Outline Introduction Symmetry and Conservation Lorentz Symmetry World Sheet Current

World Sheet Current and Conservation

Sridip Pal IISER-Kol

June 20,2011

Introduction

What is Conserved Current?

Symmetry and Conservation

Lagrangian Formalism and Symmetry

Lorentz Symmetry

Physically Feeling the Beauty

World Sheet Current

String associated current

In covariant formulation of Classical EM Theory current is a manifestly 4 vector, written as $j=(c\rho,j^1,j^2,j^3)$

In covariant formulation of Classical EM Theory current is a manifestly 4 vector, written as $j=(c\rho,j^1,j^2,j^3)$

$$\partial_{\alpha}j^{\alpha}=0$$

In covariant formulation of Classical EM Theory current is a manifestly 4 vector, written as $j=(c\rho,j^1,j^2,j^3)$

$$\partial_{\alpha}j^{\alpha} = 0 \tag{1}$$

▶ Any vector satisfying (1) is said to be conserved current.

In covariant formulation of Classical EM Theory current is a manifestly 4 vector, written as $j=(c\rho,j^1,j^2,j^3)$

$$\partial_{\alpha}j^{\alpha} = 0 \tag{1}$$

- ▶ Any vector satisfying (1) is said to be conserved current.
- ▶ The term "Conserved Current" is slight misleading, because actually charge is what gets conserved where charge is defined as $\int j^0 dx^D$.

▶ How do we reckon Symmetry in layman's language?

- ▶ How do we reckon Symmetry in layman's language?
- This connection between symmetry and conservation is established quite spontaneously in Lagrangian formalism.

- How do we reckon Symmetry in layman's language?
- This connection between symmetry and conservation is established quite spontaneously in Lagrangian formalism.
- ▶ If S is invariant under any transformation i.e first order change in lagrangian density is $\partial_{\alpha}(\epsilon^{i}\Lambda_{i}^{\alpha})$ then $\partial_{\alpha}j_{i}^{\alpha}=0$ where $\epsilon^{i}j_{i}^{\alpha}=\frac{\partial\mathcal{L}}{\partial(\partial_{\alpha}\phi^{a})}\delta\phi^{a}-\epsilon^{i}\Lambda_{i}^{\alpha}$.

- How do we reckon Symmetry in layman's language?
- This connection between symmetry and conservation is established quite spontaneously in Lagrangian formalism.
- ▶ If S is invariant under any transformation i.e first order change in lagrangian density is $\partial_{\alpha}(\epsilon^{i}\Lambda_{i}^{\alpha})$ then $\partial_{\alpha}j_{i}^{\alpha}=0$ where $\epsilon^{i}j_{i}^{\alpha}=\frac{\partial\mathcal{L}}{\partial(\partial_{\alpha}\phi^{a})}\delta\phi^{a}-\epsilon^{i}\Lambda_{i}^{\alpha}$.
- ▶ Here the conserved charges are $Q_i = \int dx^D j_i^0$.

Euler Lagrange Equation for Field

$$\frac{\partial \mathcal{L}}{\partial \phi^{a}} = \partial_{\alpha} \left(\frac{\partial \mathcal{L}}{\partial_{\alpha} \phi^{a}} \right) \tag{2}$$

$$\frac{\partial \mathcal{L}}{\partial \phi^{a}} = \partial_{\alpha} \left(\frac{\partial \mathcal{L}}{\partial_{\alpha} \phi^{a}} \right)$$

$$\delta(\mathcal{L}) = \frac{\partial \mathcal{L}}{\partial \phi^{a}} \delta \phi^{a} + \frac{\partial \mathcal{L}}{\partial_{\alpha} \phi^{a}} \delta (\partial_{\alpha} \phi^{a})$$
(2)

Euler Lagrange Equation for Field

$$\frac{\partial \mathcal{L}}{\partial \phi^{\mathbf{a}}} = \partial_{\alpha} \left(\frac{\partial \mathcal{L}}{\partial_{\alpha} \phi^{\mathbf{a}}} \right) \tag{2}$$

$$\frac{\partial \mathcal{L}}{\partial \phi^{a}} = \partial_{\alpha} \left(\frac{\partial \mathcal{L}}{\partial_{\alpha} \phi^{a}} \right)$$

$$\delta(\mathcal{L}) = \frac{\partial \mathcal{L}}{\partial \phi^{a}} \delta \phi^{a} + \frac{\partial \mathcal{L}}{\partial_{\alpha} \phi^{a}} \delta \left(\partial_{\alpha} \phi^{a} \right)$$
(3)

Starting from these 2 simple equations we can prove our previous claim of conservation law i.e $\partial_{\alpha} (\frac{\partial \mathcal{L}}{\partial (\partial_{\alpha} \phi^{a})} \delta \phi^{a} - \epsilon^{i} \Lambda_{i}^{\alpha}) = 0$

Generalisation

In the same way as outlined in previous slide, one can show if under any transformations $\delta(\mathcal{L}) = \partial_{\alpha}(\epsilon^{i_1,i_2,...i_n}\Lambda^{\alpha}_{i_1,i_2,...i_n})$ then $\partial_{\alpha}j^{\alpha}_{\sigma(i_k)} = 0$ where $\epsilon^{i_1,i_2,...i_n}j^{\alpha}_{i_1,i_2,...i_n} = \frac{\partial \mathcal{L}}{\partial(\partial_{\alpha}\phi^a)}\delta\phi^a - \epsilon^{i_1,i_2,...i_n}\Lambda^{\alpha}_{i_1,i_2,...i_n}$

Generalisation

In the same way as outlined in previous slide, one can show if under any transformations $\delta(\mathcal{L}) = \partial_{\alpha}(\epsilon^{i_1,i_2,...i_n}\Lambda^{\alpha}_{i_1,i_2,...i_n})$ then $\partial_{\alpha}j^{\alpha}_{\sigma(i_k)} = 0$ where $\epsilon^{i_1,i_2,...i_n}j^{\alpha}_{i_1,i_2,...i_n} = \frac{\partial \mathcal{L}}{\partial(\partial_{\alpha}\phi^a)}\delta\phi^a - \epsilon^{i_1,i_2,...i_n}\Lambda^{\alpha}_{i_1,i_2,...i_n}$

Here
$$L = -m_0 c \left(-\eta_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}\right)^{0.5}$$
 (4)

Here
$$L = -m_0 c \left(-\eta_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}\right)^{0.5}$$
 (4)

$$\frac{\partial L}{\partial(\partial_0 x^{\mu})} \delta x^{\mu} = \epsilon^{\mu} j_{\mu} \tag{5}$$

Here
$$L = -m_0 c \left(-\eta_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}\right)^{0.5}$$
 (4)

$$\frac{\partial L}{\partial (\partial_0 x^{\mu})} \delta x^{\mu} = \epsilon^{\mu} j_{\mu}$$

$$j_{\mu} = p_{\mu}$$
(5)

$$j_{\mu} = p_{\mu} \tag{6}$$

Here
$$L = -m_0 c \left(-\eta_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}\right)^{0.5}$$
 (4)

$$\frac{\partial L}{\partial(\partial_0 x^{\mu})} \delta x^{\mu} = \epsilon^{\mu} j_{\mu} \tag{5}$$

$$j_{\mu} = p_{\mu} \tag{6}$$

$$j_{\mu} = p_{\mu} \tag{6}$$

$$\frac{d}{dt}p_{\mu} = 0 \tag{7}$$

▶ Take infinitesimal lorentz transformation: x^{μ} goes to $x^{\mu} + \epsilon^{\mu}$

Here
$$L = -m_0 c \left(-\eta_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}\right)^{0.5}$$
 (4)

$$\frac{\partial L}{\partial (\partial_0 x^{\mu})} \delta x^{\mu} = \epsilon^{\mu} j_{\mu} \tag{5}$$

$$j_{\mu} = p_{\mu} \tag{6}$$

$$j_{\mu} = p_{\mu} \tag{6}$$

$$\frac{d}{dt}p_{\mu} = 0 \tag{7}$$

▶ The Energy and Momentum is conserved for free particle.

- ► Take infinitesimal Lorentz transformation: x^{μ} goes to $x^{\mu} + \epsilon^{\mu\nu} x_{\nu}$
- lacktriangle Lorentz invariance demands antisymmetric nature of $\epsilon^{\mu
 u}$

$$L = -m_0 c \left(-\eta_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}\right)^{0.5} \tag{8}$$

$$L = -m_0 c \left(-\eta_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}\right)^{0.5}$$

$$\epsilon^{\mu\nu} j_{\mu\nu} = \frac{\partial L}{\partial (\partial_0 x^{\mu})} \delta x^{\mu}$$
(9)

$$\epsilon^{\mu\nu}j_{\mu\nu} = \frac{\partial L}{\partial(\partial_0 x^\mu)} \delta x^\mu$$
 (9)

$$L = -m_0 c \left(-\eta_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}\right)^{0.5} \tag{8}$$

$$\epsilon^{\mu\nu}j_{\mu\nu} = \frac{\partial L}{\partial(\partial_0 x^{\mu})} \delta x^{\mu} \tag{9}$$

$$j_{\mu\nu} = -\frac{1}{2}(\rho_{\mu}x_{\nu} - \rho_{\nu}x_{\mu}) \tag{10}$$

$$L = -m_0 c \left(-\eta_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}\right)^{0.5} \tag{8}$$

$$\epsilon^{\mu\nu}j_{\mu\nu} = \frac{\partial L}{\partial(\partial_0 x^{\mu})} \delta x^{\mu} \tag{9}$$

$$j_{\mu\nu} = -\frac{1}{2}(p_{\mu}x_{\nu} - p_{\nu}x_{\mu}) \tag{10}$$

$$\frac{d}{dt}j_{\mu\nu} = 0 \tag{11}$$

$$L = -m_0 c \left(-\eta_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}\right)^{0.5} \tag{8}$$

$$\epsilon^{\mu\nu}j_{\mu\nu} = \frac{\partial L}{\partial(\partial_0 x^{\mu})} \delta x^{\mu} \tag{9}$$

$$j_{\mu\nu} = -\frac{1}{2}(p_{\mu}x_{\nu} - p_{\nu}x_{\mu}) \tag{10}$$

$$\frac{d}{dt}j_{\mu\nu} = 0 \tag{11}$$

• (11) reveals $j_{\mu\nu}$ is conserved and it actually awaits to be interpreted as Angular Momentum.

$$L = -m_0 c \left(-\eta_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}\right)^{0.5} \tag{8}$$

$$\epsilon^{\mu\nu}j_{\mu\nu} = \frac{\partial L}{\partial(\partial_0 x^{\mu})} \delta x^{\mu} \tag{9}$$

$$j_{\mu\nu} = -\frac{1}{2}(p_{\mu}x_{\nu} - p_{\nu}x_{\mu}) \tag{10}$$

$$\frac{d}{dt}j_{\mu\nu} = 0 \tag{11}$$

- (11) reveals $j_{\mu\nu}$ is conserved and it actually awaits to be interpreted as Angular Momentum.
- ▶ In 3+1 Dimension we just assign $L_k = j_{\mu\nu}$.

▶ Let check conservation of $j_{0\nu}$.

- ▶ Let check conservation of $j_{0\nu}$.
- ▶ The result is $E = mc^2$. The one of the most powerful equation in physics is really a consequence of LORENTZ SYMMETRY!!

World Sheet Current

In case of free particle the index α varies over only t as L is a function of $\partial_t x^\mu$

World Sheet Current

- ▶ In case of free particle the index α varies over only t as L is a function of $\partial_t x^\mu$
- ▶ In case of string we need two parameters as evident from the $\mathcal L$ being a function of $\partial_{\tau}X^{\mu}$ and $\partial_{\sigma}X^{\mu}$

World Sheet Current

- ▶ In case of free particle the index α varies over only t as L is a function of $\partial_t x^\mu$
- ▶ In case of string we need two parameters as evident from the $\mathcal L$ being a function of $\partial_{\tau}X^{\mu}$ and $\partial_{\sigma}X^{\mu}$
- ▶ We take the previous 2 transformations and look for conserved charges associated with String Motion.!!

$$\partial_{\alpha} \mathcal{P}^{\alpha}_{\mu} = 0 \tag{12}$$

$$\partial_{\alpha} \mathcal{P}^{\alpha}_{\mu} = 0 \tag{12}$$

$$\partial_{\alpha} \mathcal{M}^{\alpha}_{\mu\nu} = 0 \tag{13}$$

$$\mathcal{M}^{\alpha}_{\mu\nu} \equiv (\mathcal{P}^{\alpha}_{\mu} X_{\nu} - \mathcal{P}^{\alpha}_{\nu} X_{\mu}) \tag{14}$$

▶ Here the index α vary over τ , σ -the parameter space,not the space-time in ususal sense.

$$\partial_{\alpha} \mathcal{P}^{\alpha}_{\mu} = 0 \tag{12}$$

$$\partial_{\alpha} \mathcal{M}^{\alpha}_{\mu\nu} = 0 \tag{13}$$

$$\mathcal{M}^{\alpha}_{\mu\nu} \equiv (\mathcal{P}^{\alpha}_{\mu} X_{\nu} - \mathcal{P}^{\alpha}_{\nu} X_{\mu}) \tag{14}$$

- ▶ Here the index α vary over τ , σ -the parameter space,not the space-time in ususal sense.
- ► So these current lives on the world sheet only,not on the whole space-time.

$$\partial_{\alpha} \mathcal{P}_{\mu}^{\alpha} = 0 \tag{12}$$

$$\partial_{\alpha} \mathcal{M}^{\alpha}_{\mu\nu} = 0 \tag{13}$$

$$\mathcal{M}^{\alpha}_{\mu\nu} \equiv (\mathcal{P}^{\alpha}_{\mu} X_{\nu} - \mathcal{P}^{\alpha}_{\nu} X_{\mu}) \tag{14}$$

- ▶ Here the index α vary over τ , σ -the parameter space,not the space-time in ususal sense.
- ► So these current lives on the world sheet only,not on the whole space-time.
- ▶ The index μ , ν vary over the space time index.So for each such index or index pair we have a conservation law.

▶ Recall conserved charge Q_i is defined to be $\int j_i^0 dx^D$.

- ▶ Recall conserved charge Q_i is defined to be $\int j_i^0 dx^D$.
- lacksquare So we can construct $p_{\mu}(au) \equiv \int_0^{\sigma_1} \mathcal{P}_{\mu}^{ au} d\sigma$

$$\frac{dp_{\mu}}{d\tau} = \int_0^{\sigma_1} \frac{\partial}{\partial \tau} \mathcal{P}_{\mu}^{\tau} d\sigma \tag{15}$$

- ▶ Recall conserved charge Q_i is defined to be $\int j_i^0 dx^D$.
- lacksquare So we can construct $p_{\mu}(au) \equiv \int_0^{\sigma_1} \mathcal{P}_{\mu}^{ au} d\sigma$

$$\frac{dp_{\mu}}{d\tau} = \int_{0}^{\sigma_{1}} \frac{\partial}{\partial \tau} \mathcal{P}_{\mu}^{\tau} d\sigma \qquad (15)$$

$$\Rightarrow \frac{dp_{\mu}}{d\tau} = 0$$
 for free open and closed string (16)

- ▶ Recall conserved charge Q_i is defined to be $\int j_i^0 dx^D$.
- lacksquare So we can construct $p_{\mu}(au) \equiv \int_0^{\sigma_1} \mathcal{P}_{\mu}^{ au} d\sigma$

$$\frac{dp_{\mu}}{d\tau} = \int_{0}^{\sigma_{1}} \frac{\partial}{\partial \tau} \mathcal{P}_{\mu}^{\tau} d\sigma \qquad (15)$$

$$\Rightarrow \frac{dp_{\mu}}{d\tau} = 0$$
 for free open and closed string (16)

In case of open but not free string, p_{μ} fails to conserve if we consider string only, yet the total momentum of D-brane along with string is conserved.

- ▶ Recall conserved charge Q_i is defined to be $\int j_i^0 dx^D$.
- lacksquare So we can construct $p_{\mu}(au) \equiv \int_0^{\sigma_1} \mathcal{P}_{\mu}^{ au} d\sigma$

$$\frac{dp_{\mu}}{d\tau} = \int_{0}^{\sigma_{1}} \frac{\partial}{\partial \tau} \mathcal{P}_{\mu}^{\tau} d\sigma \tag{15}$$

$$\Rightarrow \frac{dp_{\mu}}{d\tau} = 0$$
 for free open and closed string (16)

- In case of open but not free string, p_{μ} fails to conserve if we consider string only, yet the total momentum of D-brane along with string is conserved.
- Reparameterisation invariance allows us to let τ be t of any lorentz frame and let that observer to confirm the conservation of momentum carried by the string.

Look Deeper

• We can call p_{μ} a physical quantity if it can be shown to be parameterisation invariant.

Look Deeper

- We can call p_{μ} a physical quantity if it can be shown to be parameterisation invariant.
- ▶ In the same way, one can show the conservation of angular momentum; $M_{\mu\nu}$ where $M_{\mu\nu}(\tau) \equiv \int_0^{\sigma_1} \mathcal{M}_{\mu\nu}^{\tau} d\sigma$.

Look Deeper

- We can call p_{μ} a physical quantity if it can be shown to be parameterisation invariant.
- ▶ In the same way, one can show the conservation of angular momentum; $M_{\mu\nu}$ where $M_{\mu\nu}(\tau) \equiv \int_0^{\sigma_1} \mathcal{M}_{\mu\nu}^{\tau} d\sigma$.
- $M_{\mu\nu}(au)$ can also be shown to be parameterisation invariant.

Thanks and Acknowledgement

► The speaker would like to acknowledge the Whole String Theory Group of HRI for giving him the opportunity to present before the brilliant minds of science.

Thanks and Acknowledgement

- ► The speaker would like to acknowledge the Whole String Theory Group of HRI for giving him the opportunity to present before the brilliant minds of science.
- The speaker also acknowledges Subhroneel Chakraborty, Mehedi Hasan and Soubhik Kumar for being a constant help to him.