30-01-2023

Problem: Find out the limit point of the set \[ \left\{ \frac{1}{n}\sin \left( \frac{1}{n} \right) : n\in \mathbb{N} \right\}. \]

Solution: Note that for every natural number $n$, we have \[ \left\vert \sin \frac{1}{n} \right\vert \le 1. \] So, \begin{align*} -1 \le \sin \frac{1}{n} \leq 1 & \implies -\frac{1}{n} \leq \frac{1}{n}\sin \frac{1}{n} \leq \frac{1}{n}. \end{align*}


(Sandwich Theorem) Let $\left( a_n \right) ,\left( b_n \right) $ and $\left( c_n \right) $ be sequences such that \[ a_n \le b_n\le c_n,~\forall~n\in \mathbb{N} . \] If \[ \lim_{n \to \infty} a_n = l = \lim_{n \to \infty} c_n, \] then \[ \lim_{n \to \infty} b_n = l. \]

Here we have, \[ a_n = -\frac{1}{n},~b_n = \frac{1}{n}\sin \frac{1}{n}\text{ and } c_n = \frac{1}{n}. \] We also have \[ \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = 0, \] hence using the Sandwich theorem, we conclude that \[ \lim_{n \to \infty} \frac{1}{n}\sin \left( \frac{1}{n} \right) =0. \] Thus, the limit point of the given set is $\{0\}$.