Problem: Let $D=\{z\in \mathbb{C} :\vert z \vert < 1\}$ be the unit disc. Let $f:D\to \mathbb{C} $ be an analytic function satisfying \[ f \left( \frac{1}{n} \right) = \frac{2n}{3n+1}. \] Then find out the value of $f(0)+f^\prime (0)$.
Solution: In order to solve this problem, we recall the identity theorem.
The above statement sometimes written as
Here we define \[ g: D \to \mathbb{C} ,~ z \mapsto \frac{2}{3+z}. \] Note that, \[ g\left( \frac{1}{n} \right) = \frac{2}{3+\frac{1}{n}} = \frac{2n}{1+3n}, \] and $\frac{1}{n}\to 0\in D$. Thus using the identity theorem we conclude that \[ f(z) = g(z),~\forall~z\in D. \] Theretofore, \[ f(z) = \frac{2}{3+z},~\forall~z\in D. \] So, \begin{align*} f(0) + f^\prime (0) = \frac{2}{3} - \frac{2}{9} = \frac{4}{9}. \end{align*}