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Let M be a smooth manifold and f : M — R be any smooth function.

© A point p € M is a critical point of f if df, = 0. In a coordinate
neighborhood (¢ = (x1,x2,...,x,), U) around p for all j =1,2,...,n

we have ( 1)
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@ A critical point p is called non-degenerate if determinant of the
Hessian matrix

ey (1) = (T4 ot

is non-zero.

© The function f is said to be a Morse function if all the critical points
of f are non-degenerate. We denote the set of all critical points of f
by Cr(f).
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Definition (Morse-Bott functions)

Let M be a Riemannian manifold. A smooth submanifold N C M is said
to be non-degenerate critical submanifold of f if N C Cr(f) and for any
p € N, Hessp(f) is non-degenerate in the direction normal to N at p.
The function f is said to be Morse-Bott if the connected components of
Cr(f) are non-degenerate critical submanifolds.

The Hessp(f) is non-degenerate in the direction normal to N at p means
for any V € (T,N)* there exists W € (T,N)* such that
Hessp(f)(V, W) # 0.
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Example

Let M =R? and N = {(x,0) : x € R}. Then the distance between a point
p € R? and N is given by

d(p,N) := inf d .

(p, N) := inf d(p.a)

We shall denote by d? the square of the distance. Consider the function
f:M—=R,(xy) = d*((x,y),N) = y*.

Thus the set of critical points is the whole x-axis and

Hess(x,0)f = (g g)

which is non-degenerate in the normal direction (y-axis).
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Definition (Cut locus)
Let M be a complete Riemannian manifold and p € M. If Cu(p) denotes

the cut locus of p, then a point g € Cu(p) if there exists a minimal
geodesic joining p to g, any extension of which beyond g is not minimal.
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Cut Locus of a Submanifold

Definition

A geodesic +y is called a distance minimal geodesic joining N to p if there
exists g € N such that v is a minimal geodesic joining g to p and

I(v) = d(p, N). We will refer to such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and N be any non-empty subset of M. If
Cu(N) denotes the cut locus of IV, then we say that g € Cu(N) if there
exists an N-geodesic joining N to g such that any extension of it beyond g
is not a distance minimal geodesic.

The cut locus of a sphere in R3 is its center.
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An Example of Morse-Bott function and relation to the
Cut Locus

Let M = M(n,R), the set of n x n matrices, and N = O(n, R), set of all
orthogonal n x n matrices. We fix the standard Euclidean metric on
M(n,R) by identifying it with R"™. This induces a distance function given
by

d(A,B) = \/ur((A— B)T(A— B)), A B¢ M(nR)
Consider the distance squared function
f:M(nR) =R, A d*(A O(nR)).

We will show that f is a Morse-Bott function with critical submanifold as
O(n,R).
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The function f can be explicitly expressed as

f(A) =+ (ATA) - 2u (VATA)

o If Ais an invertible matrix, then using the linearity of trace,

f(A) =t (ATA) +n-2 Besou(iR) tr (ATB)

o If Ais a diagonal matrix with positive entries, then the
maximizer will be /.

e For any A € GL(n,R), using the SVD and the polar
decomposition of A we conclude that the maximizer is

AVATA .

Note: The maximizer is unique if and only if A is invertible.
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@ The map f is differentiable if and only if A is invertible.
e For any A € GL(n,R)

dfs = 2A — 2A (\/ﬂ)_l — _2A <\/ﬂ_1 _ /> .

Note that for any H

dfa(H) = <—2A <\/ﬂ_1 - /> ,H> —0 — ATA=1.

The critical set of f is O(n,R).
B € (TA0(n,R)* if B= AW for some symmetric matrix W.
The Hessian matrix restricted to (TaO0(n, R))™ is 2/unsy) .

2
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Integral curve of —Vf

o If v(t) is an integral curve of —Vf initialized at A, then 7(0) = A and

dvy

T =20 +2(+07) O (1)

@ The solution of (1) given by

() = Ae™ 4 (1 e 2)A (VA A)_l . (2)

o Note that v(t) is a flow line which deforms GL(n,R) to O(n, R).
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Characterization of Cut Locus

Definition (Separating set)

Let N be a subset of a Riemannian manifold M . The separating set,
denoted by Se(N), consists of all points g € M such that at least two
distance minimal geodesics from N to g exist.

e Franz-Erich Wolter in 1979 proved that the closure of Se(p) is
Cu(p) and hence Cu(p) is a closed set.

@ The same result also holds for the cut locus of a submanifold,that is,
the closure Se(N) is whole of Cu(/N) and hence cut locus of a
submanifold is closed.

@ Now recall the example of distance squared function on M(n,R).
Using the last item, we can say that the Se(O(n,R)) is the set of all
singular matrices which is a closed set and hence the cut locus will be
the set of all singular matrices.



Regularity of the distance squared function

Theorem

Let M be a connected, complete Riemannian manifold and N be an
embedded submanifold of M. Suppose two N-geodesics exist joining N to
g € M. Then d*(N,-) : M — R has no directional direvative ar q for
vectors in direction of those two N-geodesics.
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Theorem

Let M be a complete Riemannian manifold and N be compact
submanifold of M. Then N is a deformation retract of M — Cu(N).

Define
s:S(v) — [0,00], s(v) :=sup{t € [0,00)[v[0,q is an N-geodesic},

where S(v) is the unit normal bundle of N and [0, o] is the one-point
compactification of [0,00). The map s is continuous and is finite if M is
compact. Note that the cut locus is

Cu(N) = exp, {s(v)v:v e S(v)},

where exp, : v — M, exp,(p, v) := exp,(v). Define an open
neighborhood Up(N) of the zero section in the normal bundle as

Uo(N) :={av:0<a<s(v), ve S(v)}.

Note that exp, is a diffeomorphism on Up(N) and set
U(N) = exp,(Uo(N)) = M — Cu(N).















The space Up(N) deforms to the zero section on the normal bundle.
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Us(N)

exp,, ' (p)
The space Up(N) deforms to the zero section on the normal bundle.

H: Up(N) x [0,1] — Us(N), ((p, av), t) — (p, tav).



Now consider the following diagram:

Uo(N) x [0, 1] ——— Up(N)

expulT JGXPV

Ux[0,1]—F U~ M= cu(N)



Now consider the following diagram:

Uo(N) x [0, 1] ——— Up(N)

expulT JGXPV

Ux[0,1]—F U~ M= cu(N)
The map F can be defined by taking the compositions

F =exp,oHoexp,?t.

O



Now consider the following diagram:

Uo(N) x [0, 1] ——— Up(N)

expulT JGXPV

Ux[0,1]—F U~ M= cu(N)
The map F can be defined by taking the compositions
F = exp, oH o exp, .
We saw that for M = M(n,R) and N = O(n,R), the cut locus

Cu(O(n,R)) is the set of all singular matrices and M — Cu(O(n,R)),
which is the set of invertible matrices, deforms to O(n,R).

O
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