define distance minimal geodesics joining a point p ∈ M
to a subset N ⊆ M . If q ∈ N such that the geodesic is distance minimal geodesic
joining p and q, and it minimizes the distance between the set N and the point p
then we call such a geodesic a distance minimal geodesic. Now the cut locus of
N consists of all points q ∈ M such that there exists a distance minimal geodesic
which fails to be minimal beyond q. Conjugate locus is termed as focal locus if we
replace point with submanifold. In this chapter we will study the cut locus of a
subset, in particular, a submanifold. We will motivate the results based on some
examples and the proofs will be discussed in the subsequent chapters.

3.1 Cut locus of submanifolds

In order to have a definition of the cut locus for a submanifold (or a subset),
we need to generalize the notion of a minimal geodesic.

De�nition 3.1.1. A geodesic γ is called a distance minimal geodesic joining N
to p if there exists q ∈ N such that γ is a minimal geodesic joining q to p and
l(γ) = d(p,N). We will refer to such geodesics as N -geodesics.

If N is an embedded submanifold, then an N -geodesic is necessarily orthogonal to
N . This follows from the first variational principle. We are ready to define the cut
locus for N ⊂M .

27
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De�nition 3.1.2 (Cut locus of a subset). Let M be a Riemannian manifold and
N be any non-empty subset of M. If Cu(N) denotes the cut locus of N , then
we say that q ∈ Cu(N) if and only if there exists a distance minimal geodesic
joining N to q such that any extension of it beyond q is not a distance minimal
geodesic.

Example 3.1.1. Let M = R2 with the Euclidean metric and N be the x-axis. Then
the cut locus of N will be empty. If we shoot any geodesic, which are straight lines,
perpendicular to x-axis, these will never fail to be distance minimal and hence the
cut locus will be empty.

N

Geodesics never fails to minimize

Figure 3.1: Cut locus of x-axis in R2

Example 3.1.2. Let M = Rn+1 with the Euclidean metric and N = Sn. Then the
cut locus will be the center of the sphere. Note that if we shoot a minimal geodesic
from any point of Sn, then it fails its minimizing property beyond the origin (see
Figure 3.2a). Hence, 0 is a cut point. To see this is the only cut point, we start with
any point a other than origin. Consider a distance minimal geodesic γ starting at
Sn to a.

γ(t) = (1− t) a

‖a‖
+ ta, 0 ≤ t ≤ 1.

Note that
l(γ) = d(P,Q) = |1− ‖a‖| .

Let ε = ‖a‖
2

. Consider the point R = γ(1 + ε). We have

l(γ)
∣∣
[0,1+ε]

= d(P,R).

Now we will show that d(Sn, R) is same as the length of γ. Note that R = (1 +
ε)a− εa

‖a‖ which simplifies to a
2
(1− ‖a‖). Note that

d2(Sn, R) = inf
x∈Sn

d2
(
x,

a

2
(1− ‖a‖)

)
= min

{
‖x− v‖2 : ‖x‖2 = 1

}
, v =

a

2
(1− ‖a‖).

Set

f(x) = ‖x− v‖2 , g(x) = ‖x‖2 − 1.

So we want to minimize f such that g(x) = 0.

∇f(x)− λ∇g(x) = 0 =⇒ (x− v)− λx = 0 =⇒ x =
v

1− λ
.
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(0, 0)

(a) (0, 0) is a cut point

P

aγ
R

(b) No other points are cut points

Figure 3.2: Cut locus of S1 in R2

Note that the above quantity is well defined as v 6= 0. Now we will use the given
constrain,

‖x‖ = 1 =⇒ ‖v‖ = |1− λ|
=⇒ λ = 1± ‖v‖

=⇒ x = ± v

‖v‖
= ± a

‖a‖
.

The point a
‖a‖ corresponds to the minima and note that P = a

‖a‖ . This proves the
claim.
Example 3.1.3. Let M = S2 with the round metric and N = S0 = {e3,−e3}, where
e3 = (0, 0, 1). We claim that the cut locus is the equator, {(x, y, 0) : x2 + y2 = 1}.
Note that if γ is an N -geodesic (great circle) starting at the North Pole, then it
remains distance minimal until it hits the equator circle. As soon as it goes beyond
the circle, we can find another geodesic η from the South Pole which is shorter
and hence γ is no longer distance minimal, see Figure 3.3.

P

γ

Q

η

e3

−e3
δ

ζ

P ′

Q′

A

Figure 3.3: Cut locus of S0 in 2-sphere

Therefore, the equator circle is in the cut locus. We also note that any other point
not on the equator is either on the top or bottom hemisphere. In either of the
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cases, a minimal geodesic does not fail its distance minimal property beyond the
point. So the cut locus is precisely the circle with z = 0. By the same argument it
follows that the cut locus of S0 in Sn is

Sn−1 =
{

(x0, · · · , xn−1, 0) : x20 + · · ·+ x2n−1 = 1
}
.

Example 3.1.4 (Cut locus of equator in 2-sphere). Let M = S2 with the round metric
and N = S1 = {(x, y, 0) : x2 + y2 = 1}. The cut locus of N is S0 = {e3,−e3}. The
argument is similar as above.
Example 3.1.5 (Join induced by cut locus). Let Ski ↪→ Sn denote the embedding of
the k-sphere in the first k+1 coordinates while Sn−k−1l denote the embedding of the
(n−k−1)-sphere in the last n−k coordinates. It can be seen that Cu(Ski ) = Sn−k−1l .
In fact, starting at a point p ∈ Ski and travelling along a unit speed geodesic in a
direction normal to TpSki , we obtain a cut point at a distance π/2 from Ski .

Figure 3.4: The cut locus of the equator in S2

Moreover, in this case Cu(Sn−k−1l ) = Ski and the n-sphere Sn can be expressed
as the union of geodesic segments joining Ski to Sn−k−1l . This is a geometric variant
of the fact that the n-sphere is the (topological) join of Sk and Sn−k−1. We also
observe that Sn − Sn−k−1l deforms to Ski while Sn − Ski deforms to Sn−k−1l .

In our example, let νn−ki and νk+1
l denote the normal bundles of Ski and

Sn−k−1l respectively. We may express Sn as the union of normal disk bundles
D(νi) and D(νl). These disk bundles are trivial and are glued along their com-
mon boundary Ski ×Sn−k−1l to produce Sn. Moreover, Ski is an analytic submanifold
of the real analytic Riemannian manifold Sn with the round metric. There is a gen-
eralization of this phenomenon [Omori, 1968, Lemmas 1.3-1.5, Theorem 3.1].

Theorem 3.1.1 (Omori 1968). Let M be a compact, connected, real analytic
Riemannian manifold which has an analytic submanifold N such that the cut
point of N with respect to every geodesic, which starts from N and whose
initial direction is orthogonal to N has a constant distance π from N . Then
N ′ = Cu(N) is an analytic submanifold and M has a decomposition M =
DN ∪ϕ DN ′, where DN,DN ′ are normal disk bundles of N,N ′ respectively.
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3.1.1 Separating set

In all the examples in the previous section, we observed the cut locus of any
submanifold N is same as the set of all points which has at least two minimal
geodesics joining N to the point. This leads to the following definition.

De�nition 3.1.3 (Separating set). Let N be a subset of a Riemannian manifold
M . The set Se(N), called the separating set, consists of all points q ∈ M such
that at least two distance minimal geodesics from N to q exist.

M

N

γ η

P

Figure 3.5: Separating set of N

The following example shows that for a given submanifold N ⊆ M , the
separating set need not be same as the cut locus.
Example 3.1.6 (Cut locus of ellipse). Let M = R2 with the Euclidean metric and
N =

{
(x, y) : x2

a2
+ y2

b2
= 1
}

for some non-zero real numbers a and b with a 6= b.
Let A = (−a, 0) and B = (a, 0) be two foci of the ellipse. Note that for any point

A BC

Figure 3.6: Cu(N) and Se(N)

C = (x, 0) with x ∈ (−a, a), we have two N -geodesics joining N to C. Hence, all
the points are separating point (see Figure 3.6). However, the two foci are not
separating points, but they are in the cut locus. So Se(N) 6= Cu(N).



32 CHAPTER 3. CUT LOCUS OF A SUBMANIFOLD

Note that Se(N) ⊂ Cu(N). Although the sets Se(N) and Cu(N) are not same,
in general, we can ask whether including the limit points of Se(N) make them
equal. In the next chapter, we will see that indeed this is the case, and we have
Se(N) = Cu(N) (Theorem 4.2.2). This, in particular, proves that cut locus is a
closed set. In general, the cut locus of a subset need not be closed, as illustrated
by the following example [Sabau and Tanaka, 2016].

Example 3.1.7 (Sabau-Tanaka 2016). Consider R2 with the Euclidean inner prod-
uct. Let {θn}, with θ1 ∈ (0, π), be a decreasing sequence converging to 0. Let
B(0, 1) be the closed unit ball centered at (0, 0). Suppose Bn := B(qn, 1) is the
open ball with radius 1 and centered at qn. We have chosen qn such that it
does not belong to B(0, 1) and denotes the center of the circle passing through
pn = (cos θn, sin θn) and pn+1 = (cos θn+1, sin θn+1). Define N ⊂ R2 by

N := B(0, 1) \ ∪∞n=1B(qn, 1).

B1

B2

B3

B4

B5

(1, 0) q = (2, 0)

N = B(0, 1) \ ∪∞
n=1Bn

= pn = (cos θn, sin θn)
= qn

Figure 3.7: Cut locus need not be closed

Note that N is a closed set and the sequence {qn} of cut points of N converges to
the point (2, 0). However, (2, 0) is not a cut point of N .

Using the characterization of cut locus in terms of the separating set, we
will list some more examples. Most of the justification is provided by the help of
pictures.

Example 3.1.8 (Cut locus of k points on the unit circle). Let M = S1 with the
round metric and N = {A1, A2, A3}. Then the cut locus will be {B12, B23, B31}, see
Figure 3.8. The above example can be generalized for any k-points on S1. The cut
locus of {A1, A2, · · · , Ak} will be {B12, B23, · · · , Bk1} where Bii+1 is the mid-point
of Ai and Ai+1.
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A1

A2

A3

B12

B23

B31

Figure 3.8: Cut locus of three points on unit circle

Example 3.1.9 (Cut locus of k points on S2). Let A1, A2 and A3 be three points on
the equator. The cut locus will be half great circles passing through the mid-points
B12, B23 and B31, see Figure 3.9a. In fact, all these semicircles are the separating
set of {A1, A2, A3}, being closed the closure is itself. So, the cut locus is homotopic
to wedge of two circles. The same can be generalized for k-points on the equator

A2
A1

A3

B13B23

B12

(a) Cut locus of three points in S2

(b) Cut locus is ho-
motopic equivalent to
S1 ∨ S1

Figure 3.9: Cut locus of three points in S2

of S2 to conclude that the cut locus is homotopic to ∨k−1S1. Similarly, one can
show that cut locus of k-points in Sn is homotopic to ∨k−1Sn−1. In this example
also, the separating set is same as the cut locus as the separating set is closed.

The above example, in particular, shows that cut locus need not be a mani-
fold.

Example 3.1.10. Let M = R2 with the Euclidean metric and N be the wedge of
two circles. The cut locus of N consists of centers of these two circles and the
y-axis with origin removed, see Figure 3.10. In fact, if we take any other point
then that is not a cut point as any geodesic, a straight line, never fails its distance
minimal property. This example, also shows that the cut locus of a subset need not
be a closed set.
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C1 C2

γ

η

Figure 3.10: Cut locus of wedge of two circles in R2

Example 3.1.11. Let M be the cylinder S1 × R with the product metric. Let N =
{v} × R for some v ∈ S1. Then cut locus of N is {−v} × R, see Figure 3.11.

N Cu(N)

v

Figure 3.11: Cut locus of a line on cylinder

3.2 An illuminating example

Let M = M(n,R) be the set of n × n matrices, and N = O(n,R) be the set
of all orthogonal n × n matrices. Let A,B ∈ M(n,R). We fix the standard flat
Euclidean metric on M(n,R) by identifying it with Rn2. This induces a distance
function given by

d(A,B) :=
√

tr ((A−B)T (A−B))

Consider the distance squared function

f : GL(n,R)→ R, A 7→ d2(A,O(n,R)).

In order to study this function, we want a closed formula for it.
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Lemma 3.2.1. The function f can be explicitly expressed as

f(A) = n+ tr
(
ATA

)
− 2tr

(√
ATA

)
. (3.1)

Proof. Let A ∈ GL(n,R) be any invertible matrix. Then,

f(A) = inf
B∈O(n,R)

d2(A,B)

= inf
B∈O(n,R)

‖A−B‖2

= inf
B∈O(n,R)

tr
(
(A−B)T (A−B)

)
= inf

B∈O(n,R)
tr
(
ATA− ATB −BTA+BTB

)
= inf

B∈O(n,R)

[
tr
(
ATA

)
− tr

(
ATB

)
− tr

(
BTA

)
+ tr

(
BTB

) ]
= tr

(
ATA

)
+ inf

B∈O(n,R)

[
− 2tr

(
ATB

) ]
+ n

= tr
(
ATA

)
− 2 sup

B∈O(n,R)
tr
(
ATB

)
+ n. (3.2)

The problem of computing f(A) is equivalent to maximizing the function

hA : O(n,R)→ R, B 7→ tr
(
ATB

)
.

Case I: A is a diagonal matrix with positive entries. Then,

|hA(B)| =
∣∣tr (ATB)∣∣ =

∣∣∣∣∣
n∑
i=1

aiibii

∣∣∣∣∣ ≤
n∑
i=1

|aiibii| ≤
n∑
i=1

aii = tr
(
AT
)

= hA(I).

Thus, one of the maximizer is B = I.

Case II: For any non-singular matrix A, we will use the singular value decompo-
sition (SVD). Write A = UDV T , where U and V are n×n orthogonal matrices and
D is a diagonal matrix with positive entries. For any B ∈ O(n,R) using the cyclic
property of the trace we have

tr
(
ATB

)
= tr

(
V DUTB

)
= tr

(
D(UTBV )

)
. (3.3)

Since UTBV is an orthogonal matrix, maximizing over B reduces to the earlier
observation that B will be a maximizer if UTBV = I, which implies B = UV T .

Since A is invertible, by the polar decomposition, there exists an orthogonal
matrix Q and a symmetric positive definite matrix S =

√
ATA such that A = QS.

As S is symmetric matrix we can diagonalize it, that is, S = PD̃P T , where P ∈
O(n,R) and D̃ is a diagonal matrix. Thus,

A = QS = QPD̃P T .

Set U = QP , V = P to obtain the SVD of A. In particular, the minimizer is given
by

B = Q = A
(√

ATA
)−1

.
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Therefore,
f(A) = n+ tr

(
ATA

)
− 2 tr

(√
ATA

)
for invertible matrices.

To find out f(A) for a non-invertible matrix A, we note that GL(n,R) is
dense in M(n,R) and that

√
ATA is well-defined for A ∈ M(n,R). The continuity

of the map A 7→
√
ATA on M(n,R) implies that the same formula (3.1) for f

applies to A as well.

In order to understand the differentiability of f , it suffices to analyze the function
A 7→ tr

(√
ATA

)
.

Lemma 3.2.2. The map g : M(n,R) → R, A 7→ tr
(√

ATA
)

is differentiable
if and only if A is invertible.

Proof. Let A be an invertible matrix. We will prove that the function g is differ-
entiable at A. Let P be the set of all positive definite matrices which is an open
subset of the set of all symmetric matrices S. We will prove that the map

r : P → P, A 7→
√
A

is differentiable. Define a function

s : P → P, A 7→ A2.

We will show that s is a diffeomorphism and from the inverse function theorem
r will be differentiable. In order to show that s is a diffeomorphism, we claim
that for A ∈ P, dsA : TAP → TA2P is injective. Note that P is an open subset
of a vector space S and therefore, TAP ∼= S ∼= TA2P. So, take B ∈ S such that
dsA(B) = 0. We will show that B = 0. Recall that dsA(B) = AB+BA. Now choose
an orthonormal basis {v1,v2, · · · ,vn} of eigenspace of A and Avi = λivi (λi > 0).
Then,

A(Bvi) = −BAvi = −Bλivi = −λi(Bvi)

which implies Bvi is also an eigenvector of A with eigenvalue −λi < 0. Hence,
Bvi = 0 which implies B = 0.
For the converse, we will show that if A is a singular matrix, then the map g is
not directional differentiable. Let A be a singular matrix. Using the singular value
decomposition, we write

A = U

(
D 0
0 0k

)
V T ,

where D is a (n− k)× (n− k) diagonal matrix with positive entries. If

B = U

(
0n−k 0

0 Ik

)
then we claim that g is not differentiable in the direction of B. Since√

(A+ tB)T (A+ tB) = V

(
D 0
0 Ik|t|

)
V T
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the limit

lim
t→0

g(A+ tB)− g(A)

t
= lim

t→0

tr

(
V

(
D 0
0 Ik|t|

)
V T

)
− tr

(
V

(
D 0
0 0k

)
V T

)
t

= k lim
t→0

|t|
t

does not exist and hence the function g is not differentiable.

Proposition 3.2.1. If A is an invertible matrix, then

dgA(H) =

〈
A
(√

ATA
)−1

, H

〉
, (3.4)

where H is a symmetric matrix of order n.

The following lemma along with chain rule will prove the above proposition.

Lemma 3.2.3. Let A be a positive definite matrix and ψ : A 7→
√
A. Then

dψA(H) =

∫ ∞
0

e−t
√
AHe−t

√
A dt,

for any symmetric matrix H.

Proof. As ψ(A) · ψ(A) = A, differentiating at A we obtain

dψA(H)ψ(A) + ψ(A)dψA(H) = H. (3.5)

We will show the following:

(i) For any positive definite matrix X and for any symmetric matrix Y the inte-
gral ∫ ∞

0

e−tXY e−tX dt (3.6)

converges. We note that the eigenvalues of e−tX are e−tλj , where λj are the
eigenvalues of X. Since X is a positive definite matrix, each of the λj is
positive. Without loss of generality, we assume that λ = λ1 is the smallest
eigenvalue of X. Then we have

e−tλj ≤ e−tλ =⇒
∥∥e−tX∥∥ = e−tλ.

where ‖ · ‖ is the operator norm. Therefore, the operator norm of the in-
tegrand in (3.6) is bounded by 2e−tλ‖Y ‖, which is an integrable function.
Hence, the integral given by (3.6) converges.

(ii) The matrix dψA(H) satisfies (3.5). Observe that(∫ ∞
0

e−t
√
A ·H · e−t

√
Adt

)√
A+
√
A

(∫ ∞
0

e−t
√
A ·H · e−t

√
A dt

)
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=

∫ ∞
0

(
e−t
√
A ·H · e−t

√
A
√
A+
√
Ae−t

√
A ·H · e−t

√
A
)

dt

=

∫ ∞
0

−
(
e−t
√
AHe−t

√
A
)′

dt = H.

From (i), (ii) and the uniqueness of the derivative, the lemma is proved.

We now give a proof of Proposition 3.2.1.

Proof of Proposition 3.2.1. Note that using Lemma 3.2.3, for any symmetric matrix
H we have

dgA(H) = tr

(∫ ∞
0

e−t
√
ATA

(
ATH +HTA

)
e−t
√
ATA dt

)
. (3.7)

Let us simplify the above expression to get the desired result.

dgA(H) =

∫ ∞
0

[
tr
(
e−2t

√
ATAHTA

)
+ tr

(
e−2t

√
ATAATH

)]
dt

= tr

(∫ ∞
0

e−2t
√
ATAHTA dt

)
+ tr

(∫ ∞
0

e−2t
√
ATAATH dt

)
= tr

([∫ ∞
0

e−2t
√
ATA dt

]
HTA

)
+ tr

([∫ ∞
0

e−2t
√
ATA dt

]
ATH

)

= tr


−
(√

ATA
)−1

2

∫ ∞
0

d

dt
e−2t

√
ATA dt

HTA



+ tr


−
(√

ATA
)−1

2

∫ ∞
0

d

dt
e−2t

√
ATA dt

ATH


= tr


(√

ATA
)−1

2
HTA

+ tr


(√

ATA
)−1

2
ATH


=

1

2
tr

((√
ATA

)−1
ATH

)
+

1

2
tr

(
ATH

(√
ATA

)−1)
= tr

((√
ATA

)−1
ATH

)
=

〈
A
(√

ATA
)−1

, H

〉
Thus,

dgA(H) =

〈
A
(√

ATA
)−1

, H

〉
.

For any A ∈ GL(n,R)

dfA = 2A− 2A
(√

ATA
)−1

= −2A
(√

ATA
−1
− I
)
.
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Hence, the negative gradient of the function f , restricted to GL(n,R) is given by

−∇f
∣∣
A

= 2A
(√

ATA
−1
− I
)
.

The critical points are orthogonal matrices. If γ(t) is an integral curve of −∇f
initialized at A, then γ(0) = A and

dγ

dt
= −2γ(t) + 2γ(t)

(√
γ(t)Tγ(t)

)−1
= −2γ(t) + 2

(
γ(t)T

)−1√
γ(t)Tγ(t). (3.8)

Take the test solution of (3.8) given by

γ(t) = Ae−2t + (1− e−2t)
(
AT
)−1√

ATA = Ae−2t + (1− e−2t)A
(√

ATA
)−1

. (3.9)

In order to show that γ(t) satisfies (3.8), note that

γ(t)Tγ(t) =
[
Ae−2t + (1− e−2t)

(
AT
)−1√

ATA
]T

[
Ae−2t + (1− e−2t)

(
AT
)−1√

ATA
]

=
[
AT e−2t + (1− e−2t)

√
ATAA−1

]
[
Ae−2t + (1− e−2t)

(
AT
)−1√

ATA
]

= ATAe−4t + 2e−2t(1− e−2t)
√
ATA

+ (1− e−2t)2
(√

ATAA−1
(
AT
)−1√

ATA
)

= ATAe−4t + 2e−2t(1− e−2t)
√
ATA

+ (1− e−2t)2
(√

ATA
(
ATA

)−1√
ATA

)
= ATAe−4t + 2e−2t(1− e−2t)

√
ATA

+ (1− e−2t)2
(√

ATA
(√

ATA
)−1 (√

ATA
)−1√

ATA

)
= ATAe−4t + 2e−2t(1− e−2t)

√
ATA+

(
1− e−2t

)2
I

=
(√

ATA e−2t +
(
1− e−2t

)
I
)2
.

Thus,

γ(t)Tγ(t) =
(√

ATA e−2t +
(
1− e−2t

)
I
)2

and hence (√
γ(t)Tγ(t)

)T
=
(√

ATAA−1γ(t)
)T

= γ(t)T
(
AT
)−1√

ATA

This implies that √
γ(t)Tγ(t) =

√
ATA

(
e−2tI +

(√
ATA

)−1 (
1− e−2t

))
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=⇒
√
γ(t)tγ(t) =

√
ATAA−1γ(t)

=⇒
(√

γ(t)Tγ(t)
)T

=
(√

ATAA−1γ(t)
)T

= γ(t)T
(
AT
)−1√

ATA

=⇒
(
γ(t)T

)−1√
γ(t)Tγ =

(
AT
)−1√

ATA.

The right hand side of (3.8), with the test solution, can be simplified to

−2Ae−2t + 2e−2t
(
AT
)−1√

ATA

which is the derivative of γ. Thus, γ(t), as defined in (3.9), is the required flow line
which deforms GL(n,R) to O(n,R). In particular, GL+(n,R) deforms to SO(n,R)
and other component of GL(n,R) deforms to O(n,R) \ SO(n,R). We note, how-
ever, that this deformation takes infinite time to perform the retraction.

Remark 3.2.1. A modified curve

η(t) = A(1− t) + tA
(√

ATA
)−1

(3.10)

with the same image as γ, defines an actual deformation retraction of GL(n,R)
to O(n,R). Apart from its origin via the distance function, this is a geometric
deformation in the following sense. Given A ∈ GL(n,R), consider its columns
as an ordered basis. This deformation deforms the ordered basis according to
the length of the basis vectors and mutual angles between pairs of basis vectors
in a geometrically uniform manner. This is in sharp contrast with Gram-Schmidt
orthogonalization, also a deformation of GL(n,R) to O(n,R), which is asymmetric
as it never changes the direction of the first column, the modified second column
only depends on the first two columns and so on.

We now show that f is Morse-Bott. The tangent space TIO(n,R) consists of
skew-symmetric matrices while the normal vectors at In are the symmetric matri-
ces. As left translation by an orthogonal matrix is an isometry of M(n,R), normal
vectors at A ∈ O(n,R) are of the form AW for symmetric matrices W . Since

dfA(H) = 2 〈A,H〉 − 2
〈
A
(√

ATA
)−1

, H
〉

the relevant Hessian is

Hess(f)A(H,H ′) = lim
t→0

dfA+tH′(H)− dfA(H)

t

with H = AW,H ′ = AW ′ and symmetric matrices W,W ′. Solving the Hessian
expression, we have

Hess(f)A(H,H ′) = lim
t→0

2 〈A+ tH ′, H〉 − 2
〈

(A+ tH ′)
√

(A+ tH ′)(A+ tH ′)T
−1
, H
〉

t

−
2 〈A,H〉 − 2

〈
A
√
ATA

−1
, H
〉

t


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= lim
t→0

2 〈A,H〉+ 2t 〈H ′, H〉 − 2
〈
A
√

(A+ tH ′)T (A+ tH ′)
−1
, H
〉

t

−
2t
〈
H ′
√

(A+ tH ′)T (A+ tH ′)
−1
, H
〉

+ 2 〈A,H〉 − 2
〈
A
√
ATA

−1
, H
〉

t



= lim
t→0

2t 〈H ′, H〉 − 2t
〈
H ′
√

(A+ tH ′)T (A+ tH ′)
−1
, H
〉

t

−2
〈
A
√

(A+ tH ′)T (A+ tH ′)
−1
, H
〉

+ 2
〈
A
√
ATA

−1
, H
〉

t



= lim
t→0

2�t

〈H ′, H〉 −
〈
H ′
√

(A+ tH ′)T (A+ tH ′)
−1
, H
〉

�t


− 2 lim

t→0


〈
A
√

(A+ tH ′)T (A+ tH ′)
−1
, H
〉
−
〈
A
√
ATA

−1
, H
〉

t


= 2 〈H ′, H〉 − 2

〈
H ′���

���:I√
ATA

−1
, H

〉
− 2

〈
A
(
Dg−1

)
A

(H ′), H
〉

= −2

〈
A · A

TH ′ +H ′TA

2
, H

〉
= 〈H ′, H〉+

〈
AH ′TA,H

〉
= 〈H ′, H〉+

〈
A(AW ′)TA,AW

〉
= 〈H ′, H〉+

〈
AW ′T , AW

〉
= tr

(
H ′TH

)
+ tr

(
W ′TW

)
= tr

(
H ′TH

)
+ tr

(
H ′TH

)
= 2 tr

(
H ′TH

)
.

Thus, the Hessian is,

Hess(f)A(H,H ′) = 2 tr
(
HTH ′

)
= 2 〈H,H ′〉 .

Therefore, the Hessian matrix restricted to (TAO(n,R))⊥ is 2In(n+1)
2

. This is a recur-
ring feature of distance squared functions associated to embedded submanifolds
(see Proposition 4.1.1).

There is a relationship between the local homology of cut loci and the re-
duced Čech cohomology of the link of a point in the cut locus. This is due to Hebda
[Hebda, 1983, Theorem 1.4 and the remark following it].

De�nition 3.2.1. Let N be an embedded submanifold of a complete smooth
Riemannian manifold M . For each q ∈ Cu(N), consider the set Λ(q,N) of
unit tangent vectors at q so that the associated geodesics realize the distance
between q and N . This set is called the link of q with respect to N .

The set of points in N obtained by the end points of the geodesics asso-
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ciated to Λ(q,N) will be called the equidistant set, denoted by Eq(q,N), of q
with respect to N .

Since the equidistant set Eq(q,N), consisting of points which realize the distance
d(q,N), is obtained by exponentiating the points in Λ(q,N), there is a natural
surjection map from Λ(q,N) to Eq(q,N).

Theorem 3.2.1 (Hebda 1983). Let N be a properly embedded submanifold of
a complete Riemannian manifold M of dimension n. If q ∈ Cu(N) and v is an
element of Λ := Λ(q,N), then for any abelian groupG there is an isomorphism

Ȟ i(Λ, v;G) ∼= Hn−1−i(Cu(N),Cu(N)− q;G). (3.11)

We are interested in computing Λ(A,O(n,R)) for singular matrices A. Note that
geodesics inM(n,R), initialized atA, are straight lines and any two such geodesics
can never meet other than at A. Therefore, there is a natural identification be-
tween the link and the equidistant set of A.

Lemma 3.2.4. [Basu and Prasad, 2021, Lemma 2.15] If A ∈ M(n,R) is sin-
gular of rank k, then Eq(A,O(n,R)) is homeomorphic to O(n− k,R).

Proof. Using the singular value decomposition, we write A = UDV T , where
U, V ∈ O(n,R) and D is a diagonal matrix with entries the eigenvalues of

√
ATA.

If we specify that the diagonal entries of D are arranged in decreasing order, then
D is unique. Moreover, as A has rank k < n, the first k diagonal entries of D are
positive while the last n − k diagonal entries are zero. In order to find the matri-
ces in O(n,R) which realize the distance d(A,O(n,R)), by (3.2), it suffices to find
B ∈ O(n,R) such that

sup
B∈O(n,R)

tr
(
ATB

)
= sup

B∈O(n,R)
tr
(
V DUTB

)
= sup

B∈O(n,R)
tr
(
DUTBV

)
is maximized. However, UTBV ∈ O(n,R) has orthonormal rows and the specific
form of D implies that the maximum is attained if and only if UTBV has e1, . . . , ek
as the first k rows, in order. Therefore, UTBV is a block orthogonal matrix, with
blocks of Ik and C ∈ O(n− k,R), i.e., B ∈ U(Ik ×O(n− k,R))V T .

Corollary 3.2.1. Let Sing denote the space of singular matrices in M(n,R). If
A ∈ Sing is of rank k < n, then for any abelian group G there is an isomor-
phism

Hn2−1−i(Sing, Sing − A;G) ∼= H̃ i(O(n− k,R);G). (3.12)

Proof. It follows from Lemma 3.2.4 that Λ(A,O(n,R)) ∼= O(n − k,R) if A has
rank k. Since O(n − k,R) is a manifold, Čech and singular cohomology groups
are isomorphic. The space Sing is a star-convex set, whence all homotopy and
homology groups are that of a point. Applying (3.11) in our case, we obtain an
isomorphism

Hn2−1−i(Sing, Sing − A) ∼= H̃ i(O(n− k,R))
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between reduced cohomology and local homology groups. In particular, the local
homology of the cut locus at A detects the rank of A.

Remark 3.2.2. Note that for a smooth manifold, the relative homology group
Hk(M,M − p) does not depend on the point p; it is in fact isomorphic to
Hk(Rm,Rm − 0), where m is the dimension of M . However, the above result
shows that Hn2−1−i(Sing, Sing − A;G) does depend on A (it depends on the rank
of A). This is happening because Sing is not a smooth manifold. It is the zero set
of the determinant map det : M(n,R)→ R.

For a computation for H̃ i(O(n − k,R);Z), we refer the reader to [Hatcher, 2002,
§3.D].

Similar computations hold for U(n,C) and singular n× n complex matrices.

Theorem 3.2.2. Let M(n,C) denotes the set of all n×n complex matrices and
U(n) denotes the set of all n× n unitary matrices. Then we have

(i) Cu(U(n)) = Sing = set of all singular matrices in M(n,C)

(ii) If A ∈M(n,C) is singular of rank k < n, then Eq(A,U(n)) is homeomor-
phic to U(n− k).

(iii) If A ∈ M(n,C) is singular of rank k < n, then for any abelian group G
there is an isomorphism

Hn2−1−i(Sing, Sing − A;G) ∼= H̃ i(U(n− k);G).

We end this chapter by mentioning some properties of the cut locus and
separating set with the help of the listed examples. In the next chapter, we will
prove these results.

(P1) For a submanifold N , the cut locus is the closure of the separating set.

(P2) The distance squared function d2(N, ·) from a submanifold N is not differen-
tiable on the separating set Se(N).

(P3) The distance squared function from N is a Morse-Bott function with N as its
critical submanifold.

(P4) The complement of Cu(N) deformation retracts to N . Also, the complement
of N deforms to the cut locus of N .
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The objective of this chapter is to analyze the geometric and topological
properties of cut locus of submanifolds. In particular, we will study relations be-
tween the distance squared function from a submanifold, the cut locus of subman-
ifold and Thom space of the normal bundle of the submanifold. We will also prove
that the distance squared function is a Morse-Bott function. Results in this chapter
are based on joint work with Basu [Basu and Prasad, 2021].

A result due to Wolter [Wolter, 1979, Lemma 1] may be generalized to prove
(Lemma 4.1.1) that the distance squared function from a submanifold is not dif-
ferentiable on the separating set. This result may be well known to experts, but
we provide a proof, following Wolter, which is elementary.

4.1 Regularity of distance squared function

Recall Definition 2.1.2, where we have defined the ∆ map. The following
proposition describes ∆ in terms of the distance function on the Riemannian man-
ifold M from the submanifold N .

Proposition 4.1.1. Let U be a neighbourhood of N such that each point in U

45
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admits a unique unit speed N -geodesic. If p ∈ U , then

∆(p) = dist(N, p).

Proof. Since the expression of ∆ is independent of the choice of the Fermi coor-
dinates, we will make a special choice of the Fermi coordinates (x1, · · · , xn). For
p ∈ U , choose the unique unit speed N -geodesic γ joining p to N . This geodesic
meets N orthogonally at γ(0) = p′. Choose t0 such that γ(t0) = p. According to

p′

γ
p

d(p,N) = l
(
γ
∣∣
[0,t0]

)

N

Figure 4.1: Distance via Fermi coordinates

Lemma 2.1.2, there is a system of Fermi coordinates (x1, · · · , xn) centered at p′

such that xi(γ(t)) = tδi(k+1). The sequence of equalities

∆(p) = xk+1(γ(t0)) = t0 = dist(p,N)

complete the proof.

Corollary 4.1.1. Consider the distance squared function with respect to a sub-
manifold N in M . The Hessian of the distance squared function at the critical
submanifold N is non-degenerate in the normal direction.

Towards the regularity of distance squared function, the following observa-
tion will be useful. It is a routine generalization of [Wolter, 1979, Lemma 1].

Lemma 4.1.1. [Basu and Prasad, 2021, Lemma 3.7] Let M be a connected,
complete Riemannian manifold and N be an embedded submanifold of M .
Suppose two N -geodesics exist joining N to q ∈ M . Then d2(N, ·) : M → R
has no directional derivative at q for vectors in direction of those two N -
geodesics.

Proof. Let us assume that all the geodesics are arc-length parametrized. Let γi :
[0, t̂] → M, i = 1, 2, be two distinct geodesics with γ1(0), γ2(0) ∈ N and γ1(l) =
q = γ2(l), where l = d(N, q) and 0 < l < t̂. Suppose that the two geodesics start at
p1 and p2 and so d(p1, q) = l = d(p2, q). Note that the directional derivative of d2

at q in the direction of γ′i(q) from the left is given by

(d2)′−(q) := lim
ε→0+

(d(N, γi(l)))
2 − (d(N, γi(l − ε)))2

ε
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= lim
ε→0

(d(pi, γi(l)))
2 − (d(pi, γi(l − ε)))2

ε

= lim
ε→0+

l2 − (l − ε)2

ε

= lim
ε→0

l2 − l2 + 2lε− ε2

ε

= lim
ε→0

2lε− ε2

ε
= 2l.

Next, we claim that the derivative of the same function from the right is strictly
bounded above by 2l. Let ω ∈ (0, π] be the angle between the two geodesics γ1
and γ2 at q. Define the function,

u(τ) := d(N, γ1(l − ε)) + d(γ1(l − ε), γ2(τ + l)).

By triangle inequality, we observe that

N
p2

p1

qγ2(l + τ)

γ1(l − ε) ω

γ1

γ2

Figure 4.2: When two N -geodesics meet

f(τ) := (u(τ))2 ≥ d2(p1, γ2(τ + l)) ≥ d2(N, γ2(τ + l)),

and equality holds at τ = 0 and (u(0))2 = d2(N, q) = l2. Thus, in order to prove the
claim, it suffices to show that the derivative of f from right, at τ = 0, is bounded
below by 2l. We need to invoke a version of the cosine law for small geodesic
triangles. Although this may be well-known to experts, we will use the version
that appears in [Sharafutdinov, 2007] (also see [Daniilidis et al., 2018, Lemma
2.4] for a detailed proof). In our case, this means that

d2(γ1(l − ε), γ2(τ + l)) = ε2 + τ 2 + 2ετ cosω +K(τ)ε2τ 2

where |K(τ)| is bounded, and the side lengths are sufficiently small. Note that
we are considering geodesic triangles with two vertices constant and the varying
vertex being γ2(l + τ). It follows from taking a square root and then expanding in
powers of τ that

d(γ1(l − ε), γ2(τ + l)) =
√
ε2 + τ 2 + 2ετ cosω (1 +O(τ 2)).

It follows that

u(τ) = l − ε+
√
ε2 + τ 2 + 2ετ cosω (1 +O(τ 2)).
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Therefore, u′+(0) = cosω = d′+(γ1(l − ε), γ2(l)). Observe that

f ′+(τ)
∣∣∣
τ=0

= 2d(N, γ1(l − ε))d′+(γ1(l − ε), γ2(l))

+ 2d(γ1(l − ε), γ2(l))d′+(γ1(l − ε), γ2(l))
= 2d(N, γ1(l − ε)) cosω + 2d(γ1(l − ε), γ2(l)) cosω

= 2 cosω
[
d(N, γ1(l − ε)) + d(γ1(l − ε), γ2(l)))

]
= 2 cosω

[
d(N, γ1(l − ε)) + d(γ1(l − ε), γ1(l)))

]
= 2d(N, γ1(l)) cosω < 2l.

Thus, we have proved the claim and subsequently the result.

The above lemma shows that d2 is smooth away from the cut locus. The
following example suggests that d2 can be differentiable at points in Cu(N)−Se(N)
(see Definition 3.1.3) but not twice differentiable.

Example 4.1.1 (Cut locus of an ellipse). We discuss the regularity of the distance
squared function from an ellipse x2/a2 + y2/b2 = 1 (with a > b > 0) in R2. For a
discussion of the cut locus for ellipses inside S2 and ellipsoids, see [Hebda, 1995,
pages 90-91]. Let (x0, y0) be a point inside the ellipse lying in the first quadrant.
The point closest to (x0, y0) and lying on the ellipse is given by

x =
a2x0
t+ a2

, y =
b2y0
t+ b2

,

where t is the unique root of the quartic(
ax0
t+ a2

)2

+

(
by0
t+ b2

)2

= 1

in the interval (−b2,∞). Given (α, β) with β > 0, we set Pε(α, β) = (a
2−b2
a

+εα, εβ);
this defines a straight line passing through P0(α, β) in the direction of (α, β). For
ε > 0, Pε(α, β) lies in the first quadrant and we denote by t = t(ε) be the unique
relevant root of the quartic(

a(a
2−b2
a

+ εα)

t+ a2

)2

+

(
bεβ

t+ b2

)2

= 1.

Simplifying this after dividing by ε and taking a limit ε→ 0+, we obtain

2aα

a2 − b2
= lim

ε→0+

(( 2

a2 − b2
)t+ b2

ε
− b2β2 ε

(t+ b2)2

)
.

On the other hand, the point Qε(α, β) on the ellipse closest to Pε(α, β) is given by

xε =
a2(a

2−b2
a

+ εα)

t+ a2
, yε =

b2εβ

t+ b2
.

It follows that

d2ε(α, β) := d2(Pε, Qε) =
t2

a2

(
a2 − b2 + aεα

t+ a2

)2

+
t2

b2

(
bεβ

t+ b2

)2

(4.1)
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P0

Pε

Qε

Q0

Figure 4.3: Cut locus of an ellipse

Using t(0) = −b2 and simplifications lead us to the following

lim
ε→0+

d2ε − d20
ε

=
2ab4α

a2(a2 − b2)
− lim

ε→0+

(
(t+ b2)(a2b2 − a2t+ 2b2t)

ε(t+ a2)2
− β2 t2ε

(t+ b2)2

)
=

2ab4α

a2(a2 − b2)
− 2b2

a2 − b2
lim
ε→0

t+ b2

ε
+ β2b4 lim

ε→0

ε

(t+ b2)2

=
2ab4α

a2(a2 − b2)
− 2ab2α

a2 − b2
= −2b2α

a
.

On the other hand, for ε < 0, the point Pε(α, β) lies in the fourth quad-
rant. By symmetry, the distance between Pε(α, β) and Qε(α, β) is the same as that
between P−ε(−α, β) and Q−ε(−α, β). However, it is seen that

d2(P−ε(−α, β), Q−ε(−α, β)) = d2−ε(−α, β)

as defined in (4.1). Therefore,

lim
ε→0−

d2(Pε(α, β), Qε(α, β))− d2(P0(α, β), Q0(α, β))

ε
= lim

ε→0−

d2−ε(−α, β)− d20(−α, β)

ε

= − lim
−ε→0+

d2−ε(−α, β)− d20(−α, β)

−ε

= −2b2α

a
,

where the last equality follows from the right hand derivative of d2, as computed
previously.

When β = 0 we would like to compute d2ε(α, 0). If ε > 0, then

d2ε(α, 0) = (b2/a− εα)2 =
b4

a2
− 2b2αε

a
+ α2ε2. (4.2)

On the other hand, if ε < 0 is sufficiently small, then there are two points on the
ellipse closest to Pε(α, 0) = (a

2−b2
a

+ εα, 0), with exactly one on the first quadrant,
say Qε. Since the segment PεQε must be orthogonal to the tangent to the ellipse
at Qε, we obtain the coordinates for Qε:

xε =
a2(a

2−b2
a

+ εα)

a2 − b2
, y2ε = b2

(
1− x2ε

a2

)
, yε > 0.
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We may compute the distance

d2ε(α, 0) := (d(Pε, Qε))
2 =

b4

a2
− 2b2αε

a
− b2α2ε2

a2 − b2
, (4.3)

where ε < 0. Combining (4.2) and (4.3) we conclude that d2 is differentiable
at P0 = (a

2−b2
a
, 0), a point in Cu(N) but not in Se(N). However, comparing the

quadratic part of d2 in (4.2),(4.3) we conclude that d2 is not twice differentiable
at P0.

4.2 Characterizations of Cu(N)

Let (M, g) be a complete Riemannian manifold with distance function d. The
exponential map at p ∈M

expp : TpM →M

is defined on the tangent space of M . Moreover, there exists minimal geodesic
joining any two points in M . However, not all geodesics are distance realizing.
Given v ∈ TpM with ‖v‖ = 1, let γv be the geodesic initialized at p with velocity
v. Let S(TM) denote the unit tangent bundle and let [0,∞] be the one point
compactification of [0,∞). Define

s : S(TM)→ [0,∞], s(v) := sup{t ∈ [0,∞) | γv|[0,t] is minimal}.

De�nition 4.2.1 (Cut Locus). Let M be a complete, connected Riemannian
manifold. If s(v) < ∞ for some v ∈ S(TpM), then expp(s(v)v) is called a cut
point. The collection of cut points is defined to be the cut locus of p.

As geodesics are locally distance realizing, s(v) > 0 for any v ∈ S(TM). The
following result [Sakai, 1996, Proposition 4.1] will be important for the underly-
ing ideas in its proof.

Proposition 4.2.1. The map s : S(TM)→ [0,∞], u 7→ s(u) is continuous.

The proof relies on a characterization of s(v) provided s(v) <∞, (Theorem 2.3.1).
A positive real number T is s(v) if and only if γv : [0, T ] is minimal and at least one
of the following holds:

(i) γv(T ) is the first conjugate point of p along γv,
(ii) there exists u ∈ S(TpM), u 6= v such that γu(T ) = γv(T ).

Remark 4.2.1. If M is compact, then it has bounded diameter, which implies that
s(v) < ∞ for any v ∈ S(TM). The converse is also true: if M is complete and
connected with s(v) < ∞ for any v ∈ S(TM), then M has bounded diameter,
whence it is compact.
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4.2.1 Characterization in terms of focal points

We shall be concerned with closed Riemannian manifolds in what follows.
Let N be an embedded submanifold inside a closed, i.e., compact without bound-
ary, manifold M . Let ν denote the normal bundle of N in M with D(ν) denoting
the unit disk bundle. In the context of S(ν), the unit normal bundle and the cut
locus of N , distance minimal geodesics or N -geodesics are relevant (see Defini-
tions 3.1.1 and 3.1.2). We want to consider

ρ : S(ν)→ [0,∞), ρ(v) := sup{t ∈ [0,∞) | γv|[0,t] is an N -geodesic}. (4.4)

Notice that 0 < ρ(v) ≤ s(v) for any v ∈ S(ν). In the special case when N = {p}, ρ
is simply the restriction of s to TpM . The continuity of ρ requires a result similar
to Theorem 2.3.1, which requires the definition of focal points.

De�nition 4.2.2 (Focal point). Let p ∈ N and (p, v) ∈ S(ν). We say that v is a
tangent focal point of N if d(expν)v is not of full rank. If γ is a geodesic from 0
to v in νp, then expν(v) is called a focal point of N along expν(γ).

TpN

νp(= TpN)⊥

expν

N

expν(v)

M

expν(γ)

γ

v

Figure 4.4: Focal points

The nullity of d expν at v is called the multiplicity of a focal point. If it is one,
we say it the first focal point. Analogous to Theorem 2.3.1, we have the following
result.
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Theorem 4.2.1. Let u ∈ Sp(ν). A positive real number T is ρ(u) if and only if
γu : [0, T ] is an N -geodesic and at least one of the following holds:

(i) γu(T ) is the first focal point of N along γu,

(ii) there exists v ∈ S(ν) with v 6= u such that γv(T ) = γu(T ).

In order to prove the above theorem, we need the following observations.

Observation A [Sakai, 1996, Lemma 2.11, page 96] Let N be a submanifold of a
Riemannian manifold M and γ : [t0,∞)→M a geodesic emanating perpendicularly
from N . If γ(t1) is the first focal point of N along γ, then for t > t1, γ|[t0,t1] cannot be
an N -geodesic, i.e., L

(
γ|[t0,t]

)
> d(N, γ(t)).

Recall that a sequence {γn} of geodesics, defined on closed intervals, is said to
converge to a geodesic γ if γn(0) → γ(0) and γ′n(0) → γ′(0). It follows from the
continuity of the exponential map that if tn → t, then γn(tn)→ γ(t).

Observation B Let γn be a sequence of unit speed N -geodesics joining pn = γn(0)
to qn = γn(tn). If γn converges to a geodesic γ and tn → l, then γ is a unit speed
N -geodesic joining p = limn pn to q := γ(l) = limn γn(tn).

Proof. The unit normal bundle S(ν) is closed. Since γ′n(0) → γ′(0), it follows that
γ′(0) ∈ S(ν). Note that

d(N, q) = lim
n→∞

d(N, qn) = lim
n→∞

d(pn, qn) = lim
n→∞

tn = l = L
(
γ|[0,l]

)
implies that γ is an N -geodesic.

Proof of Theorem 4.2.1. If γu(t) is the first focal point of N along γu, then Observa-
tion A implies that γu cannot be minimal beyond this value. If (ii) holds, then we
need to show that for sufficiently small ε > 0 γu|[0,T+ε] is not minimal. Suppose,
on the contrary, that γu is minimal beyond T . Take a minimal geodesic β joining
γv(T − ε) to γu(T + ε). Observe that,

2ε = d (γu(T + ε), γu(T )) + d (γv(T ), γv(T − ε))
> d (γu(T + ε), γv(T − ε)) .

If p, q, r ∈M such that d(p, q)+d(q, r) = d(p, r) and there exist the shortest normal
geodesic γ1 and γ2 joining p to q and q to r, respectively, then γ1 ∪ γ2 is smooth at
q and defines a shortest normal geodesic joining p to r. Therefore, we have

L(γv|[0,T−ε] ∪ β) = T − ε+ d(γv(T − ε), γu(T + ε))

< T + ε = L(γu|[0,T+ε]).

This contradiction establishes that γu|[0,T+ε] is not minimal.
For the converse, set T = ρ(u) and observe that γu|[0,T ] is an N -geodesic.

Assuming that q := γu(T ) is not the first focal point of N along γu, we will prove
that (ii) holds. Let p = γu(0) and choose a neighbourhood Ũ of Tu in ν such that
expν |Ũ is a diffeomorphism. For sufficiently large n, qn := γu (T + 1/n) ∈ expν(Ũ).
Take N -geodesics γn parametrized by arc-length joining pn to qn and set un :=
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γ̇n(0) ∈ S((TpnN)⊥). Since S((TpnN)⊥) is compact, by passing to a subsequence,
we may assume that un converges to v ∈ S(Np). By Observation B,

γv(T ) = lim
n→∞

γun
(
T + 1

n

)
= γu(T ).

If v = u, then for sufficiently large n, d(p, qn)un ∈ Ũ , whence(
T + 1

n

)
u = d(p, qn)un.

Taking absolute values on both sides imply T + 1/n > d(p, qn). This contradiction
implies v 6= u.

We now will prove that the map ρ defined in 4.4 is a continuous function.

Proposition 4.2.2. The map ρ : S(ν) → [0,∞), as defined in (4.4), is contin-
uous.

Proof. We will prove that ρ(un) → ρ(u) whenever (pn, un) → (p, u) in the unit
normal bundle S(ν). Let T be any accumulation point of the sequence {ρ(un)}
including ∞. By Observation B, γu|[0,T ] is an N -geodesic and hence T ≤ ρ(u). If
T = +∞, we are done. So let us assume that T < +∞. From Theorem 4.2.1, at
least one of the following holds for infinitely many n.

(i) The sequence ρ(un) is the first focal point to N along γun

(ii) there exist vn ∈ S(ν), vn 6= un with γun (ρ(un)) = γvn (ρ(un)).

If (i) is true for infinitely many n, then choose infinitely many unit vectors
{wn}which belong to the kernel ker (D expν(ρ(un)un)) and are contained in a com-
pact subset of S(ν). Choose a convergent subsequence whose limit w is contained
in ker (D expν (Tu)). Since w 6= 0, the rank of D expν (Tu) is less than dimM .
Thus, γu(T ) is the first focal point of N along γu and T = ρ(u).

If (ii) is true for infinitely many n, then we may assume that vn → v ∈ S(ν).
If v 6= u, then Theorem 4.2.1 (ii) holds for T , whence T = ρ(u). If v = u, we claim
that γu(T ) is the first focal point of N along γu. If not, then the map expν is regular
at Tu ∈ ν and hence the map

Φ : ν →M ×M, (p, u) 7→ (p, expν(p, u))

is regular at Tu. Therefore, Φ is a diffeomorphism if restricted to an open
neighbourhood Ũ of Tu in ν. Since v = u, which implies for sufficiently large
n, (pn, ρ(un)un) and (pn, ρ(un)vn) belong to Ũ and are different. On the other
hand, by assumption Φ(ρ(un)un) = Φ(ρ(un)vn), which is a contradiction. There-
fore, γu(T ) is the first focal point and T = ρ(u).

4.2.2 Characterization in terms of separating set

Recall that the separating set of N , Se(N), consists of all points q ∈ M such
that at least two distance minimal geodesics from N to q exist. If q ∈ Se(N) but
q 6∈ Cu(N), then we have Figure 4.2, i.e., γ1 is an N -geodesic beyond q while γ2 is
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another N -geodesic for q. The triangle inequality applied to γ1(0), q = γ1(l) and
γ2(l + τ) implies that

d(γ2(l + τ), N) < l + τ

while for τ small enough d(γ2(l + τ), N) = l + τ as γ2 is an N -geodesic beyond q.
This contradiction establishes the well-known fact Se(N) ⊆ Cu(N). In quite a few
examples, these two sets are equal (see Example 3.1.6 where these two are not
same). In the case of M = Sn with N = {p}, the set Se(N) consists of −p. There
is an infinite family of minimal geodesics joining p to −p. An appropriate choice
of a pair of such minimal geodesics would create a loop, which is permissible in
the definition of Se(N). According to Theorem 4.2.1, a cut point is either a first
focal point of N along a geodesic or it is a separating point. We will now prove
our one of the observations in the last chapter, that cut locus of a submanifold N
is the closure of separating set of N .

Theorem 4.2.2. Let Cu(N) be the cut locus of a compact submanifold N of
a complete Riemannian manifold M . The subset Se(N) of Cu(N) is dense in
Cu(N).

Proof. Let q ∈ Cu(N) but not in Se(N). Choose an N -geodesic γ joining N to q
such that any extension of γ is not an N -geodesic. This geodesic γ is unique as q /∈
Se(N). We may write γ(t) = expν(tx), where γ(0) = p ∈ N and γ′(0) = x0 ∈ S(νp).
It follows from the definition of ρ that q = expν (ρ(x0)x0). We need to show that
every neighborhood of q in Cu(N) must intersect Se(N). Suppose it is false. Let
δ > 0 and consider B(x0, δ) , the closed ball with center x0 and radius δ. Define
the cone

Co(x0, δ) :=
{
tx : 0 ≤ t ≤ 1, x ∈ B(x0, δ) ∩ S(ν)

}
.

Since B(x0, δ) ∩S(ν) is homeomorphic to a closed (n−1)-ball for sufficiently small
δ, the cone will be homeomorphic to a closed Euclidean n-ball.

Figure 4.5: Co(x0, δ)

Similarly, define another cone

Co?(x0, δ) :=
{
ρ (x/ ‖x‖)x |x ∈ Co(x0, δ) , x 6= 0

}
∪ {0}.

Note that ρ(x0) is finite. As ρ is continuous, due to Proposition 4.2.2, for suffi-
ciently small δ the term ρ (x/ ‖x‖) is still finite, whence Co?(x0, δ) is well defined.
We claim that Co?(x0, δ) is also homeomorphic to a closed Euclidean (n − k)-
ball. Indeed, a non-zero x ∈ Co(x0, δ) implies x = λx̂, for some λ ∈ (0, 1] and
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x̂ ∈ B(x0, δ) ∩ S(ν). Since ρ(x̂)x = λρ(x̂)x̂, it follows that Co?(x0, δ) is the cone of
the set

{ρ(x̂)x̂ | x̂ ∈ B(x0, δ) ∩ S(ν)},

which is homeomorphic to B(x0, δ) ∩ S(ν). Now we have a dichotomy:

(a) For a fixed small δ > 0, the restriction of expν to Co?(x0, δ) is a homeomor-
phism to its image because it is injective, or

(b) For any δ > 0, the restriction of expν to Co?(x0, δ) is not injective.

If (b) holds, choose vn 6= wn ∈ Co?(x0,
1
n
) such that these map to qn under expν .

Thus, qn ∈ Se(N) and compactness of S(ν) ensures that qn converges to q. If (a)
holds, then let B(q, ε) denote the open ball in M centered at q with radius ε > 0.
We claim that it intersects the complement of expν(Co?(x0, δ)) in M . But it is true
as ρ(x0)x0 lies on the boundary of Co?(x0, δ) and hence it has a neighborhood in
Co?(x0, δ) which is homeomorphic to a closed n-dimensional Euclidean half plane.
Since expν restricted to Co?(x0, δ) was a homeomorphism, the open ball B(q, ε)
must intersect the points outside the image of expν(Co?(x0, δ)).

Now take ε = 1
n
. For each n, there exists qn ∈ B

(
q, 1

n

)
such that qn /∈

expν(Co?(x0, δ)). Since M is complete, for each point qn let γn be a N -geodesics
joining pn ∈ N to qn. We may invoke the following result from Buseman’s book
[Busemann, 1955, Theorem 5.16, page 24]. Let {γn} be a sequence of rectifiable
curves in a finitely compact set X and the lengths `(γn) are bounded. If the initial
points pn of γn forms a bounded set, then {γn} contains a subsequence γnk which
converges uniformly to a rectifiable curve γ̃ in X and

`(γ̃) ≤ lim inf ` (γnk)

Since {pn} lie in the compact set N , we obtain a rectifiable curve γ̃ such that

`(γ̃) ≤ lim inf ` (γnk) = lim
k
`(γnk) = lim

k
d(qnk , N) = d(q,N).

Thus, γ̃ is actually an N -geodesic joining p′ = limk pnk to q and the unit tangent
vectors xnk = γ′nk(0) at pnk converges to the unit tangent vector x̃ = γ̃′(0) at
p′. Since x0 is an interior point of the set B(x0, δ) ∩ S(ν), any sequence in S(ν)
converging to x0 must eventually lie in Co(x0, δ) . According to our choice, qnk /∈
expν(Co?(x0, δ)) and xnk all lie outside of Co(x0, δ) . Hence x0 6= x̃ and γ 6= γ̃.
Thus, there are two distinct N -geodesics γ and γ̃ joining N to q, a contradiction to
q /∈ Se(N). This completes the proof.

4.3 Topological properties

In this section we will study the structure of the cut locus and the relation of
cut locus to the Thom space. We will also see various applications of this relation.
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4.3.1 Structure of the cut locus

On a complete Riemannian manifold it is very difficult to analyze the struc-
ture of cut locus of a point or a submanifold. The main problem is that cut locus
is not C1-smooth. For example, the authors in [Gluck and Singer, 1978] showed
that cut locus of a point is not always triangulable. Regarding the question of cut
loci being triangulable, we recall the result [Buchner, 1977] that the cut locus (of
a point) of a real analytic Riemannian manifold (of dimension d) is a simplicial
complex of dimension at most d − 1. It follows, without much changes, that the
result holds for cut loci of submanifolds as well. Hence, we attribute the following
result to Buchner.

Theorem 4.3.1 (Buchner 1977). Let N be an analytic submanifold of a real
analytic manifold M . If M is of dimension d, then the cut locus Cu(N) is a
simplicial complex of dimension at most d− 1.

The obvious modifications to the proof by Buchner are the following:

(i) Choose ε to be such that there is a unique geodesic from p to q if d(p, q) < ε
and if d(N, q) < ε, then there is a unique N -geodesic to q;

(ii) Consider the set ΩN(t0, t1, . . . , tk), the space of piecewise broken geodesics
starting at N , and define ΩN(t0, t1, . . . , tk)

s analogously;

(iii) The map

ΩN(t0, t1, . . . , tk)
s → N ×M × · · · ×M, ω 7→ (ω(t0), ω(t1), . . . , ω(tk))

determines an analytic structure on ΩN(t0, t1, . . . , tk)
s.

The remainder of the proof works essentially verbatim.

Remark 4.3.1. As we have seen in Example 3.1.5, the dimension of the cut locus of
a k-dimensional submanifold can be of dimension d− k− 1. However, generically,
we may not expect this to be true. In fact, for real analytic knots (except the
unknot) in S3, it is always the case that the cut locus cannot be homotopic to a
(connected) 1-dimensional simplicial complex (cf Example 4.3.3).

4.3.2 Thom space via cut locus

Recall that the Thom space Th(E) of a real vector bundle E → B of rank k
is D(E)/S(E), where it is understood that we have chosen a Euclidean metric on
E. If B is compact, then the Thom space Th(E) is the one-point compactification
of E. In general, we compactify the fibres and then collapse the section at infinity
to a point to obtain Th(E). Thus, Thom spaces obtained via two different metrics
are homeomorphic. We start with a similar exponential map which is obtained by
the ρ map, and we named it rescaled exponential map.

De�nition 4.3.1 (Rescaled Exponential). The rescaled exponential or ρ-
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exponential map is defined to be

ẽxp : D(ν)→M, (p, v) 7→
{

expp(ρ(v̂)v) if v = ‖v‖v̂ 6= 0
p if v = 0.

We are now ready to prove the main result of this section.

Theorem 4.3.2. Let N be an embedded submanifold inside a closed, con-
nected Riemannian manifold M . If ν denotes the normal bundle of N in M ,
then there is a homeomorphism

ẽxp : D(ν)/S(ν)
∼=−→M/Cu(N).

Proof. It follows from Proposition 4.2.2 that the rescaled exponential is con-
tinuous. Moreover, ẽxp is surjective and ẽxp(S(ν)) = Cu(N). If there exists
(p, v) 6= (q, w) ∈ D(ν) such that

ẽxp(p, v) = ẽxp(q, w) = p′,

then d(p′, N) can be computed in two ways to obtain

d(p′, N) = ρ(v̂)‖v‖ = ρ(ŵ)‖w‖.

Thus, T = d(p′, N) is a number such that γv : [0, T ] is an N -geodesic and
γv(T ) = γw(T ) = p′. By Theorem 4.2.1, we conclude that T = ρ(v̂) = ρ(ŵ),
whence ‖v‖ = ‖w‖ = 1. Therefore, ẽxp is injective on the interior of D(ν).
As Cu(N) is closed and M is a compact metric space, the quotient space M/Cu(N)
is Hausdorff. As the quotient D(ν)/S(ν) is compact, standard topological ar-
guments imply the map induced by the rescaled exponential is a homeomor-
phism.

We will now revisit a basic property of Thom space via its connection to the
cut locus. It can be seen that

Cu(N1 ×N2) = (Cu(N1)×M2) ∪ (M1 × Cu(N2)) (4.5)

for an embedding N1 ×N2 inside M1 ×M2. If νj is the normal bundle of Nj inside
Mj, then Theorem 4.3.2 along with (4.5) implies that

Th(ν1 ⊕ ν2) ∼=
M1 ×M2

(M1 × Cu(N2)) ∪ (Cu(N1)×M2)

∼=
M1/Cu(N1)×M2/Cu(N2)

M1/Cu(N1) ∨M2/Cu(N2)

∼= Th(ν1) ∧ Th(ν2).

LetN = N1tN2 be a disjoint union of connected manifolds of the same dimension.
If N ↪→ M , then let νj denote the normal bundle of Nj in M . If ν is the normal
bundle of N in M , then

Th(ν) ∼= Th(ν1) ∨ Th(ν2). (4.6)
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This implies that
M/Cu(N) ∼= M/Cu(N1) ∨M/Cu(N2).

Example 4.3.1. Consider the two circles

N1 = {(cos t, sin t, 0, 0) | t ∈ R}, N2 = {(0, 0, cos t, sin t) | t ∈ R}

in S3. The link N := N1 tN2 has linking number 1. We claim that the cut locus

Cu(N) =

{
1√
2

(cos s, sin s, cos t, sin t) | s, t ∈ R
}

is a torus. We will prove the claim by showing that the above set is separating
set of N . As it is closed, the claim will follow by using Theorem 4.2.2. Let P =
(a, b, 0, 0) ∈ N with a2 + b2 = 1. Note that

TPS3 ∼= TPN ⊕ (TPN)⊥ ∼= span{(−b, a, 0, 0)} ⊕ span{e3, e4},

where e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1). We take any unit vector at P which is
perpendicular to TPN , say v = (0, 0, cos θ, sin θ). An N -geodesic starting at P in
the direction of v will be

γ(t) = P cos t+ v sin t, = (a cos t, b cos t, cos θ sin t, sin θ sin t), 0 ≤ t ≤ π.

We have

d(γ(t), N) = inf
X∈N

d(γ(t), X) = min

{
inf
X∈N1

d(γ(t), X), inf
X∈N2

d(γ(t), X),

}
.

Look at Figure 4.6 and note that

d(X, γ(t)) = cos−1(X · γ(t)).

Therefore, the problem of finding the distance of N to γ(t) is equivalent to max-
imizing the dot product X · γ(t). Let X ∈ N1 and X = (x, y, 0, 0), x2 + y2 = 1.
Then

X · γ(t) = ax cos t+ by cos t.

Maximizing the above such that x2 + y2 = 1 by the method of Lagrange multiplier,
we have

x =
a cos t

| cos t|
, and y =

b cos t

| cos t|
.

Note that the above expression is well-defined, as if cos t = 0, thenX ·γ(t) = 0. The
maximum value of X · γ(t) will be | cos t| and this is achieved by only one point of
N1. Similarly, if we maximize the dot product over N2, we get the maximum value
| sin t|, which is also obtained by a single maxima. Thus, γ(t) will be a separating
point if and only if

| cos t| = | sin t| =⇒ t =
π

4
,
3π

4
.

Therefore, the separating points will be{
1√
2

(cos s, sin s, cos θ, sin θ) : s, θ ∈ R
}
.
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X

γ(t)

θ

Figure 4.6: Distance of X to γ(t)

Note that Cu(N1) = N2 and vice-versa as well as

S3/Cu(Nj) ∼= (S1 × S2)/(S1 ×∞)

where S1 × S2 is the fibrewise compatification of the normal bundle of Nj. We
conclude that

S3/Cu(N) ∼=
(S1 × S2

S1 ×∞

)
∨
(S1 × S2

S1 ×∞

)
.

There are some topological similarities between Cu(N) and M − N . We
recall that a topological pair (X,A) is called a good pair if A is closed in X and
there is an open subset U ⊆ X with A ⊆ U such that A is a strong deformation
retract in U .

Lemma 4.3.1. The cut locus Cu(N) is a strong deformation retract of M −N .
In particular, (M,Cu(N)) is a good pair and the number of path components
of Cu(N) equals that of M −N .

Proof. Consider the map H : (M − N) × [0, 1] → M − N defined via the normal
exponential map

H(q, t) =

expν

[{
t · ρ

(
exp−1

ν (q)

‖exp−1
ν (q)‖

)
+ (1− t) ‖exp−1ν (q)‖

}
exp−1

ν (q)

‖exp−1
ν (q)‖

]
if q /∈ Cu(N)

q if q ∈ Cu(N).

If q ∈ M − (Cu(N) ∪ N), then let γ be the unique N -geodesic joining N to q.
The path H(q, t) is the image of this geodesic from q to the first cut point along γ.
The continuity of ρ implies that H is continuous. It also satisfies H(q, 0) = q and
H(q, 1) ∈ Cu(N). The claims about good pair and path components are clear.

Remark 4.3.2. The above lemma, in particular, shows that the homotopy type of
the cut locus of a submanifold is independent of the choice of the Riemannian
metric.



60 CHAPTER 4. GEOMETRIC AND TOPOLOGICAL NATURE OF CUT LOCUS

Corollary 4.3.1. If two embeddings f, g : N → M are ambient isotopic, then
Cu(f(N)) and Cu(g(N)) are homotopy equivalent.

Proof. The hypothesis implies that there is a diffeomorphism ϕ : M → M such
that ϕ(f(N)) = g(N). Thus, M − Cu(f(N)) is homeomorphic to M − Cu(g(N))
and the claim follows from the lemma above. Note that in the smooth category,
the notion of isotopic and ambient isotopic are equivalent (refer to §8.1 of the
book [Hirsch, 1976]). Thus, the same conclusion holds if we assume that the
embeddings are isotopic.

Remark 4.3.3. Without the assumption of M being closed, the above result fails
to be true. One may consider M = S1 × R with the natural product metric and
N = S1. In fact, the universal cover of M is R × R while that of N is R. If we
choose a periodic curve in R2 which is isotopic to the x-axis and has non-empty
cut locus in R2, then we may pass via the covering map to obtain an embedding
g of N isotopic to the embedding f identifying N with S1 × {0}. For this pair,
Cu(f(N)) = ∅ while Cu(g(N)) 6= ∅.

Several other identifications between topological invariants can be explored.
For instance, if ι : Nk ↪→Md is as before such that M −N is path connected, then

ι∗ : πj(Cu(N))
∼=−→ πj(M) (4.7)

if 0 ≤ j ≤ d − k − 2 while ι∗ is a surjection for j = d − k − 1. The proof of
this relies on a general position argument, i.e., being able to find a homotopy
of the sphere that avoids N , followed by Lemma 4.3.1. Surjectivity of ι∗ if j ≤
d− k − 1 is imposed by the requirement that a sphere Sj in general position must
not intersect Nk. Injectivity of ι for j ≤ d− k − 2 is imposed by the condition that
a homotopy Sj × [0, 1] in general position must not intersect Nk. This observation
(4.7) generalizes a result in [Sakai, 1996, Proposition 4.5 (1)].

The inclusion i : Cu(N) ↪→M induces a long exact sequence in homology

· · · → Hj(Cu(N))
i∗−→ Hj(M)→ Hj(M,Cu(N))

∂−→ Hj−1(Cu(N))→ · · ·

As (M,Cu(N)) is a good pair (cf Lemma 4.3.1), we replace the relative homology
of (M,Cu(N)) with reduced homology of M/Cu(N) ∼= Th(ν). This results in the
following long exact sequence

· · · → Hj(Cu(N))
i∗−→ Hj(M)

q−→ H̃j(Th(ν))
∂−→ Hj−1(Cu(N))→ · · · (4.8)

If N = {p} is a point, then Th(ν) = Sd and (4.8) imply isomorphisms

i∗ : Hj(Cu(p))
∼=−→ Hj(M), i∗ : Hj(M)

∼=−→ Hj(Cu(p))

for j 6= d, d− 1 (cf [Sakai, 1996, Proposition 4.5 (2)]).

Remark 4.3.4. The long exact sequence (4.8) can be interpreted as the dual to
the long exact sequence in cohomology of the pair (M,N). If N = N1t· · ·tNl is a
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disjoint union of submanifolds of dimension k1, . . . , kl respectively, then the Thom
isomorphism implies that

H̃j(Th(ν)) ∼= H̃j(Th(ν1))⊕ · · · ⊕ H̃j(Th(νl)) ∼= Hj−(d−k1)(N1)⊕ · · · ⊕Hj−(d−kl)(Nl),

where νj is the normal bundle of Nj. Applying Poincaré duality to each Nj, we
obtain isomorphisms

H̃j(Th(ν)) ∼= ⊕li=1H
d−j(Ni) = Hd−j(N).

Poincaré-Lefschetz duality applied to the pair (M,N) provides isomorphisms

Ȟj(M,N) ∼= Hd−j(M −N). (4.9)

As M and N are triangulable, Čech cohomology may be replaced by singular coho-
mology. Since M −N deforms to Cu(N) by Lemma 4.3.1, we have isomorphisms

Hj(M,N) ∼= Hd−j(Cu(N)). (4.10)

Combining all these isomorphisms, we obtain the long exact sequence in cohomol-
ogy for (M,N) from (4.8).

Lemma 4.3.2. Let N be a closed submanifold of M with l components. If
M has dimension d, then Hd−1(Cu(N)) is free abelian of rank l − 1 and
Hd−j(Cu(N)) ∼= Hj(M) if j−2 ≥ k, where k is the maximum of the dimension
of the components of N .

Proof. It follows from (4.9) that

Hd−1(Cu(N)) ∼= H1(M,N).

Consider the long exact sequence associated to the pair (M,N)

0→ H0(M,N)→ H0(M)
i∗→ H0(N)→ H1(M,N)→ H1(M)→ H1(N)→ · · ·

If N has l components, i.e., N = N1 t · · · t Nl where Nj has dimension kj, then
H1(M,N) is torsion-free. This follows from the fact that i∗(1) = (1, . . . , 1) and
H1(M) is free abelian.

Remark 4.3.5. In the above Lemma, if in particular, H1(M) = 0, then
Hd−1(Cu(N)) ∼= Zl−1.

The long exact sequence for the pair (M,N) imply that there are isomor-
phisms

Hd−j(Cu(N)) ∼= Hj(M,N)
∼=−→ Hj(M) (4.11)

if j ≥ k + 2, where k = max{k1, . . . , kl}.
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Remark 4.3.6. Cut locus can be very hard to compute. For a general space, we
have the notion of topological dimension. This notion coincides with the usual
notion if the space is triangulable. However, in [Barratt and Milnor, 1962], the
authors proved that the singular homology of a space may be non-zero beyond its
topological dimension. Čech (co)homology is better equipped to detect topological
dimension and is the reason why one may prefer it over singular homology due to
the generic fractal like nature of cut loci (see the remarks following Theorem C in
Chapter 1). Although the topological dimension of Cu(N) is at most d−1, it is not
apparent that Hd−1(Cu(N)) is a free abelian group.

There are several applications of this discussion.

Theorem 4.3.3. Let N be a smooth homology k-sphere embedded in a Rie-
mannian manifold homeomorphic to Sd. If d ≥ k+3, then the cut locus Cu(N)
is homotopy equivalent to Sd−k−1.

Proof. As N has codimension at least 3, its complement is path-connected. It
follows from (4.7) and Lemma 4.3.1 that M − N is (d − k − 2)-connected. In
particular,M−N is simply-connected and by Hurewicz isomorphism,Hj(M−N) =
0 if j ≤ d− k− 2. Note that Hd(M −N) = 0 as M −N is a non-compact manifold
of dimension d.

If k > 0, then by Lemma 4.3.2, Hd−1(M − N) = 0. Moreover, by Poincaré-
Lefschetz duality (4.9), we infer that the only non-zero higher homology of
M − N is Hd−k−1(M − N) ∼= Z. By Hurewicz Theorem there is an isomorphism,
πd−k−1(M −N) ∼= Z. Let

α : Sd−k−1 →M −N

be a generator. The map α∗ induces an isomorphism on all homology groups be-
tween two simply-connected CW complexes. It follows from Whitehead’s Theorem
that α is a homotopy equivalence. Using Lemma 4.3.1, we obtain our homotopy
equivalence H1 ◦ α : Sd−k−1 → Cu(N).

If k = 0, then by Lemma 4.3.2, Hd−1(M −N) ∼= Z. Arguments similar to the
k > 0 case now applies to obtain a homotopy equivalence with Sd−1.

The above result is foreshadowed by Example 3.1.5 where we showed that
the cut locus of N = Ski inside M = Sd is Sd−k−1l . It also differs from Poincaré-
Lefschetz duality in that we are able to detect the exact homotopy type of the cut
locus. In fact, when M and N are real analytic and the embedding is also real
analytic, then by Theorem 4.3.1 we infer that Cu(N) is a simplicial complex of
dimension at most d − 1. Towards this direction, Theorem 4.3.3 can be pushed
further.

Proposition 4.3.1. Let N be a real analytic homology k-sphere embedded in
a real analytic homology d-sphere M . If d ≥ k + 3, then the cut locus Cu(N)
is a simplicial complex of dimension at most (d − 1), having the homology of
(d− k − 1)-sphere with fundamental group isomorphic to that of M .
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The proof of this is a combination of ideas used in the proof of Theorem 4.3.3.
The homotopy type cannot be deduced here due to the presence of a non-trivial
fundamental group. An intriguing example can be obtained by combining Propo-
sition 4.3.1 and Poincaré homology sphere.
Example 4.3.2 (Cut locus of 0-sphere in Poincaré sphere). Let Ĩ be the binary icosa-
hedral group. It is a double cover of I, the icosahedral group, and can be realized
a subgroup of SU(2). It is known that H1(Ĩ;Z) = H2(Ĩ;Z) = 0, i.e., it is perfect
and the second homology of the classifying space BĨ is zero. A presentation of Ĩ
is given by

Ĩ = 〈s, t | (st)2 = s3 = t5〉.

In fact, if we construct a cell complex X of dimension 2 using the presentation
above, then X has one 0-cell, two 1-cells and two 2-cells. The cellular chain com-
plex, as computed from the presentation, is given by

0 // Z2

(−1 2
3 −5

)
// Z2 0 // Z // 0

Therefore, H1(X) = H2(X) = 0 while π1(X) = Ĩ.
In contrast, consider the cut locus C of the 0-sphere in SU(2)/Ĩ, the Poincaré

homology sphere. As SU(2) is real analytic, so is the homology sphere. By Propo-
sition 4.3.1, C is a finite, connected simplicial complex of dimension 2 such that
π1(C) ∼= Ĩ and H•(C;Z) ∼= H•(S

2;Z). The existence of this space is interesting for
the following reason: although X ∨ S2 has the same topological invariants as C,
we are unable to determine whether X ∨ S2 is homotopy equivalent to C.

In the codimension two case, we have two results.

Theorem 4.3.4. Let Σ be a closed, orientable, real analytic surface of genus
g and N a non-empty, finite subset. Then Cu(N) is a connected graph, homo-
topy equivalent to a wedge product of |N |+ 2g − 1 circles.

Proof. As Σ − N is connected, Lemma 4.3.1 implies that Cu(N) is connected. It
follows from Theorem 4.3.1 that Cu(N) is a finite 1-dimensional simplicial com-
plex, i.e., a finite graph. In this case, Th(ν) is a wedge product of |N | copies of S2

(cf (4.6)). We consider (4.8) with j = 2:

0
i∗−→ Z q−→ H̃2(∨|N |S2)

∂−→ H1(Cu(N))
i∗−→ H1(Σ)→ 0

Note that Hd−1(Σ) is torsion-free, whence all the groups appearing in the long
exact sequence are free abelian groups. This implies that

dimZH1(Cu(N)) = 2g + |N | − 1.

As Cu(N) is connected finite graph, collapsing a maximal tree T results in a quo-
tient space Cu(N)/T which is homotopic to Cu(N) as well being a wedge product
of |N |+ 2g − 1 circles.

Remark 4.3.7. The authors in [Itoh and Vîlcu, 2015] proved that every finite, con-
nected graph can be realized as the cut locus (of a point) of some surface. There
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remains the question of orientability of the surface. As noted in the proof of The-
orem 4.3.4, if the surface is orientable and |N | = 1, then the graph has an even
number of generating cycles. If Σ is non-orientable, then Σ ∼= (RP2)#k has non-
orientable genus k and the oriented double cover of Σ has genus g = k− 1. Recall
that H1(Σ) ∼= Zk−1 ⊕ Z2 and H2(Σ) = 0. Looking at (4.8) with j = 2 we obtain

0→ Z→ H1(Cu(p))→ Zk−1 ⊕ Z2 → 0.

Thus, H1(Cu(p)) ∼= Zk as homology of graphs are free abelian. Let Bε(Cu(p))
denote the ε-neighbourhood of Cu(p) in Σ. For ε sufficiently small, this is a surface
such thatBε(Cu(p)) has one boundary component. The compact surfaceBε(Cu(p))
is reminiscent of ribbon graphs. The surface Σ can be obtained as the connect sum
of a disk centered at p and the closure of Bε(Cu(p)). Therefore, non-orientability
of Σ is equivalent to non-orientability of Bε(Cu(p)). A similar observation appears
in the unpublished article [Itoh and Vîlcu, 2011, Theorem 3.7].

Example 4.3.3 (Homology spheres of codimension two). In continuation of Theo-
rem 4.3.3, let N ↪→ Sk+2 be a homology sphere of dimension k ≥ 1. Since N
has codimension two, Sk+2 − N is path connected and so is Cu(N). We are not
assuming that the metric on Sk+2 is real analytic. Using (4.10) and the long exact
sequence in cohomology of (Sk+2, N), we infer that H1(Cu(N)) ∼= Z and all higher
homology groups vanish. However, the Hurewicz Theorem cannot be used here to
establish that π1(Cu(N)) ∼= Z.

In particular cases, we may conclude that Cu(N) is homotopic to a circle.
It was proved in [Plotnick, 1982] that certain homology 3-spheres N , obtained by
a Dehn surgery of type 1

2a
on a knot, smoothly embed in S5 with complement a

homotopy circle. Since M − N deforms to Cu(N), it follows that there is a map
α : S1 → Cu(N) inducing isomorphisms on homotopy and homology groups.

If k = 1, then a homology 1-sphere is just a knot K in S3. Since S3 −K de-
forms to Cu(K), the fundamental group of the cut locus is the knot group. More-
over, in the case of real analytic knots in S3, the cut locus is a finite simplicial com-
plex of dimension at most 2 (cf Theorem 4.3.1). Except for the unknot, the knot
group is never a free group while the fundamental group of a connected, finite
graph is free. This observation establishes that Cu(K) is always a 2-dimensional
simplicial complex, whenever K is a non-trivial (real analytic) knot in S3.

Finally, we will end this chapter by proving that the complement of cut locus
deforms to the submanifold.

Theorem 4.3.5. Let N be a closed embedded submanifold of a complete Rie-
mannian manifold M . Let d : M → R be the distance function with respect
to N . If f = d2, then its restriction to M − Cu(N) is a Morse-Bott function,
with N as the critical submanifold. Moreover, the gradient flow of f deforms
M − Cu(N) to N .

Proof. It follows from Theorem 4.2.1 the map exp−1ν : M−(Cu(N) ∪N)→ ν−{0}
is an (into) diffeomorphism and dist(N, q) = ‖exp−1ν (q)‖ and hence the distance
function is of class C∞ at q ∈ M − (Cu(N) ∪N). Using Fermi coordinates (cf
Proposition 4.1.1), we have seen that the distance squared function is smooth
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around N and therefore it is smooth on M − Cu(N). By Corollary 4.1.1, the
Hessian of this function at N is non-degenerate in the normal direction. It is well-
known [Sakai, 1996, Proposition 4.8] that ‖∇d(q)‖ = 1 if d is differentiable at
q ∈M . Thus, for q ∈M − (Cu(N) ∪N) we have

‖∇f(q)‖ = 2d(q)‖∇d(q)‖ = 2d(q). (4.12)

Let γ be the unique unit speed N -geodesic that joins N to q, i.e.,

γ : [0, d(q)]→M, γ(0) = p, γ(d(q)) = q, ‖γ′‖ = 1.

We may write ∇f(q) = λγ′(d(q)) + w, where w is orthogonal to γ′(d(q)). But〈
∇f
∣∣
q
, γ′(d(q))

〉
=

d

dt
f(γ(d(q) + t))

∣∣∣
t=0

=
d

dt
(d(q)2 + 2d(q)t+ t2)

∣∣∣
t=0

= 2d(q).

Thus, λ = 2d(q) and combined with (4.12), we conclude that ∇f(q) =
2d(q)γ′(d(q)). Therefore, the negative gradient flow line initialized at q ∈ M −
Cu(N) is given by

η(t) = γ(d(q)e−2t).

These flow lines define a flow which deform M −Cu(N) to N in infinite time.

The reader may choose to revisit the example of GL(n,R) discussed in Sec-
tion 3.2 and treat it as a concrete illustration of the Theorem above.
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Due to the classical results of Cartan, Iwasawa and others, we know that
any connected Lie group G is diffeomorphic to the product of a maximally com-
pact subgroup K and the Euclidean space. In particular, G deforms to K. For
semisimple groups, this decomposition is stronger and is attributed to Iwasawa.
The Killing form on the Lie algebra g is non-degenerate and negative definite for
compact semi-simple Lie algebras. For such a Lie group G, consider the Levi-Civita
connection associated to the bi-invariant metric obtained from negative of the
Killing form. This connection coincides with the Cartan connection.

We will consider two examples, both of which are non-compact and non
semisimple. We prove that these Lie groups G deformation retract to maximally
compact subgroups K via gradient flows of appropriate Morse-Bott functions. This
requires a choice of a left-invariant metric which is right-K-invariant, and a careful
analysis of the geodesics associated with the metric. In particular, we provide a
possibly new proof of the surjectivity of the exponential map for U(p, q). The
results of this chapter is based on joint work with Basu [Basu and Prasad, 2021,
§4].

5.1 Matrices with positive determinant

Let g be a left-invariant metric on GL(n,R), the set of all invertible ma-
trices. Recall that a left-invariant metric g on a Lie group is determined by its
restriction at the identity. For A ∈ GL(n,R), consider the left multiplication map
lA : GL(n,R) → GL(n,R), B 7→ AB. This extends to a linear isomorphism from
M(n,R) to itself. Thus, the differential (DlA)I : TIGL(n,R) → TAGL(n,R) is an
isomorphism and given by lA itself. For X, Y ∈ TIGL(n,R),

gI(X, Y ) = gA((DlA)IX, (DlA)IY ) = gA(AX,AY ).

67
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We choose the left-invariant metric on GL(n,R) generated by the Euclidean metric
at I. Therefore,

gA−1(X, Y ) = 〈AX,AY 〉I := tr
(
(AX)TAY

)
= tr

(
XTATAY

)
.

Note that this metric is right-O(n,R)-invariant. We are interested in the distance
between an invertible matrix A (with det(A) > 0) and SO(n,R). Since SO(n,R)
is compact, there exists B ∈ SO(n,R) such that d(A,B) = dist(A, SO(n,R)).

Lemma 5.1.1. If D is a diagonal matrix with positive diagonal entries
λ1, · · · , λn, then

dist(D,SO(n,R)) = d(D, I).

Moreover, I is the unique minimizer and the associated minimal geodesic is
given by γ(t) = et logD.

Proof. Let B ∈ SO(n,R) satisfying d(D,B) = dist(D,SO(n,R)). Since with re-
spect to the left-invariant metric GL+(n,R) is complete, there exists a minimal
geodesic γ : [0, 1]→ GL+(n,R) joining B to D, i.e.,

γ(0) = B, γ(1) = D, and l(γ) = d(D,B).

The first variational principle implies that γ′(0) is orthogonal to TBSO(n,R). It
follows from [Martin and Neff, 2016, §2.1] that η(t) = etW is a geodesic if W
is a symmetric matrix. Moreover, η′(0) = W is orthogonal to TISO(n,R). As
left translation is an isometry and isometry preserves geodesic, it follows that
γ(t) = BetW is a geodesic with γ′(0) orthogonal to TBSO(n,R). By the defining
properties of γ, D = γ(1) = BeW . Since eW is symmetric positive definite, we
obtain two polar decompositions of D, i.e., D = ID and D = BeW . By the
uniqueness of the polar decomposition for invertible matrices, B = I and D = eW .

In order to compute d(I,D), note that

eW = D = elogD,

where logD denotes the diagonal matrix with entries log λ1, · · · , log λn. As W and
logD are symmetric, and matrix exponential is injective on the space of symmetric
matrices, we conclude that W = logD. The geodesic is given by γ(t) = et logD and

dist(D,SO(n,R)) = ‖γ′(0)‖I = ‖logD‖I =

(
n∑
i=1

(log λi)
2

) 1
2

. (5.1)

Thus, the distance squared function will be given by
∑n

i=1(log λi)
2.

Now for any A ∈ GL+(n,R) we can apply the SVD decomposition, i.e.,
A = UDV T with

√
ATA = V DV T and log

√
ATA = V (logD)V T . Note that U, V ∈

SO(n,R) andD is a diagonal matrix with positive entries. The left-invariant metric
is right-invariant with respect to orthogonal matrices. Thus,

dist(A, SO(n,R)) = dist(D,SO(n,R)) = ‖logD‖I ,
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where the last equality follows from the lemma (see (5.1)). As

‖logD‖I =
∥∥V (logD)V T

∥∥
I

=
∥∥∥log
√
ATA

∥∥∥
I
,

it follows from the arguments of the lemma and the metric being bi-O(n,R)-
invariant that

γ(t) = Uet logDV T

is a minimal geodesic joining UV T to A, realizing dist(A, SO(n,R)). As the mini-
mizer UV T is unique, Se(SO(n,R)) is empty, implying that Cu(SO(n,R)) is empty
as well. In fact, UV T = A

√
ATA

−1
and

γ(t) = Uet logDV T = UV TV et logDV T = A
√
ATA

−1
et log

√
ATA. (5.2)

If we compare (3.10), the deformation of GL(n,R) to O(n,R) inside M(n,R),
with (5.2), then in both of the cases, an invertible matrix A deforms to A

√
ATA

−1
.

Finally, observe that the normal bundle of SO(n,R) is diffeomorphic to GL+(n,R).

5.2 Indefinite unitary groups

Let n be a positive integer with n = p+ q. Consider the inner product on Cn

given by

〈(w1, . . . , wn), (z1, . . . , zn)〉 = z1w1 + · · ·+ zpwp − zp+1wp+1 − · · · − znwn.

This is given by the matrix Ip,q in the following way:

〈w, z〉 = wtIp,qz =
(
w1 · · · wn

)( Ip 0
0 −Iq

) z1
...
zn


Let U(p, q) denote the subgroup of GL(n,C) preserving this indefinite form,

i.e., A ∈ U(p, q) if and only if A∗Ip,qA = Ip,q. In particular, detA is a complex
number of unit length. By convention, In,0 = In and I0,n = −In, both of which
corresponds to U(n, 0) = U(n) = U(0, n), the unitary group. In all other cases, the
inner product is indefinite.

The group U(1, 1) is given by matrices of the form

A =

(
α β

λβ λα

)
, λ ∈ S1, |α|2 − |β|2 = 1.

More generally, we shall use

A =

(
A B
C D

)
to denote an element of U(p, q). It follows from the definition that A ∈ U(p, q) if
and only if

A∗A− C∗C = Ip
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A∗B − C∗D = 0p×q

B∗B −D∗D = −Iq.

Observe that if Av = 0, then

0 = A∗Av = C∗Cv + v,

which implies that C∗C, a positive semi-definite matrix, has −1 as an eigenvalue
unless v = 0. Therefore, A is invertible, and the same argument works for D.

Lemma 5.2.1. The intersection of U(p+ q) with U(p, q) is U(p)×U(q). More-
over, if A ∈ U(p, q), then A∗,

√
A∗A ∈ U(p, q).

Proof. If A ∈ U(p)× U(q), then

A∗A+ C∗C = Ip

B∗B +D∗D = Iq.

This implies that both B and C are zero matrices. If A ∈ U(p, q), then A∗ =
Ip,qA

−1Ip,q and

(A∗A)∗Ip,q(A
∗A) = (A∗A)Ip,q(A

∗A)

= Ip,qA
−1Ip,qAIp,qIp,qA

−1Ip,qA

= Ip,q = A∗Ip,qA.

This also implies that AIp,qA∗ = Ip,q.
All the eigenvalues of A∗A are positive. Moreover, if λ is an eigenvalue of

A∗A with eigenvector v = (v1, . . . , vp, vp+1, . . . , vn), then

Ip,qv = A∗A Ip,qA
∗Av = λ(A∗A Ip,qv),

which implies that λ−1 is also an eigenvalue with eigenvector v′ =
(v1, . . . , vp,−vp+1, . . . ,−vn). If {v1, . . . ,vn} is an eigenbasis of A∗A with (possi-
bly repeated) eigenvalues λ1, . . . , λn, then

√
A∗A Ip,q

√
A∗Avj =

√
A∗A Ip,q

√
λjvj =

√
λj
√
A∗Av′j = v′j = Ip,qvj.

Thus,
√
A∗A satisfies the defining relation for a matrix to be in U(p, q).

We may use the polar decomposition (for matrices in GL(n,C)) to write

A = U |A|, where U = A
(√

A∗A
)−1

, |A| =
√
A∗A,

where U, |A| ∈ U(p, q). For U(1, 1) this decomposition takes the form(
α β

λβ λα

)
=

(
α
|α| 0

0 λ α
|α|

)(
|α| |α|β

α
|α|β
α
|α|

)
The Lie algebra up,q is given by matrices X ∈Mn(C) such that

X∗Ip,q + Ip,qX = 0.

This is real Lie subalgebra of Mp+q(C). It contains the subalgebras up, uq as Lie
algebras of the subgroups U(p)× Iq and Ip × U(q). Consider the inner product

〈·, ·〉 : up,q × up,q → R, 〈X, Y 〉 := trace(X∗Y ).
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Lemma 5.2.2. The inner product is symmetric and positive-definite.

Proof. Note that

〈X, Y 〉 = trace(−Ip,qXIp,qY ) = trace(−Ip,qY Ip,qX) = 〈Y,X〉 .

Since 〈X, Y 〉 = 〈Y,X〉 due to the invariance of trace under transpose, we conclude
that the inner product is real and symmetric. It is positive-definite as 〈X,X〉 =
trace(X∗X) ≥ 0 and equality holds if and only if X is the zero matrix.

The Riemannian metric obtained by left translations of 〈·, ·〉 will also be
denoted by 〈·, ·〉. We shall analyze the geodesics for this metric. The Lie algebra
up ⊕ uq of U(p)× U(q) consists of(

A 0
0 D

)
, A+ A∗ = 0, D +D∗ = 0.

Let n denote the orthogonal complement of up⊕uq inside up,q. As n is of (complex)
dimension pq, and {(

0 B
B∗ 0

) ∣∣∣B ∈Mp,q(C)

}
is contained in n, this is all of it. We may verify that[(

A 0
0 D

)
,

(
0 B
B∗ 0

)]
=

(
0 AB −BD

DB∗ −B∗A 0

)
∈ n[(

0 B
B∗ 0

)
,

(
0 C
C∗ 0

)]
=

(
BC∗ − CB∗ 0

0A B∗C − C∗B

)
∈ up ⊕ uq.

Lemma 5.2.3. Let γ be the integral curve, initialized at e, for a left-invariant
vector field Y . This curve is a geodesic if Y (e) either belongs to n or to up⊕uq.

Proof. The Levi-Civita connection ∇ is given by the Koszul formula

2 〈X,∇ZY 〉 = Z 〈X, Y 〉+Y 〈X,Z〉−X 〈Y, Z〉+〈Z, [X, Y ]〉+〈Y, [X,Z]〉−〈X, [Y, Z]〉 .

Putting Z = Y and X, two left-invariant vector fields, in the above, we obtain

〈X,∇Y Y 〉 = 〈Y, [X, Y ]〉 .

To prove our claim, it suffices to show that ∇Y Y = 0, ie, 〈Y, [X, Y ]〉 = 0 for any
X. Let us assume that Y (e) ∈ n. If X(e) ∈ n, then [X(e), Y (e)] ∈ up ⊕ uq, which
implies that 〈Y (e), [X(e), Y (e)]〉 = 0. If X(e) ∈ up ⊕ uq, then

〈Y, [X, Y ]〉 =

〈(
0 B
B∗ 0

)
,

(
0 AB −BD

DB∗ −B∗A 0

)〉
= trace

(
B(DB∗ −B∗A) 0

0 B∗(AB −BD)

)
= trace(BDB∗ −BB∗A) + trace(B∗AB −B∗BD)

= 0

by the cyclic property of trace. Thus, ∇Y Y = 0 if Y (e) ∈ n; similar proof works if
Y (e) ∈ up ⊕ uq.
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Remark 5.2.1. An integral curve of a left-invariant vector field (also called 1-
parameter subgroups) need not be a geodesic in U(p, q). For instance, if X + Y is
a left-invariant vector field given by X(e) ∈ up⊕ uq and Y (e) ∈ n, then ∇X+Y (X +
Y ) = 0 if and only if ∇XY = 1

2
[X, Y ] and ∇YX = 1

2
[Y,X]. This happens if and

only if the metric is bi-invariant, i.e.,

〈[X,Z], Y 〉 = 〈X, [Z, Y ]〉 .

This is not true in general; for instance, with X(e) ∈ up ⊕ uq and linearly indepen-
dent Y (e), Z(e) ∈ n, we get 〈[X,Z], Y 〉 − 〈X, [Z, Y ]〉 6= 0.

Consider the matrix

Y =

(
0 B
B∗ 0

)
∈ n.

Let B = U
√
B∗B and B∗ =

√
B∗B U∗ be the polar decompositions for the rectan-

gular matrices. It follows from direct computation that

eY =

(
Ip + BB∗

2!
+ (BB∗)2

4!
+ · · · B

1!
+ B(B∗B)

3!
+ B(B∗B)2

5!
+ · · ·

B∗

1!
+ (B∗B)B∗

3!
+ (B∗B)2B∗

5!
+ · · · Iq + B∗B

2!
+ (B∗B)2

4!
+ · · ·

)

=

(
cosh(

√
BB∗) U sinh(

√
B∗B)

sinh(
√
B∗B)U∗ cosh(

√
B∗B)

)
.

It can be checked that
en ∩ (U(p)× U(q)) = {In}.

It is known that the non-zero eigenvalues of Y are the non-zero eigenvalues of√
BB∗ and their negatives.

Theorem 5.2.1. For any element A ∈ U(p, q), the associated matrix
√
A∗A

can be expressed uniquely as eY for Y ∈ n. Moreover, there is a unique way
to express A as a product of a unitary matrix and an element of en, and it is
given by the polar decomposition.

In order to prove the result, we discuss some preliminaries on logarithm of com-
plex matrices. In general, there is no unique logarithm. However, the Gregory
series

logA = −
∞∑
m=0

2

2m+ 1

[
(I − A)(I + A)−1

]2m+1

converges if all the eigenvalues of A ∈ Mn(C) have positive real part, see
[Higham, 2008, §11.3, page 273]. In particular, logA is well-defined for Her-
mitian positive-definite matrix. This is often called the principal logarithm of A.
This logarithm satisfies elogA = A. There is an integral form of logarithm that
applies to matrices without real or zero eigenvalues; it is given by

logA = (A− I)

∫ 1

0

[s(A− I) + I]−1 ds.
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Lemma 5.2.4. The inverse of A∗A + In for A ∈ U(p, q) is given by

[A∗A + In]−1 =
1

2

(
Ip −A−1B

−B∗(A∗)−1 Iq

)
.

Proof. Since A∗A has only positive eigenvalues, A∗A + In has no kernel. We note
that

A∗A + In =

(
2C∗C + 2Ip 2A∗B

2B∗A 2B∗B + 2Iq

)
=

(
2A∗A 2A∗B
2B∗A 2D∗D

)
.

The inverse matrix satisfies(
2A∗A 2A∗B
2B∗A 2D∗D

)(
E F
F ∗ G

)
=

(
Ip 0
0 Iq

)
.

As the matrices are Hermitian, the three constraints that E,F,G must satisfy (and
are uniquely determined by) are

E = 1
2
(A∗A)−1 − A−1BF ∗

G = 1
2
(D∗D)−1 −D−1CF

F = −A−1BG.

We note that E = 1
2
Ip, G = 1

2
Iq and F = −1

2
A−1B satisfy the above equations. For

instance,

1

2
(A∗A)−1 − A−1BF ∗ =

1

2
(A∗A)−1 +

1

2
A−1BB∗(A∗)−1

=
1

2
(A∗A)−1 +

1

2
A−1(AA∗ − Ip)(A∗)−1 =

1

2
Ip,

where BB∗ = AA∗−Ip is a consequence of A∗ ∈ U(p, q). Yet another consequence
is AC∗ = BD∗, which is equivalent to

A−1B = (D−1C)∗.

In a similar vein,

1

2
(D∗D)−1 −D−1CF ==

1

2
(D∗D)−1 +

1

2
D−1CC∗(D∗)−1

=
1

2
(D∗D)−1 +

1

2
D−1(DD∗ − Iq)(D∗)−1

=
1

2
Iq,

where CC∗ = DD∗ − Iq is due to A∗ ∈ U(p, q).

Proof of Theorem 5.2.1. We use Gregory series expansion for computing the prin-
cipal logarithm of A∗A along with Lemma 5.2.4:

log(A∗A)



74 CHAPTER 5. APPLICATION TO LIE GROUPS

=
∞∑
m=0

2

2m+ 1

[
2

(
A∗A− Ip A∗B
B∗A D∗D − Iq

)
1

2

(
Ip −A−1B

−B∗(A∗)−1 Iq

)]2m+1

=
∞∑
m=0

2

2m+ 1

(
0 A−1B

B∗(A∗)−1 0

)2m+1

.

We set Y = 1
2

log(A∗A). It is clear that Y ∈ n and eY =
√
A∗A. It is known that the

exponential map is injective on Hermitian matrices. This implies the uniqueness
of Y .

If U1e
Y1 = U2e

Y2 are two decompositions of A ∈ U(p, q) with Ui ∈ U(p)×U(q)
and Yi ∈ n, then

e2Y1 = eY1U∗1U1e
Y1 = eY2U∗2U2e

Y2 = e2Y2 .

By the injectivity of the exponential map (on Hermitian matrices), we obtain Y1 =
Y2, which implies that U1 = U2.

We infer the following (see [Yakubovich and Starzhinskii, 1975, Lemma 1,
page 211] for a different proof) result.

Corollary 5.2.1. The exponential map exp : up,q → U(p, q) is surjective.

Proof. Using the polar decomposition and Theorem 5.2.1,

A = A
(√

A∗A
)−1√

A∗A = A
(√

A∗A
)−1

eY .

Since the matrix exponential is surjective for U(p)×U(q), choose Z ∈ up⊕ uq such
that eZ = A(

√
A∗A)−1. By Baker-Campbell-Hausdorff formula, we may express

eZeY as exponential of an element in up,q.

The distance from any matrix A ∈ U(p, q) to U(p) × U(q) is given by the
length of the curve

γ(t) = A
(√

A∗A
)−1

etY ,

which can be computed (and simplified via left-invariance) as follows

`(γ) =

∫ 1

0

‖γ′(t)‖γ(t) dt =

∫ 1

0

‖Y ‖ dt = ‖Y ‖.

Note that
‖Y ‖2 = trace(Y ∗Y ) = trace

[
1
4
(log(A∗A))2

]
.

Thus, the distance squared function is given by

d2 : U(p, q)→ R, A 7→ 1
4
trace

[
(log(A∗A))2

]
.
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Let M be a smooth manifold on which a compact Lie group G acts freely.
It is known that M/G is a smooth manifold. Moreover, if M has a Riemannian
metric and G acts isometrically, then there is an induced Riemannian metric on
M/G. Let N be a G-invariant submanifold of M . We want to find the cut locus
of N/G in M/G. In this chapter we will discuss the equality between Cu(N)/G
and Cu(N/G). We will start the chapter by motivating with an example, then state
the theorem and then recall Riemannian submersion which will be useful for the
proof of the theorem. At the end we will discuss an application of this result to
complex projective hypersurfaces.

6.1 Statement of the theorem

Let us discuss an example which will be helpful to arrive at the statement
of the main theorem. Let RPn denotes the n-dimensional real projective space
which is obtained from Sn by identifying points p and −p. Equivalently, this space
can be obtained from the action of Z2 on Sn. We know from Example 2.3.4 that
for a point p ∈ RPn, the cut locus is RPn−1. In Example 3.1.5, we showed that
Cu
(
Ski
)

= Sn−k−1l , where Ski ↪→ Sn denote the embedding of the k-sphere in the
first k+1 coordinates while Sn−k−1l denote the embedding of the (n−k−1)-sphere
in the last n− k coordinates. So we have

Sn ⊃ {p,−p} Sn−1

RPn ⊃ {p} RPn−1
Z2

Cu

Z2

Cu

Similarly, one can see a similar diagram for the complex projective space CPn

75
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which is obtained by taking S1 action on S2n+1. We have

S2n+1 ⊃ S1
i S2n−1

f

CPn ⊃ {p} CPn−1
S1

Cu

S1

Cu

Thus, it is natural to ask whether the following diagram commutes for a compact
Lie group G.

M ⊃ N Cu(N)

M/G ⊃ N/G Cu(N)/G

G

Cu

G

Cu

The above diagram make sense if N and Cu(N) are G-invariant subsets. Note
that if the action is free and isometric, i.e., length of the curves γ and g · γ are
the same, then Se(N) is G-invariant. Now to show that the cut locus of N , which

N

M γ η

p

N

M g · γ g · η
g · p

Figure 6.1: Se(N) is G-invariant

is the closure of Se(N), is G-invariant we take x ∈ Se(N). So there exists a se-
quence (xn) ⊂ Se(N) such that xn → x (this convergence is with respect to the
Riemannian metric). This implies g ·xn → g ·x as the action is continuous. Hence,
g · x ∈ Se(N).

The following theorem tells us that the above diagram commutes if G is a
compact Lie group and the action is free and isometric.

Theorem 6.1.1 (Equivariant cut locus theorem). Let M be a closed and con-
nected Riemannian manifold and G be any compact Lie group which acts on
M freely and isometrically. Let N be any G-invariant closed submanifold of
M , then we have an equality

Cu(N)/G = Cu(N/G).

Remark 6.1.1. (i) If the action of G is not isometric, then we can construct a
G-invariant metric on M by averaging any metric on M over G. In fact, for
any p ∈M and any vectors v1,v2 ∈ TpM , we can define

〈v1,v2〉 :=

∫
G

〈v1,v2〉g·p dg,
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where the integral is taken with respect to the Haar measure. Then the
theorem is valid with respect to the new metric.

(ii) Recall that, in Theorem 4.3.5, we proved that the gradient flow of distance
squared function from the submanifold N deforms M − Cu(N) to N . By
construction, the flow lines are G-invariant. So we also have that M/G −
Cu(N)/G deforms to N/G.

To prove the theorem we have to encounter mainly two problems.

a. Whether a distance minimal geodesic in M projects down to a distance minimal
geodesic in M/G?

b. Whether a distance minimal geodesic in M/G lifts to a distance minimal
geodesic in M?

6.2 Proof of the equivariant cut locus theorem

In this section we will recall some results on Riemannian submersion and
most of the results can be found in the book [Michor, 2008, Chapter V, section
26].

De�nition 6.2.1. Let π : E → B be a smooth principal G-bundle. An
Ehresmann connection on E is a smooth subbundle H of TE, called the
horizontal bundle of the connection, such that TE = H ⊕ V, where Vp =
ker
(
dπp : TpE → Tπ(p)B

)
.

The bundle V is called the vertical bundle, and it is independent of the
connection chosen. It follows from the definition that Hp depends smoothly on p
and Hp ∩Vp = {0}. Moreover, the map dπp restricts to Hp is an isomorphism on
Tπ(p)B. If E is a Riemannian manifold with metric g, then by choosing a horizontal
bundle H we have Hp = V⊥p .

De�nition 6.2.2. A smooth submersion π : (E, g)→ (B, g′) is called a Rieman-
nian submersion if the linear map dπp preserves the length of the horizontal
vectors for each point p ∈ E. Equivalently, dπp is a linear isometry between
Hp and Tπ(p)B.

Using the above definitions we can define the following type of vectors.

De�nition 6.2.3. Let π : E → B be a Riemannian submersion. A vector field
X ∈ X(E) is called

• vertical if for any p ∈ E, Xp ∈Vp, denoted by Xver, and

• horizontal if for any p ∈ E, Xp ∈Hp, denoted by Xhor.
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We can uniquely decompose any vector field X ∈ X(E) as

X = Xver +Xhor

into its horizontal and vertical components.

Once we have a connection, we now have a preferred way of lifting vectors
from TB to TE. Recall that a vector X̃ ∈ TeE is a lift of X ∈ Tπ(e)B if Teπ(X̃) = X.
In absence of a connection, there are many different choices of lifts of a vector,
and any two choices differ by a vertical vector. That is, if X̃, X̃ ′ are lifts of X, then
X̃ − X̃ ′ is vertical. Once we have a connection, we can define the horizontal lift
(with respect to a connection H) of X as the horizontal component of any lift of
X. This definition is, of course, independent of the choice of lift, since any two
differ by a vertical vector, whose horizontal component vanishes. Similarly, we
can lift vector fields by lifting them in a pointwise fashion.

De�nition 6.2.4 (Horizontal lift of vector �elds). Let X ∈ X(B) be a vector field
and H ⊂ TE an Ehresmann connection on E. We define the horizontal lift of
X as the vector field X̃ ∈ X(E) which satisfies dπ(X̃) = X and X̃e ∈ He for
all e ∈ E.

Suppose that we have a curve γ : [0, 1] → B. At each point over the curve,
we have a vector γ′(t) ∈ Tγ(t)B, which we can lift to the fiber above γ(t). So if
we choose a starting point e0 ∈ π−1(γ(0)), we can find an integral curve along all
these lifted vectors on the fibers over the curve γ. In the end we obtain a curve
γ̃ : [0, 1]→ E satisfying π ◦ γ̃ = γ, γ̃(0) = e0, and γ̃′(t) ∈Hγ̃(t) for all t. We call it a
horizontal lift of γ.

De�nition 6.2.5 (Horizontal lift of a curve). Let π : E → B be a fiber bundle
with a connection H. Let γ be a smooth curve in B through γ(0) = b. Let
e ∈ E be such that π(e) = b. A horizontal lift of γ through e is a curve γ̃ in E
such that π ◦ γ̃ = γ, γ̃(0) = e, and γ̃ ′(t) ∈Hγ̃(t).

For every point t0 ∈ (0, 1), we can find ε > 0 such that the vector field γ′

can be extended to a vector field over γ
∣∣
(t0−ε,t0+ε)

. Then we look at the horizontal

vector field X̃ defined on the bundle E
∣∣
U

, where U ⊇ γ((t0 − ε, t0 + ε)). Then γ̃ is
the integral curve of X̃ starting at the prescribed point e0 ∈ π−1(γ(0)). Since [0, 1]
is compact, a usual gluing argument will help us to construct a horizontal lift of γ.
Hence, we have the following proposition. For a detailed proof of the proposition
we refer the reader to [Lang, 1999, Chapter XIV, Proposition 3.5(i)].

Proposition 6.2.1. Given a smooth path γ : [0, 1]→ B such that γ(0) = b and
e0 ∈ π−1(b), there is a unique horizontal lift γ̃ of γ through e0 ∈ E.

Recall the Quotient manifold theorem [Lee, 2013, Theorem 21.10].
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Theorem 6.2.1 (Quotient Manifold Theorem). Suppose a Lie group G acting
smoothly, freely, and properly on a smooth manifold M . Then the orbit space
M/G is a topological manifold of dimension equal to dimM − dimG, and has
a unique smooth structure with the property that the quotient map π : M →
M/G is a smooth submersion.

Using the above theorem, we can define a unique metric on M/G such that π
is a Riemannian submersion. In fact, for any x ∈ M/G and p ∈ π−1(x), we
take the vertical space Vp := ker dπp and the horizontal space Hp := V⊥p so that
TpM = Vp⊕Hp. Since dπp is surjective, then dπp

∣∣
Hp

: Hp → Tπ(p)M/G is a bijection.
Define

hx(v, w) :=
〈
dπ−1

∣∣
Hp

(v), dπ−1
∣∣
Hp

(w)
〉
.

Since the action is isometric, the metric is independent of the choice of point p.
Thus, h defines a well-defined metric on M/G and π is a Riemannian submersion.

The following is the key lemma for proving Theorem 6.1.1 and the proof of
the same can be found in [Michor, 2008, Lemma 26.11].

Lemma 6.2.1. Let (E, gE) and (B, gB) be two Riemannian manifolds and π :
E → B be a Riemannian submersion. Let γ be a geodesic in B and γ̃ be the
horizontal lift of γ. Then we have:

1. The length of γ and γ̃ are same.

2. γ̃′(t) is perpendicular to each fiber Eγ̃(t).

3. γ̃ is a geodesic in E.

We also have the following result.

Theorem 6.2.2 (O'Neill). Let π : E → B be a Riemannian submersion. If γ̃ is
a geodesic in E and γ̃′(0) ∈ Hγ̃(0), then γ̃′(t) ∈ Hγ̃(t) for all t. Moreover, π ◦ γ̃
is a geodesic in B and the length is preserved.

The above theorem can also be proved using Lemma 6.2.1, see [Michor, 2008,
Corollary 26.12].

Combining Lemma 6.2.1 and Theorem 6.2.2, we have the following correspon-
dence.

Theorem 6.2.3. There is a one-to-one correspondence between the geodesics
on M/G and geodesics on M which are horizontal.

We now ready to prove Theorem 6.1.1.

Proof of Theorem 6.1.1. Note that if γ̃ is an N -geodesic, then γ̃′(1) ∈ Hγ̃(1) and
from Theorem 6.2.2 γ̃′(t) ∈ Hγ̃(t) and hence γ̃ is a horizontal geodesic which
implies γ = π ◦ γ̃ is a geodesic in M/G.
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Let p̃ ∈ Se(N). This implies there exists at least two N -geodesic, say γ̃ and
η̃ such that l(γ̃) = l(η̃) = d(p̃, N). Let us denote γ = π ◦ γ̃ and η = π ◦ η̃. Due
to uniqueness of horizontal lift (Proposition 6.2.1), γ and η will be two different
geodesics and the lengths will be same. Also, note that as γ̃ is an N -geodesic,
γ will be an N/G geodesic. Otherwise, there exists an N/G-geodesic δ joining
p to N/G which gives a horizontal lift δ̃ whose length is strictly less than γ̃, a
contradiction (see Figure 6.2). Hence, π(p̃) ∈ Se(N/G). On the other hand, if γ

N

N/G

p̃

γ̃

π

q

γ

η̃

η

p
δ

δ̃

Figure 6.2: N -geodesics maps to N/G-geodesics

is an N/G geodesic starting from p, then its horizontal lift γ̃ will be a geodesic.
In fact, it will be an N -geodesic. If not, let η̃ be such that l (η̃) = d (p̃, N) which
implies η̃ is horizontal. Hence, η will be a geodesic and

l(γ) = d (p,N/G) = l(η)

= l (η̃) < l (γ̃) = l(γ),

a contradiction. Thus p̃ ∈ Se(N). This proves that Se(N)/G = Se(N/G). In order
to prove the theorem, note that we have the following relation.

Se(N/G) ⊆ Se(N)/G ⊆ Se(N/G).

As Se(N) is a closed set and G is a compact Lie group, so Se(N)/G is closed. Thus,
we have

Se(N)/G = Se(N/G) =⇒ Cu(N)/G = Cu(N/G).

We will discuss some examples based on the above result. Recall from Ex-
ample 3.1.5,

Cu
(
Ski
)

= Sn−k−1l .
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Example 6.2.1 (Real projective spaces). Take M = Sn, N = Ski and G = S0 ∼= Z2.
Applying Theorem 6.1.1, we get

Cu
(
RPki

) ∼= RPn−k−1l .

Example 6.2.2. TakeM = S2n+1, N = S2k+1
i andG = S1. Applying Theorem 6.1.1,

we get
Cu
(
CPki

) ∼= CPn−k−1l .

Example 6.2.3 (Lens space). Consider S2n+1 ⊂ Cn+1. Let p be a prime number and
ξ = e

2ιπ
p be a primitive pth root of unity and let q1, · · · , qn+1 be integers coprime to

p. Consider Zp = {1, ξ, ξ2, · · · , ξp−1} and let it acts on S2n+1 by ξ (z1, · · · , zn+1) :=
(ξq1z1, · · · , ξqn+1zn+1). The orbit space is denoted by L(p; q1, . . . , qn+1) and is called
a lens space. Since Cu (S2n−1 ⊂ S2n+1) = S1, so taking the Zp action, gives that the
cut locus of L (p; q1, . . . , qn) in L (p; q1, . . . , qn+1) is S1. In general, we have

Cu (L (p; q1, . . . , qk+1)) ∼= L (p; qk+2, . . . , qn+1) .

6.3 Cut locus of hypersurface in complex projective
space

Let z = (z0, · · · , zn) ∈ Cn+1 and [z] ∈ CPn, then the Fermat hypersurface of
degree d is given by the polynomial f(z) = zd0 + · · ·+ zdn,

X(d) := {[z] : f(z) = 0}.

The homotopy type of the complement of the above hypersurface is well stud-
ied in the article [Kulkarni and Wood, 1980]. Since the partial derivatives ∂f

∂zj

do not vanish simultaneously on Cn+1 − {0}, the hypersurface is nonsingular.
We wish to find its cut locus and want to compare our result with the result in
[Kulkarni and Wood, 1980, Proposition 3.1]. In that paper, the authors found the
homotopy type of the complement of the hypersurface.

Proposition 6.3.1 ([Kulkarni and Wood, 1980]). The complement of X(d) is
homotopic to the base space of the n universal principal Zd-bundle constructed
by Milnor from the join of n+ 1 copies of Zd.

Using Theorem 4.3.5, the same can be studied by looking at the cut locus of X(d)
in CPn. We will use Theorem 6.1.1 to find the cut locus of X(d). Recall that there
is a principal S1-bundle given by

π : S2n+1 → CPn, (z0, · · · , zn) 7→ [z0 : · · · : zn].

Therefore, using Theorem 6.1.1 it is enough to find the cut locus of π−1(X(d)) :=
X̃(d). We propose the following conjecture.
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Conjecture. The cut locus of X̃(d) ⊆ S2n+1 is Z?(n+1)
d ×Zd S1, where ×Zd is the

diagonal action of Zd and ? denotes the topological join of spaces.

Using Theorem 6.1.1, the cut locus of X(d) will be Z?(n+1)
d and hence we are

recovering the nth-stage of Milnor join construction of classifying space for Zd.
Note that we can see Zd ⊂ S1 and S2n+1 is the join of n circles. Hence, Z?(n+1)

d ⊂
S2n+1 and also note that

Z?(n+1)
d × S1 ↪→ S2n+1,

(
v, eιθ

)
7→ ve−ιθ

gives a well-defined map from Z?(n+1)
d ×Zd S1 to S2n+1. We will prove some par-

ticular cases of the above conjecture. More precisely, we will prove the above
conjecture holds for d = 2 and arbitrary n (Theorem 6.3.1) and n = 1 and arbi-
trary d (Theorem 6.3.2). Let us denote

C̃u = Cu(X̃(d)), and S̃e = Se(X̃(d)).

Theorem 6.3.1 (Cut locus of X(2)). The cut locus of X̃(2) ⊆ S2n+1 is Sn ×Z2

S1 ∼= {(v cos θ,v sin θ) : v ∈ Sn, θ ∈ [0, 2π]}. Hence, the cut locus of X(2) in
CPn will be RPn+1.

Proof. We will show that {(v cos θ,v sin θ) : v ∈ Sn, θ ∈ R} = Se(X̃(2)). Let v ∈ Sn
and θ ∈ R. Let us write zj = xj + ιyj. We can write X̃(2) as

X̃(2) =

{
(z0, · · · , zn) ∈ Cn+1 :

n∑
i=0

z2i = 0, and
n∑
i=0

|zi|2 = 1

}

=

{
(x0, y0, · · · , xn, yn) :

n∑
i=0

x2i =
1

2
=

n∑
i=0

y2i , and
n∑
i=0

xiyi = 0

}

=

{
(x0, x1, · · · , xn, y0, y1, · · · , yn) :

n∑
i=0

x2i =
1

2
=

n∑
i=0

y2i , and
n∑
i=0

xiyi = 0

}
.

If A ∈ O(n+ 1), then Ã =

(
A 0
0 A

)
∈ SO(2n+ 2). Note that

i Ã ∈ Iso (S2n+1), where Iso(M) denotes the set of all isometries of M .

ii Ã maps X̃(2) to itself, and C̃u to itself.

Thus, if p ∈ S̃e ⊆ C̃u and let γ and η be two distance minimal geodesics joining p
to X̃(2), then Ãγ and Ãη will be two minimal geodesics joining Ãp to X̃(2). As the
action of O(n+1) on Sn is transitive, it suffices to check if e1 cos θ+en+2 sin θ ∈ S̃e.
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We can further reduce our work by looking at the matrix

B =



cos θ 0 · · · 0 sin θ 0 · · · 0
0 0
... In

... 0n

0 0
− sin θ 0 · · · 0 cos θ 0 · · · 0

0 0
... 0n

... In
0 0


,

which is again an isometry of S2n+1 and sends e1 cos θ + en+2 sin θ to e1. Hence, it
is enough to prove that e1 ∈ S̃e. Note that

dist
(
e1, X̃(2)

)
=
π

4
.

Let
v1 = e2n+2, v2 = −e2n+2.

Consider the geodesics

γ(t) = e1 cos t+ e2n+2 sin t, and η(t) = e1 cos t− e2n+2 sin t, t ∈ R.

Note that γ and η intersect the set ˜X(2) at t = π
4
, so their lengths are same, and it

is equal to the distance between e1 and the submanifold. This proves that e1 ∈ S̃e.
Conversely, if p = (v,w) ∈ S̃e, then we will show that there exists u ∈ Sn

and θ ∈ R such that v = u cos θ and w = u sin θ. Note that if {v,w} is linearly
dependent, then there exists θ ∈ R such that

v = v̂ cos θ, w = v̂ sin θ

and hence p ∈ S̃e. So we assume that v and w are linearly independent. Suppose
p /∈ Sn ×Z2 S1. We need to show that p /∈ S̃e. To the contrary, let us assume that
p ∈ S̃e. Consider a unit speed geodesic γ(t) in the direction of v = (v1,v2) ∈
T(v,w)S2n+1 which implies

‖v1‖2 + ‖v2‖2 = 1 (6.1)
〈v1,v〉+ 〈v2,w〉 = 0 (6.2)

Consider the curve γ(t) = (v cos t+ v1 sin t,w cos t+ v2 sin t) for t ∈ R. Note that
2 ≤ rank[v,w,v1,v2] ≤ 4. We will prove that none of the cases is possible. Since
p ∈ S̃e, so p ∈ C̃u which implies there exists t ∈ R such that γ(t) ∈ X̃(2), γ′(t) ∈(
Tγ(t)X̃(2)

)⊥
and t will be minimum among all such values. So we have

‖v‖2 cos2 t+ ‖v1‖2 sin2 t+ 〈v,v1〉 sin 2t =
1

2
, (6.3)

‖w‖2 cos2 t+ ‖v2‖2 sin2 t+ 〈w,v2〉 sin 2t =
1

2
,

〈v,w〉 cos2 t+ 〈v1,v2〉 sin2 t+
1

2
(〈v,v2〉+ 〈v1,w〉) sin 2t = 0. (6.4)
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Now we will make use of the other condition γ′(t) ∈
(
Tγ(t)X̃(2)

)⊥
. Consider

the vector u = (−w cos t+ v2 sin t,v cos t+ v1 sin t). We claim that u ∈ Tγ(t)X̃(2).
Note that (v,w) ∈ T(p,q)X̃(2) implies 〈p,v〉 = 0, 〈q,w〉 = 0 and 〈p,w〉+〈q,v〉 = 0.

〈p,v〉 = 〈(v cos t+ v1 sin t) , (−w cos t− v2 sin t)〉
= −〈v,w〉 cos2 t− 〈(v,v2〉+ 〈v1,w〉) cos t sin t− 〈v1,v2〉 sin2 t

= 0 (from (6.4)).

Similarly, 〈q,w〉 = 0, and

〈p,w〉+ 〈q,v〉
= 〈v cos t+ v1 sin t,v cos t+ v1 sin t〉+ 〈w cos t+ v2 sin t,−w cos t− v2 sin t〉
= ‖v‖2 cos2 t+ ‖v1‖2 sin2 t+ 2 〈v,v1〉 cos t sin t− ‖w‖2 cos2 t− ‖v2‖2 sin2 t

− 2 〈w,v2〉 cos t sin t

= cos2 t
(
‖v‖2 − ‖w‖2

)
+ sin2 t

(
‖v1‖2 − ‖v2‖2

)
+ sin 2t (〈v,v1〉 − 〈w,v2〉)

= 0 (from (6.1) and (6.2)).

Therefore, u ∈ Tγ(t)X̃(2) and hence 〈u, γ′(t)〉 = 0 which implies

〈v,v2〉 − 〈v1,w〉 = 0. (6.5)

Define

ũ1 =
√

2 (v cos t+ v1 sin t) , and ũ2 =
√

2 (w cos t+ v2 sin t) .

Note that ũ1 ⊥ ũ2 and both are vectors in Rn+1. We extend {ũ1, ũ2} to an or-
thonormal basis of Rn+1, say {ũ1, ũ2, ũ3, . . . , ũn+1}. If (w1,w2) ∈ Tγ(t)X̃(2), then
〈w1, ũ1〉 = 0, 〈w2, ũ2〉 = 0 and 〈w1, ũ2〉 + 〈w2, ũ1〉 = 0 as γ(t) = 1√

2
(ũ1, ũ2). This

implies w1,w2 ∈ Span {ũ3, . . . , ũn+1} or

w1 = −ũ2 +
∑
j≥3

cjũj and w2 = ũ1 +
∑
j≥3

djũj.

Since wi ∈ Tγ(t)X̃(2),

〈γ′(t), (w1,w2)〉 = 0 =⇒ for j ≥ 3, 〈γ′(t), (ũj, 0)〉 = 0, and 〈γ′(t), (0, ũj)〉 = 0.

The above implies

− v sin t+ v1 cos t,−w sin t+ v2 cos t ∈ Span {ũ1, ũ2} . (6.6)

Since −v sin t+ v1 cos t ∈ Span {ũ1, ũ2},

− v sin t+ v1 cos t = α
√

2 (v cos t+ v1 sin t) + β
√

2 (w cos t+ v2 sin t)

=⇒ v(sin t− α
√

2 cos t) + w(−β
√

2 cos t)+

v1(cos t− α
√

2 sin t) + v2(β
√

2 sin t) = 0. (6.7)

If rank[v,w,v1,v2] = 4, then from equation (6.7)

sin t− α
√

2 cos t = 0 = cos t− α
√

2 sin t, and − β cos t = 0 = β sin t.
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This implies 2α2 = −1, which is absurd. Thus, all four vectors can not be linearly
independent. Now we are remaining with two cases: rank[v,w,v1,v2] = 2 or
rank[v,w,v1,v2] = 3.

Case 1: rank[v,w,v1,v2] = 2 : Let v1 = αv + βw and v2 = γv + δw for some
α, β, γ, δ ∈ R. Observe that

(6.5) =⇒ γ ‖v‖2 − β ‖w‖2 = (α− δ) 〈v,w〉
=⇒ (γ + β) ‖v‖2 − (α− δ) 〈v,w〉 = β (6.8)

(6.2) =⇒ α ‖v‖2 + δ ‖w‖2 = −(β + γ) 〈v,w〉
=⇒ (α− δ) ‖v‖2 + (β + γ) 〈v,w〉 = −δ. (6.9)

Using equations (6.8) and (6.9), we obtain

‖v‖2
(
(α− δ)2 + (β + γ)2

)
= βγ + β2 − αδ + δ2.

Note that (α − δ)2 + (β + γ)2 = 0 implies α = δ and β = −γ. But from equations
(6.8) and (6.9) implies that α = β = δ = γ = 0, which is not possible. Thus,

‖v‖2 =
βγ + β2 − αδ + δ2

(α− δ)2 + (β + γ)2
,

‖w‖2 =
βγ + δ2 − αδ + β2

(α− δ)2 + (β + γ)2
, and

〈v,w〉 =
−(αβ + γδ)

(α− δ)2 + (β + γ)2
.

From equation (6.3), we have(
α2 + γ2

)
‖v‖2 + 2 (αβ + γδ) 〈v,w〉+

(
β2 + δ2

)
‖w‖2 = 1

=⇒
(
α2 + γ2

) (
βγ + β2 − αδ + δ2

)
− 2(αβ + γδ)2

+
(
β2 + δ2

) (
βγ + δ2 − αδ + β2

)
− (α− δ)2 − (β + γ)2 = 0

=⇒ (βγ − αδ)
(∑

α2
)

+ 2
(
α2 + γ2

) (
β2 + δ2

)
− 2(αβ + γδ)2

−
(∑

α2
)

+ 2(αδ − βγ) = 0

=⇒ (βγ − αδ − 1)
(∑

α2
)

+ 2(βγ − αδ)2 − 2(βγ − αδ) = 0

=⇒ (βγ − αδ − 1)
(∑

α2
)

+ 2(βγ − αδ)(βγ − αδ − 1) = 0

=⇒ (βγ − αδ − 1)
(
(α− δ)2 + (β + δ)2

)
= 0,

which implies
βγ − αδ = 1. (6.10)

Now we will use the condition that γ(t) ∈ X̃(2) which was given by equations
(6.3) and (6.4). From (6.3) we have

‖v‖2 cos2 +
(
α2 ‖v‖2 + β2 ‖w‖2 + 2αβ 〈v,w〉

)
sin2 t

+
(
α ‖v‖2 + β 〈v,w〉

)
sin 2t =

1

2
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=⇒ sin2 t
(
α2
(
1 + β2 + δ2

)
+ β2

(
1 + α2 + γ2

)
− 2αβ(αβ + γδ)

)
+ cos2 t

(
1 + β2 + δ2

)
+ sin 2t

(
α
(
1 + β2 + δ2

)
− β(αβ + γδ)

)
=

2 +
∑
α2

2

=⇒
(
α2 + β2 + 1

)
sin2 t+

(
β2 + δ2 + 1

)
cos2 t+ (α− δ) sin 2t =

2 +
∑
α2

2

=⇒ α2 + β2 + cos2 t
(
β2 + δ2 + 1− α2 − β2 + 1

)
+ (α− δ) sin 2t =

∑
α2

2

=⇒
(
δ2 − α2

)
cos2 t+ (α− δ) sin 2t− γ2 + δ2 − α2 − b2

2
= 0,

which simplifies to (
δ2 − α2

)
cos 2t+ 2(α− δ) sin 2t = γ2 − β2.

Similarly, using (6.4) we have

−(α + δ)(β + γ) cos 2t+ 2(β + γ) sin 2t = (α− δ)(β − γ).

Writing the last two relation into matrix form we have[
−(α− δ)(α + δ) 2(α− δ)
−(α + δ)(β + γ) 2(β + γ)

] [
cos 2t
sin 2t

]
=

[
γ2 − β2

(α− δ)(β − γ)

]
. (6.11)

Note that the rank of the coefficient matrix is 1 and this can occur if one row is
linear multiple of the other.

• Let α = δ and β 6= −γ. The system (6.11) has a solution, so β − γ = 0. Note
that

(6.8) =⇒ β
(
‖v‖2 − ‖w‖2

)
= 0 =⇒ β = 0 or ‖v‖2 = ‖w‖2 .

But, note that β = 0 can not be possible because if β = 0 = γ, then using
(6.10) α2 = −1, a contradiction. Therefore, ‖v‖2 = 1

2
= ‖w‖2. Again using

(6.9),

〈v,w〉 =
−α
2β

.

Since

‖v1‖2 + ‖v2‖2 = 1 =⇒ (α2 + β2)

2
+ 4αβ

(
−α
2β

)
+

(α2 + β2)

2
= 1

=⇒ β2 − α2 = 1.

Consider

〈v,w〉 = − α

2β
=⇒ 4β2 〈v,w〉2 = α2 = β2 − 1

=⇒ β2 =
1

1− 4 〈v,w〉2
, α2 =

4 〈v,w〉2

1− 4 〈v,w〉2
.
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Note that the above expression is valid as v and w are linearly independent
and each has norm 1√

2
. Thus, if p ∈ S̃e, then the only two possible directions

are v1 = (v1,v2) and −v = (−v1,−v2). If γ and η be two geodesics in v1 and
−v1 direction respectively, then they intersect X̃(2) at t and π−t respectively.
As their lengths are same, and they are unit speed geodesics, so t = π − t
which implies t = π

2
. This implies (v1,v2) ∈ X̃(2) which means

〈v1,v2〉 = 0 =⇒ αβ

2
+
αβ

2
+ 2αβ 〈v,w〉 = 0

=⇒ αβ(2 + 〈v,w〉) = 0

=⇒ α = 0.

If α = 0 = δ, then β2 = 1 which implies β = ±1, and hence (v,w) ∈ X̃(2),
which is a contradiction.

• Let β + γ = 0 or α − δ 6= 0. But α − δ 6= 0, so β = γ = 0 which implies
v1 = αv and v2 = δw. Observe that

(6.8) =⇒ 〈v,w〉 = 0 =⇒ 〈v1,v2〉 = 0.

(6.1) =⇒ α2 ‖v‖2 + δ2 ‖w‖2 = 1

=⇒ ‖w‖2
(
α2 + δ2

)
= 1− α2

=⇒ ‖w‖2 =
1− α2

α2 + δ2
, and ‖v‖2 =

δ2 − 1

α2 + δ2
.

Now we use the condition that αδ = −1 to obtain,

α2 =
‖w‖2

‖v‖2
, and δ2 =

‖v‖2

‖w‖2
,

which is again fixed and there are only two possible directions v1 and −v1

and hence this case is also not possible.

• Finally, both row are non-zero and let α + δ = λ(β + γ). So (6.11) become[
−(α + δ)λ(β + γ) 2λ(β + γ)
−(α + δ)(β + γ) 2(β + γ)

] [
cos 2t
sin 2t

]
=

[
− (β2 − γ2)
λ (β2 − γ2)

]
=⇒

[
−(α + δ)λ 2λ
−(α + δ) 2

] [
cos 2t
sin 2t

]
=

[
−(β + γ)
λ(β + γ)

]
,

which implies λ2 = −1, a contradiction.

Thus, we have proved that rank[v,w,v1,v2] 6= 2.

Case 2: rank[v,w,v1,v2] = 3 : Since rank is 3, without loss of generality we
assume that v2 ∈ Span {v,w,v1}. Let us write v2 = av + bw + cv1 for some
a, b, c ∈ R. Since the rank is three we can assume that all the vectors are in R3 and
let × denote the vector cross product. Let

v1 = (v cos t+ v1 sin t))× (w cos t+ v2 sin t)

= (v ×w) cos2 t+ (v × v2) cos t sin t+ (v1 ×w cos t sin t) + (v1 × v2) sin2 t.
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Using (6.6), we have

v1 · (−v sin t+ v1 cos t) = 0 =⇒ [v,w,v1] cos t+ [v1,v,v2] sin t = 0 (6.12)
v1 · (−v sin t+ v2 cos t) = 0 =⇒ [v,w,v2] cos t+ [v1,w,v2] sin t = 0. (6.13)

Note that

[v1,v,v2] = [v1,v, av + bw + cv1] = b (v,w,v1) .

So from (6.12),

[v,w,v1] cos t+ b [v,w,v1] sin t = 0 =⇒ cos t+ b sin t = 0. (6.14)

Above implies,

cos t =
−b

1 + b2
, and sin t =

1

1 + b2
.

Similarly, using (6.13),

[v,w, av + bw + cv1] cos t+ [v1,w, av + bw + cv1] sin t = 0

=⇒ c (v,w,v1) cos t+ a [v1,w,v] sin t = 0

=⇒ [v,w,v1] (c cos t− a sin t) = 0

=⇒ c cos t = a sin t. (6.15)

Using (6.14) and (6.15) we obtain

a+ bc = 0.

Now we collect some more conditions using previous conditions.

(6.5) =⇒ a ‖v‖2 + b 〈v,w〉+ c 〈v,v1〉 − 〈v1,w〉 = 0 (6.16)

=⇒ −bc ‖v‖2 + b 〈v,w〉+ c 〈v1,v〉 − 〈v1,w〉 = 0

=⇒ (v1 − bv) · (w − cv) = 0

(6.2) =⇒ 〈v,v1〉+ a 〈v,w〉+ b ‖w‖2 + c 〈v1,w〉 = 0 (6.17)

=⇒ 〈v,v1〉 − bc 〈v,w〉+ b ‖w‖2 + c 〈v,v1〉 = 0

=⇒ v1 · (v − cw) = bw · (cv −w).

Multiply (6.16) by c and add to (6.17) to obtain

〈v1,v〉 =
bc2

1 + c2
‖v‖2 − b

1 + c2
‖w‖2]. (6.18)

Similarly,

〈v1,w〉 =
−bc

1 + c2
+ b 〈v,w〉 . (6.19)

We use (6.3) and substitute the value of cos t, sin t and use (6.19) and (6.18) to
obtain

‖v1‖2 =
b2 (c2 − 1)

1 + c2
‖v‖2 − 2b2

1 + c2
‖w‖2 +

1 + b2

2
.
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Now use ‖γ(t)‖2 = 1,

b2 (c2 − 1)

1 + c2
‖v‖2 +

b2 (c2 − 1)

1 + c2
‖w‖2 +

b2 (c2 − 1)
2

+ (c2 + 1)
2

2 (1 + c2)
= 1

=⇒ b2 (c2 − 1)

1 + c2
(
‖v‖2 + ‖w‖2

)
+
b2 (c2 − 1)

2
+ (c2 + 1)

2

2 (1 + c2)
= 1

=⇒ 2b2
(
c2 − 1

)
+ b2

(
c2 − 1

)2
= 2

(
1 + c2

)
−
(
1 + c2

)2
=⇒

(
c2 − 1

) (
2b2 + b2c2 − b2

)
=
(
1 + c2

) (
1− c2

)
=⇒

(
c2 − 1

) (
b2 + b2c2 + 1 + c2

)
= 0

=⇒ c = ±1.

We also have

(v cos t+ v1 sin t) · (w cos t+ (av + bw + cv1) sin t) = 0

=⇒ (−bv + v1) · (−bw + av + bw + cv1) = 0

=⇒ b2c ‖v‖2 − 2bc 〈v,v1〉+ c ‖v1‖2 = 0

=⇒ c (1 + b2)

2
= 0

=⇒ c = 0,

which is a contradiction. Hence, the rank can not be 3. Therefore, v and w are
linearly dependent and hence, (v,w) ∈ Sn ×Z2 S1.

We now prove that the cut locus of X̃(d) when n = 1 will be (Zd ? Zd)×Zd S1.

Note 6.3.1 (Cut locus of X(2) for n = 1). For n = 1, the cut locus of X̃(2) is

Cu(X̃(2)) =

{
1

2
(cos s+ sin t, sin s+ cos t, sin s− cos t,− cos s+ sin t) : s, t ∈ R

}
.

Moreover, the cut locus of X(2) will be RP1.

Proof. Let us write zj = xj + ιyj. Note that

X̃(2) =
{

(z0, z1) ∈ C2 : z20 + z21 = 0, and |z0|2 + |z1|1 = 1
}

=

{
(x0, y0, x1, y1) : x20 + x21 =

1

2
= y20 + y21, and x0y0 + x1y1 = 0

}
.

Since (x0, x1) and (y0, y1) can not be zero vectors, so without loss of generality, we
assume that x0y1 6= 0. Since

x0y0 + x1y1 = 0 =⇒ y0
y1

+
x1
x0

= 0 =⇒ y0 = −y1
(
x1
x0

)
.

Now as

y20 + y21 =
1

2
=⇒ y21

(
x1
x0

)2

+ y21 =
1

2
=⇒ y21

(
x21
x20

+ 1

)
=

1

2
=⇒ y1 = ±x0.
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Similarly, we have
x1 = ±y0.

Therefore,

X̃(2) =

{
(x0, y0, y0,−x0) : x20 + y20 =

1

2

}
t
{

(x0,−y0, y0, x0) : x20 + y20 =
1

2

}
= S1

1 t S1
2 .

Define a linear transformation

T : R4 → R4, (a, b, c, d) 7→ 1√
2

(a− d, b+ c, b− c, a+ d).

Note that T maps S3 onto S3 and is an isometry hence it preserves the cut locus.
So

Cu(T (X̃(2))) = Cu
(
T
(
S1
1

)
t T

(
S1
2

))
= Cu

({
(a, b, 0, 0) : a2 + b2 = 1

}
t
{

(0, 0, c, d) : c2 + d2 = 1
})

=

{
1√
2

(cos s, sin s, cos t, sin t) : s, t ∈ R
}
.

Therefore, the cut locus of X(2) can be found by the inverse transformation which
is

T−1(x, y, z, w) =
1

2
(x+ 2, y + z, y − z, w − x).

Hence,

Cu(X̃(2)) =

{
1

2
(cos s+ sin t, sin s+ cos t, sin s− cos t,− cos s+ sin t) : s, t ∈ R

}
∼= S1 × S1.

Quotient with S1 give the required cut locus.

Theorem 6.3.2. For n = 1, we have

C̃u = (Zd ? Zd)×Zd S
1.

Proof. Note that

Zd ? Zd =
{
v = (ξk cosφ, ξl sinφ) : 0 ≤ k, l ≤ d− 1, and 0 ≤ φ ≤ π

2

}
,

where ξk is a dth root of unity. Let v ∈ Zd ? Zd and θ ∈ (0, 2π). We will show that
veιθ ∈ S̃e. Due to S1-symmetry, it is enough to show that v ∈ S̃e. Now consider
the matrix

A =

(
λ1 0
0 λ2

)
∈ U(2), such that λd1 = 1 = λd2.

We observe that A maps X̃(d) to itself and hence it is enough to show that p =

(cosφ, 0, sinφ, 0) ∈ S̃e. Note that

X̃(d) =
{

(z1, z2) ∈ S3 : zd1 + zd2 = 0
}
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=

{
(z1, z2) ∈ S3 : zd1 = −zd2 , |z1| =

1√
2

= |z2|
}

=

{
(z, ξz) ∈ S3 : ξd = −1, and |z| = 1√

2

}
=

d−1⊔
k=0

{
(z, ξz) : ξ = e

(2k+1)π
d , |z| = 1√

2

}
=

d−1⊔
k=0

Xk

We now compute the distance of p from Xk and will show that the distance is same
with at least two components, which will show that p ∈ S̃e. Note that for any point
Q = (x1, y1, x2, y2) ∈ X̃(d), the distance between p and Q is given by (look at the
Figure 6.3)

θ

p

Q = (x1, y1, x2, y2)

Figure 6.3: distance of p to X̃(d)

dist(p,Q) = cos−1(p ·Q) = cos−1 (x1 cosφ+ x2 sinφ) .

Therefore, the distance between p and the set X̃(d) is given by

dist(p, X̃(d)) = inf
{

dist(p,Q) : Q ∈ X̃(d)
}

= inf
{

cos−1 (x1 cosφ+ x2 sinφ) : (x1, y1, x2, y2) ∈ X̃(d)
}
.

As cos−1 is a decreasing function, it is equivalent to maximize x1 cosφ + x2 sinφ

such that x2 = x1 cos
(

(2k+1)π
d

)
− y1 sin

(
(2k+1)π

d

)
, and x21 + y21 = 1

2
. This maximum

value will be √√√√1 + sin 2φ cos
(

(2k+1)π
d

)
2

.

Therefore, the distance from Xk will be

cos−1


√√√√1 + sin 2φ cos

(
(2k+1)π

d

)
2

 .
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Note that if d is even, then the above distance is same from Xk and Xd−1−k, there-
fore, the point is a separating point and hence is a cut point. If d is odd, then
the above still holds. The only thing to make sure that the distance from each
component is smaller than the distance from X d−1

2
, but this is true as 0 ≤ φ ≤ π

2
.

Therefore, we proved that p ∈ S̃e and hence it is in C̃u. The inverse inclusion fol-
lows with a similar argument. In fact, if we take any other point, then there will
be only one distance minimal geodesic, that will occur from one component. Let
p =

(
r1e

ιθ1 , r2e
ιθ2
)

be any point in S3 not in the above form. Note that if θ1 = θ2,
then due to S1-equivariant, p ∈ S̃e if and only if (r1, 0, r2, 0) ∈ S̃e, which is a point
in the above form. So we assume that θ1 6= θ2 and θ1, θ2 ∈ [0, 2π/d]. Then we have
to minimize the distance from p to X̃(d), that is

dist(p, X̃(d)) = inf
{

cos−1(p · (z1, z2)) : (z1, z2) ∈ X̃(d)
}
.

This is equivalent to maximizing the dot product p · (z1, z2), and this maximum
will be achieved from one component, say Xl, of X̃(d) as 0 < |θ1 − θ2| < 2π/d. A
similar computation shows that there is only one distance minimal geodesic from
the component Xl, and this shows that p /∈ S̃e. Hence, the theorem is proved.

Remark 6.3.1. In [Audin, 2005, §2.2], the author has shown that the function

f : CPn → R, [x+ ιy] 7→ ‖y‖2(
1 + ‖y‖2

)2
is a Morse-Bott function with two critical submanifolds − X(2) and RPn. We
know that CPn \ X(2) deformation retracts to RPn via Morse-Bott flow, whereas
Lemma 4.3.1 implies that CPn \ X(2) deformation retracts to Cu(X(2)). Hence,
Cu(X(2)) and RPn have the same homotopy type. However, it’s not a priori
clear whether they are equal. Moreover, our calculation shows a computation
of Cu(T1Sn) ⊆ S2n+1, where T1Sn is the unit tangent bundle of Sn. We deduce
that the cut locus is the unique non-trivial S1-bundle of RPn and this is a new
computation.
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