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Definition (Morse-Bott functions)

Let M be a Riemannian manifold. A smooth submanifold N C M is said to be
non-degenerate critical submanifold of f : M — Rif N C Cr(f) and for any
p € N, Hessy(f) is non-degenerate in the direction normal to N at p. The
function f is said to be Morse-Bort if the connected components of Cr( f) are

non-degenerate critical submanifolds.

The Hess)( f) is non-degenerate in the direction normal to [N at p means for any

V € (T,N)™* there exists W € (T}, N)* such that Hess,,(f)(V, W) # 0.
p P P
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Definition (Distance minimal geodesic)

A geodesic 7 is called a distance minimal geodesic joining N to p if there exists
q € N such that y is a minimal geodesic joining g to p and [ () = d(p, N ). We
will call such geodesics as N -geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and N be any non-empty subset of M.
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Definition (Distance minimal geodesic)

A geodesic 7 is called a distance minimal geodesic joining N to p if there exists
q € N such that y is a minimal geodesic joining g to p and [ () = d(p, N ). We
will call such geodesics as N -geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and /N be any non-empty subset of M. If
Cu(N) denotes the cxz locus of N, then we say that ¢ € Cu(N) if there exists an
N-geodesic joining IV to g such that any extension of it beyond ¢ is not a distance
minimal geodesic.
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Definition (Separating set)

Let N be a subset of a Riemannian manifold M. The separating set, denoted by
Se(IV), consists of all points ¢ € M such that at least two distance minimal
geodesics from N to g exist.
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Definition (Separating set)

Let N be a subset of a Riemannian manifold M. The separating set, denoted by
Se(IV), consists of all points ¢ € M such that at least two distance minimal
geodesics from N to g exist.

Theorem (Basu S., Prasad S., 2021)

For a complete Riemannian manifold M and a compact submanifold N of M,
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lluminating example

Let M = M (n,R), the set of n X m matrices, and N = O(n,R), set of all
orthogonal n X n matrices. We fix the standard Euclidean metric on M (n,R) by
identifying it with R™”. This induces a distance function given by

d(A,B) = \/tr((A- B)T(A-B)), A,B€M(nR)
Consider the distance squared function

f:M(n,R) =R, A d*(A,0(n,R)).
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It is a Morse-Bott function with critical submanifold as O(n, R).

o Ify(t) isan integral curve of —V f initialized at A, then
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=20 +2(v®") 1O 1)

©

The solution of (r) given by

i) = A+ (1-e ) A(VATA) ' 40 =4 ()

The flow line y(¢) deforms GL(n,R) to O(n,R).
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The functionis f(A) = n+tr (ATA) —2tr (\/ ATA>.
Itis differentiable at A if and only if A is invertible.
It is a Morse-Bott function with critical submanifold as O(n, R).

If (%) is an integral curve of —V f initialized at A, then

% = —27(t)+2 (v(t)T) () T(t). (1)

The solution of (r) given by
—1
v(t)=Ae 2+ (1—e2)A (\/ATA) , 7(0) = A. (2)

The flow line () deforms GL(n,R) to O(n,R).

The separating set of O(n, R) in M (n,R) is set of singular matrices and as it
is closed, the cut locus is the same.
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submanifold of M.




f the cut locus

Its generalized from the example

Theorem (Basu S., Prasad S., 2021)

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to q € M




f the cut locus

Its generalized from the example

Theorem (Basu S., Prasad S., 2021)

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to q € M Then
d%(N,-) : M — R bas no directional derivative at q




lts generalized from the example

Theorem (Basu S., Prasad S., 2021)

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to q € M Then
d?(N,-) : M — R bas no directional derivative at q for vectors in direction of those
two N -geodesit.




Its generalized from the example

Theorem (Basu S., Prasad S., 2021)

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to q € M Then
d?(N,-) : M — R bas no directional derivative at q for vectors in direction of those
two N -geodesit.

v

Theorem (Basu S., Prasad S., 2021)
Let M be a complete Riemannian manifold




f the cut locus

Its generalized from the example

Theorem (Basu S., Prasad S., 2021)

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to q € M Then
d?(N,-) : M — R bas no directional derivative at q for vectors in direction of those
two N -geodesit.

v

Theorem (Basu S., Prasad S., 2021)
Let M be a complete Riemannian manifold and N be compact submanifold of M.




f the cut locus

Its generalized from the example

Theorem (Basu S., Prasad S., 2021)

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to q € M Then
d?(N,-) : M — R bas no directional derivative at q for vectors in direction of those
two N -geodesit.

v

Theorem (Basu S., Prasad S., 2021)

Let M be a complete Riemannian manifold and N be compact submanifold of M.
Then N is a deformation retract of M — Cu(N).




f the cut locus

generalized from the example

Theorem (Basu S., Prasad S., 2021)

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to q € M Then
d?(N,-) : M — R bas no directional derivative at q for vectors in direction of those
two N -geodesit.

.

Theorem (Basu S., Prasad S., 2021)

Let M be a complete Riemannian manifold and N be compact submanifold of M.
Then N is a deformation retract of M — Cu(N).

Theorem (Basu S., Prasad S., 2021)
The cut locus Cu(NN ) is a strong deformation retract of M — N.




Geometric aspects of the cut locus

generalized from the example

Theorem (Basu S., Prasad S., 2021)

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to q € M Then

d?(N,-) : M — R bas no directional derivative at q for vectors in direction of those
two N -geodesit.

.

Theorem (Basu S., Prasad S., 2021)

Let M be a complete Riemannian manifold and N be compact submanifold of M.
Then N is a deformation retract of M — Cu(N).

Theorem (Basu S., Prasad S., 2021)

The cut locus Cu(N ) is a strong deformation retract of M — N. In particular,
(M,Cu(N)) is a good pair




Geometric aspects of the cut locus

s generalized from the example

Theorem (Basu S., Prasad S., 2021)

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to q € M Then
d?(N,-) : M — R bas no directional derivative at q for vectors in direction of those
two N -geodesit.

.

Theorem (Basu S., Prasad S., 2021)

Let M be a complete Riemannian manifold and N be compact submanifold of M.
Then N is a deformation retract of M — Cu(N).

Theorem (Basu S., Prasad S., 2021)

The cut locus Cu(N ) is a strong deformation retract of M — N. In particular,
(M, Cu(N)) is a good pair and the number of path components of Cu(N ) equals
that of M — N.
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Define
s:5(v) — [0,00], s(v) := sup{t € [0,00) | Yv][0,q is an N-geodesic},

where S(v) is the unit normal bundle of N and [0, 0] is the one-point
compactification of [0,00). The map s is continuous and is finite if M is compact.
Note that the cut locus is

Cu(N) =exp, {s(v)v:ve S(v)},

where exp,, : v — M, exp,(p,v) := epr(v). Define an open neighborhood
Uo(N) of the zero section in the normal bundle as

Up(N):={av:0<a<s(v),veS)}.

Note that exp,, is a diffeomorphism on Uy (V) and set
U(N) = exp, (Uo(N)) = M — Cu(N).
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Cu(N)

T w
JINININe

Us(N)

exp; ' (p)
The space Uy (V') deforms to the zero section on the normal bundle.

H :Uy(N) x1[0,1] = Up(N), ((p,av),t) — (p,tav).
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Now consider the following diagram:

Uo(N) % [0,1] ——— Uy(N)

expV1T lempl,

Ux1[0,1] —5 U~ M~ Cu(N)
The map F' can be defined by taking the compositions

F =exp,oHoexp, .
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Definition (Thom space)

Let m: E — B be a real vector bundle over a paracompact space B with a metric.

Let D(E) be the unit disk bundle and S(E) be the unit sphere bundle.
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Definition (Thom space)

Let m: E — B be a real vector bundle over a paracompact space B with a metric.
Let D(E) be the unit disk bundle and S(E) be the unit sphere bundle. Then the
Thom space of F, denote by Th(E) is the quotient Th(E) := D(E)/S(E).

Remark
If B is compact, then Th(E) is the one point compactification of E.
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Definition (Rescaled exponential)
The rescaled exponential map is defined to be
exp, (s(0)0),  ifv = jo]}o

exp: D(v) — M, (p,v)»—>{p Fo—0
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The rescaled exponential map is defined to be

. 0 — Tolls
exp: D(v) — M, (p,v) — ;xpp(s(v)'u), ifz B l|)v||v

Since s is continuous, the rescaled exponential is also continuous and is surjective.
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The rescaled exponential map is defined to be

. 0 — Tolls
exp: D(v) — M, (p,v) — ;xpp(s(v)'u), ifz B l|)v||v

Since s is continuous, the rescaled exponential is also continuous and is surjective.
Also note thatexp(S(v)) = Cu(V).
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Main Theorem

Theorem (Basu S., Prasad S., 2021)

Let N be an embedded submanifold inside a closed, connected Riemannian
manifold M. If v denotes the normal bundle of N in M, then there is a
homeomorphism

o

exp: D(v)/S(v) — M/Cu(N).
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@ Theinclusion map i : Cu(N) < M induces a long exact sequence in
homology

-+ —= H;(Cu(N)) Z—*>H](M) — H;(M,Cu(N)) 2>H]-,1(Cu(N))—>--- ,

o+ —= Hj(Cu(N)) N H;(M) i>lEIj(Th(V)) N H;_1(Cu(N)) —---

Q@ If N is a closed submanifold of M with [ components, and dim M = d, then
Hy_1(Cu(N)) is free abelian of rank [ — 1 and Hy_;(Cu(N)) = H (M) if
J —2 > k, where k is the maximum of the dimension of the components of

N.

@ Let N be a smooth homology k-sphere, £ > 0, embedded in a smooth
Riemannian manifold M homeomorphic to S d 1fd > k+ 3, then the cut
locus Cu(N) is homotopy equivalent to S%—%~1,



Thank You for your attention!
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