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1 What is Machine Learning

Machine Learning is the scientific study of algorithms and statistical models
that computer systems use to perform a specific task without using explicit
instructions, relying on patterns and inference instead. It is seen as a subset
of artificial intelligence. Machine learning algorithms build a mathematical
model based on sample data, known as ”training data”, in order to make
predictions or decisions without being explicitly programmed to perform the
task. Machine learning algorithms are used in a wide variety of applications,
such as email filtering and computer vision, where it is difficult or infeasible
to develop a conventional algorithm for effectively performing the task. The
types of machine learning depend on a variety of parameters but the most
common types are:
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• Supervised learning: In supervised learning, we are given a data set
and already know what our correct output should look like, having the
idea that there is a relationship between the input and the output.

Supervised learning problems are categorized into ”regression” and
”classification” problems. In a regression problem, we are trying to
predict results within a continuous output, meaning that we are trying
to map input variables to some continuous function. In a classification
problem, we are instead trying to predict results in a discrete output.
In other words, we are trying to map input variables into discrete cat-
egories.

• Unsupervised Learning: Unsupervised learning allows us to ap-
proach problems with little or no idea what our results should look
like. We can derive structure from data where we don’t necessarily
know the effect of the variables. We can derive this structure by clus-
tering the data based on relationships among the variables in the data.
With unsupervised learning there is no feedback based on the predic-
tion results

2 Linear Regression with One variable

Linear regression with one variable, also known as univariate linear regres-
sion, is used when we want to predict a single output value y from a single
input value x. We’re doing supervised learning here, so that means we al-
ready have an idea about what the input/output cause and effect should be.
The Hypothesis Function Our hypothesis function has the general form

ŷ = hθ(x) = θ0 + θ1x (1)

We give to hθ(x) values for θ0 and θ1 to give our estimated output ŷ. We try
to create a function hθ(x) that is trying to map our input data to our output
data.
Cost Function: We measure the accuracy of our hypothesis function by
using a cost function. This takes an average of all the results of the hypothesis
with inputs from x’s compared to the actual output y’s.

J(θ0, θ1) =
1

2m

m∑
i=1

(ŷi − yi)2 =
1

2m

m∑
i=1

(hθ(xi)− yi)2 (2)
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This function is otherwise called the ”Squared error function”, or ”Mean
squared error”. The mean is halved as a convenience for the computation of
the gradient descent, as the derivative term of the square function will cancel
out the 1

2
term

3 Gradient Descent

Almost every problem in Machine learning boils down to minimising the cost
function described above for a variety of problems. One of the most powerful
and widely used method for performing this minimization is Gradient De-
scent. The basic idea is to iteratively adjust the parameters in the direction
where the gradient of the cost function is large and negative.
For gradient descent in linear regression, we have the algorithm of repeating
the following equations till convergence.{

θ0 : = θ0 − α 1
m

∑m
i=1(hθ(xi)− yi)

θ1 : = θ1 − α 1
m

∑m
i=1((hθ(xi)− yi)xi)

(3)

Here m is the size of the training set,θ0 is a constant that will be changing
simultaneously with θi and xi, yi are values of the given training set. We start
with a guess for our hypothesis and then repeatedly apply these gradient
descent equations, our hypothesis will become more and more accurate.

4 Multivariate Linear Regression

Multivariate linear regression allows us to add more features. This is similar
to univariate linear regression in the sense that the hypothesis function is
still a straight line but there are more than one variables. Let’s introduce
some notation before we dive deeper,
xij is the value of feature j in the ith training example
xi is the column vector of all the feature inputs of the ith training example
m is the number of training examples
n = |x(i)| is the number of features.
The new hypothesis function now becomes
hθ(x) = θ0 + θ1x1 + θ2x2 + ...θnxn The cost function is now,

J(θ) =
1

2m

m∑
i=1

(hθ(xi)− yi)2 (4)
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And gradient descent equation itself is of the same form; we just have to
repeat it for our ’n’ features. Repeat until convergence,

θ0 : = θ0 − α 1
m

∑m
i=1(hθ(x

(i))− y(i)) · x(i)0

θ1 : = θ1 − α 1
m

∑m
i=1((hθ(x

(i))− y(i)) · x(i)1

θ2 : = θ2 − α 1
m

∑m
i=1((hθ(x

(i))− y(i)) · x(i)2

...

(5)

This can be written in a compact form as,

θj := θj − α
1

m

m∑
i=1

((hθ(x
(i))− y(i)) · x(i)j for j=0...n (6)

Now the obvious next step is Polynomial Regression. Here our hy-
pothesis function need not be linear (a straight line) if that does not fit the
data well. We can change the behavior or curve of our hypothesis function by
making it a quadratic, cubic or square root function, or any other form. We
can also combine multiple features into one. For example, we can combine
x1 and x2 into a new feature x3 by taking x1 · x2 .

5 Logistic regression

Linear regression focuses on learning from datasets for which there is a “con-
tinuous” output. We try to learn the coefficients of a polynomial to predict
the response of a continuous variable yi on unseen data based on its indepen-
dent variables xi . However, a wide variety of problems, such as classification,
are concerned with outcomes taking the form of discrete variables (i.e. cat-
egories). For example, we may want to detect if there is a cat or a dog in
an image. Here, Logistic Regression comes to our rescue. The logistic model
is used to model the probability of a certain class or event existing such
as pass/fail, win/lose, alive/dead or healthy/sick. This can be extended to
model several classes of events such as determining whether an image con-
tains a cat, dog, lion, etc... Each object being detected in the image would
be assigned a probability between 0 and 1 and the sum adding to one.
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Figure 1: Linear Regression VS Logistic Regression Graph

Lets discuss the simpler case where we have binary classification . Instead
of our output vector y being a continuous range of values, it will only be
0 or 1. y ∈ {0, 1}, where 0 is usually taken as the ”negative class” and
1 as the ”positive class”, but you are free to assign any representation to
it. Our hypothesis should satisfy : 0 ≤ hθ(x) ≤ 1. Our new form uses
the ”Sigmoid Function,” also called the ”Logistic Function”:hθ(x) = g(θTx),
z = (θTx), g(z) = 1

1+e−z .
hθ gives us the probability that our output is 1. Now we need a Decision
Boundary. In order to get our discrete 0 or 1 classification, we can translate
the output of the hypothesis function as follows:

hθ(x) ≥ 0.5→ y = 1 (7)

hθ(x) < 0.5→ y = 0 (8)

The decision boundary is the line that separates the area where y = 0
and where y = 1. It is created by our hypothesis function. Now we can
have a simplified cost function for logistic regression as, Cost(hθ(x), y) =
−ylog(hθ(x))− (1− y)log(1− hθ(x)). We can see that when when y is equal
to 1, then the second term(1−y)log(1−hθ(x)) will be zero and will not affect
the result. If y is equal to 0, then the first term −ylog(hθ(x)) will be zero
and will not affect the result. The entire cost function can be written as,

J(θ) = − 1

m

m∑
i=1

[y(i)log(hθ(x
(i))) + (1− y(i))log(1− hθ(x(i)))] (9)

For Gradient Descent, we have to evaluate,

θj := θj − α
∂

∂θj
J(θ) (10)
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Upon working out the derivative part, we get

θj := θj −
α

m

m∑
i=1

((hθ(x
(i))− y(i)) · x(i)j (11)

which we have to repeat. One thing of note here is that this algorithm is
identical to the one we used in linear regression.

6 Bias vs Variance

The bias-variance tradeoff summarizes the fundamental tension in machine
learning between the complexity of a model and the amount of training data
needed to fit it. Since data is often limited, in practice it is frequently useful
to use a less complex model with higher bias, a model whose asymptotic per-
formance is worse than another model – because it is easier to train and less
sensitive to sampling noise arising from having a finite-sized training dataset
(i.e. smaller variance).
Bias are the simplifying assumptions made by a model to make the target
function easier to learn. Generally, linear algorithms have a high bias making
them fast to learn and easier to understand but generally less flexible. In
turn, they have lower predictive performance on complex problems that fail
to meet the simplifying assumptions of the algorithms bias.
Low Bias: Suggests less assumptions about the form of the target function.
High-Bias: Suggests more assumptions about the form of the target func-
tion.
High bias can cause an algorithm to miss the relevant relations between fea-
tures and target outputs (underfitting).
Variance is the amount that the estimate of the target function will change
if different training data was used.

The target function is estimated from the training data by a machine
learning algorithm, so we should expect the algorithm to have some variance.
Ideally, it should not change too much from one training dataset to the next,
meaning that the algorithm is good at picking out the hidden underlying
mapping between the inputs and the output variables.

Machine learning algorithms that have a high variance are strongly in-
fluenced by the specifics of the training data. This means that the specifics
of the training have influences the number and types of parameters used to
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characterize the mapping function.
Low Variance: Suggests small changes to the estimate of the target func-
tion with changes to the training dataset.
High Variance: Suggests large changes to the estimate of the target func-
tion with changes to the training dataset.
High variance can cause an algorithm to model the random noise in the
training data, rather than the intended outputs (overfitting).

Figure 2: Illustrating Bias and Variance through hitting points on a target.
Each point on the target represents a different iteration of a model, fit for
the same problem with different training data sets.

Models with low variance tend to be less complex with a simple underlying
structure. They also tend to be more robust (stable) to different training data
(i.e., consistent, but inaccurate). Models that fall in this category generally
include parametric algorithms, such as regression models. Depending on the
data, algorithms with low variance may not be complex or flexible enough to
learn the true pattern of a data set, resulting in underfitting.

Models with low bias algorithms tend to be more complex, with a more
flexible underlying structure. The higher level of flexibility in the models
can allow for more complex relationships between data but can also cause
overfitting because the model is free to memorize the training data, instead
of generalizing a pattern found in the data. Models with low bias also tend to
be less stable between training data sets. Non-parametric models typically
have low bias and high variability.
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There is no escaping the relationship between bias and variance in ma-
chine learning.

• Increasing the bias will decrease the variance.

• Increasing the variance will decrease the bias.

The goal in relation to bias and variance is to find the balance between the
two that minimizes overall (total) error.

Figure 3: Bias vs Variance Tradeoff.

7 Artificial Neural Networks

Artificial neural networks (ANN) are computing systems that are inspired
by, but not identical to, biological neural networks that constitute animal
brains. Such systems ”learn” to perform tasks by considering examples,
generally without being programmed with task-specific rules. For example,
in image recognition, they might learn to identify images that contain cats
by analyzing example images that have been manually labeled as ”cat” or
”no cat” and using the results to identify cats in other images. They do this
without any prior knowledge of cats, for example, that they have fur, tails,
whiskers and cat-like faces. Instead, they automatically generate identifying
characteristics from the examples that they process.
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An ANN is based on a collection of connected units or nodes called arti-
ficial neurons, which loosely model the neurons in a biological brain. Each
connection, like the synapses in a biological brain, can transmit a signal to
other neurons. An artificial neuron that receives a signal then processes it
and can signal neurons connected to it.

In ANN implementations, the ”signal” at a connection is a real number,
and the output of each neuron is computed by some non-linear function
of the sum of its inputs. Neurons have a weight that adjusts as learning
proceeds. The weight increases or decreases the strength of the signal at a
connection. Neurons may have a threshold such that a signal is sent only if
the aggregate signal crosses that threshold. Typically, neurons are aggregated
into layers. Different layers may perform different transformations on their
inputs. Signals travel from the first layer (the input layer), to the last layer
(the output layer), after traversing the layers multiple times. An ANN has
the following components:

• Neurons : ANNs have artificial neurons, which receive input, com-
bine the input with their internal state (activation) and an optional
threshold using an activation function, and produce output using an
output function. The initial inputs are external data, such as images
and documents. The ultimate outputs accomplish the task, such as
recognizing an object in an image. The important characteristic of the
activation function is that it provides a smooth transition as input val-
ues change, i.e. a small change in input produces a small change in
output

• Connections and weights : The network consists of connections,
each connection providing the output of one neuron as an input to
another neuron. Each connection is assigned a weight that represents
its relative importance. A given neuron can have multiple input and
output connections.

• Propagation function : The propagation function computes the
input to a neuron from the outputs of its predecessor neurons and
their connections as a weighted sum.
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Figure 4: ANN Schematic.

An ANN over time learns and adapts to get better at the task it is supposed
to do. Learning involves adjusting the weights (and optional thresholds) of
the network to improve the accuracy of the result. This is done by mini-
mizing the observed errors. Learning is complete when examining additional
observations does not usefully reduce the error rate. For accomplishing this
task we have,

• Learning Rate: The learning rate defines the size of the corrective
steps that the model takes to adjust for errors in each observation. A
high learning rate shortens the training time, but with lower ultimate
accuracy, while a lower learning rate takes longer, but with the potential
for greater accuracy

• Cost Function : A cost function is what we try to minimize to
make the network better at the relevant task. This depends on what
specifically the neural ntwork is designed to do.

• Backpropagation : Backpropagation is a method to adjust the con-
nection weights to compensate for each error found during learning.
The error amount is effectively divided among the connections. Tech-
nically, backprop calculates the gradient of the cost function associated
with a given state with respect to the weights. The weight updates can
be done via many methods, for example, stochastic gradient descent.
The Backpropagation Algorithm is the backbone of how an artificial
neural network works and warrants a deeper discussion.
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8 The Backpropagation Algorithm

At its core, backpropagation is simply the ordinary chain rule for partial
differentiation, and can be summarized using four equations. In order to see
this, we must first establish some useful notation. We will assume that there
are L layers in our network with l = 1, . . . , L indexing the layer. Denote by
ωljk the weight for the connection from the k-th neuron in layer l-1 to the j-th

neuron in layer l. We denote the bias of this neuron by blj. By construction,
in a feed-forward neural network the activation aljof the j-th neuron in the
l-th layer can be related to the activities of the neurons in the layer l-1 by
the equation,

alj = σ

(∑
k

ωljka
l−1
k + blj

)
= σ(zlj) (12)

where we have defined the linear weighted sum zlj =
∑

k ω
l
jka

l−1
k + blj

By definition, the cost function E depends directly on the activities of
the output layer aLj . It of course also indirectly depends on all the activities
of neurons in lower layers in the neural network through iteration of eq (12).
We define the error ∆L

j of the j-th neuron in the L-th layer as the change in
cost function with respect to the weighted input zlj

∆L
j =

∂E

∂zLj
(13)

We can analogously define the error of neuron j in layer l,∆l
j, as the change

in the cost function w.r.t. the weighted input zlj:

∆l
j =

∂E

∂zlj
=
∂E

∂alj
σ
′
(zLj ) (14)

where in the last line we have used the fact that ∂blj/∂z
l
j = 1 This is the

second of the four backpropagation equations.
Since the error depends on neurons in layer l only through the activation

of neurons in the subsequent layer l + 1, we can use the chain rule to write,
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∆l
j =

∂E

∂zLj
=
∑
k

∂E

∂zl+1
k

∂zl+1
k

∂zlj
(15)

=
∑
k

∆l+1
k

∂zl+1
k

∂zlj
(16)

=

(∑
k

∆l+1
k wl+1

kj

)
σ
′
(zLj ) (17)

This is the third backpropagation equation. The final equation can be
derived by differentiating of the cost function with respect to the weight wljk
as,

∂E

∂wljk
=
∂E

∂zlj

∂zlj
∂wljk

= ∆l
ja
l−1
k (18)

Together, Eqs. (13), (14), (17) and (18) define the four backpropagation
equations relating the gradients of the activations of various neurons alj the

weighted inputs,zlj =
∑

k ω
l
jka

l−1
k +blj and the errors, ∆l

j. These equations can
be combined into a simple, computationally efficient algorithm to calculate
the gradient with respect to all parameters.
The Backpropagation Algorithm

1. Activation at input layer: calculate the activations alj of all the
neurons in the input layer.

2. Feedforward: starting with the first layer, exploit the feed-forward
architecture through Eq.(12) to compute zl and alfor each subsequent
layer.

3. Error at top layer: calculate the error of the top layer using Eq.(13).
This requires to know the expression for the derivative of both the cost
function E(w) = E(aL) and the activation function σ(z)

4. “Backpropagate” the error: use Eq.(17) to propagate the error
backwards and calculate ∆l

j for all layers.

5. Calculate gradient: Finally use Eqs. (14) and (18) to calculate ∂E
∂blj

and ∂E
∂wl

jk
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Its evident now where the name backpropagation comes from. The al-
gorithm consists of a forward pass from the bottom layer to the top layer
where one calculates the weighted inputs and activations of all the neurons.
One then backpropagates the error starting with the top layer down to the
input layer and uses these errors to calculate the desired gradients. This
description makes clear the incredible utility and computational efficiency of
the backpropagation algorithm. We can calculate all the derivatives using a
single “forward” and “backward” pass of the neural network. This computa-
tional efficiency is crucial since we must calculate the gradient with respect
to all parameters of the neural net at each step of gradient descent.

To summarize, in Backpropagation, we calculate the error , check if the
error is minimized or not and update the parameters. Repeat these three
steps until the error becomes minimum.

Figure 5: Schematic explaining Backpropagation of errors working in tandem
with feed forward to reduce cost function of neural network.

9 Coding a neural network

The code will have three parts

• initialisation - to set the number of input, hidden and output nodes

• train - refine the weights after being given a training set example to
learn from
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• query - give an answer from the output nodes after being given an input

The skeleton code will look something like this.

1 # neural network class definition

2 class neuralNetwork:

3 # initialise the neural network

4 def __init__ ():

5 pass

6 # train the neural network

7 def train():

8 pass

9 # query the neural network

10 def query():

11 pass

We will make a simple 3 layer neural network here, input layer, 1 hidden
layer, and the output layer.

Figure 6: The neural network we are trying to make.

9.1 Initialisation

We need to set the number of input, hidden and output layer nodes and
the learning rate. That defines the shape and size of the neural network.
We set them using parameters when a neural network object is created to
allow us to make neural networks of varying specifications according to our
requirements.
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1 # initialise the neural network

2 def __init__(self , inputnodes , hiddennodes , outputnodes ,

learningrate ):

3 # set number of nodes in each input , hidden , output layer

4 self.inodes = inputnodes

5 self.hnodes = hiddennodes

6 self.onodes = outputnodes

7 # learning rate

8 self.lr = learningrate

9 pass

9.1.1 Weights

The most efficient way of expressing weights is using matrix. So we create
two matrices.

• Winput hidden- matrix for the weights for links between the input and
hidden layers, of size hidden nodes by input nodes

• Whidden output- matrix for the links between the hidden and output lay-
ers, of size output nodes by hidden nodes.

1 # link weight matrices , wih and who

2 # weights inside the arrays are w_i_j , where link is from

node

3 i to node j in the next layer

4 # w11 w21

5 # w12 w22 etc

6 self.wih = (numpy.random.rand(self.hnodes , self.inodes) -

0.5)

7 self.who = (numpy.random.rand(self.onodes , self.hnodes) -

0.5)

9.2 Query

The query() function takes the input to a neural network and returns the
network’s output. We to pass the input signals from the input layer of nodes,
through the hidden layer and out of the final output layer.Now the matrix
of weights for the link between the input and hidden layers can be combined
with the matrix of inputs to give the signals into the hidden layer nodes.

Xhidden = Winput hidden · I (19)
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To get the signals emerging from the hidden node, we simply apply the
sigmoid squashing function to each of these emerging signals.

Ohidden = sigmoid(Xhidden) (20)

So to summarise, we have.

1 # calculate signals into hidden layer

2 hidden_inputs = numpy.dot(self.wih , inputs)

3 # calculate the signals emerging from hidden layer

4 hidden_outputs = self.activation_function(hidden_inputs)

5 # calculate signals into final output layer

6 final_inputs = numpy.dot(self.who , hidden_outputs)

7 # calculate the signals emerging from final output layer

8 final_outputs = self.activation_function(final_inputs)

9.3 Training

In the train() function we update the weights of the neural network in an
attempt to get a set of weights that gives the correct output from a given
input.

1 # update the weights for the links between the hidden and

output

2 layers

3 self.who += self.lr * numpy.dot(( output_errors *

final_outputs *

4 (1.0 - final_outputs)), numpy.transpose(hidden_outputs))

5 # update the weights for the links between the input and

hidden

6 layers

7 self.wih += self.lr * numpy.dot(( hidden_errors *

hidden_outputs *

8 (1.0 - hidden_outputs)), numpy.transpose(inputs))

9.4 Final Code

After putting all the pieces together, we end up with ,

1 import numpy

2 # scipy.special for the sigmoid function expit ()

3 import scipy.special

4 # neural network class definition

5 class neuralNetwork:
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6

7

8 # initialise the neural network

9 def __init__(self , inputnodes , hiddennodes , outputnodes ,

learningrate):

10 # set number of nodes in each input , hidden , output

layer

11 self.inodes = inputnodes

12 self.hnodes = hiddennodes

13 self.onodes = outputnodes

14

15 # link weight matrices , wih and who

16 # weights inside the arrays are w_i_j , where link is

from node i to node j in the next layer

17 # w11 w21

18 # w12 w22 etc

19 self.wih = numpy.random.normal (0.0, pow(self.inodes ,

-0.5), (self.hnodes , self.inodes))

20 self.who = numpy.random.normal (0.0, pow(self.hnodes ,

-0.5), (self.onodes , self.hnodes))

21

22 # learning rate

23 self.lr = learningrate

24

25 # activation function is the sigmoid function

26 self.activation_function = lambda x: scipy.special.

expit(x)

27

28 pass

29

30

31 # train the neural network

32 def train(self , inputs_list , targets_list):

33 # convert inputs list to 2d array

34 inputs = numpy.array(inputs_list , ndmin =2).T

35 targets = numpy.array(targets_list , ndmin =2).T

36

37 # calculate signals into hidden layer

38 hidden_inputs = numpy.dot(self.wih , inputs)

39 # calculate the signals emerging from hidden layer

40 hidden_outputs = self.activation_function(

hidden_inputs)

41

42 # calculate signals into final output layer

43 final_inputs = numpy.dot(self.who , hidden_outputs)
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44 # calculate the signals emerging from final output

layer

45 final_outputs = self.activation_function(final_inputs

)

46

47 # output layer error is the (target - actual)

48 output_errors = targets - final_outputs

49 # hidden layer error is the output_errors , split by

weights , recombined at hidden nodes

50 hidden_errors = numpy.dot(self.who.T, output_errors)

51

52 # update the weights for the links between the hidden

and output layers

53 self.who += self.lr * numpy.dot(( output_errors *

final_outputs * (1.0 - final_outputs)), numpy.transpose(

hidden_outputs))

54

55 # update the weights for the links between the input

and hidden layers

56 self.wih += self.lr * numpy.dot(( hidden_errors *

hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(

inputs))

57

58 pass

59

60

61 # query the neural network

62 def query(self , inputs_list):

63 # convert inputs list to 2d array

64 inputs = numpy.array(inputs_list , ndmin =2).T

65

66 # calculate signals into hidden layer

67 hidden_inputs = numpy.dot(self.wih , inputs)

68 # calculate the signals emerging from hidden layer

69 hidden_outputs = self.activation_function(

hidden_inputs)

70

71 # calculate signals into final output layer

72 final_inputs = numpy.dot(self.who , hidden_outputs)

73 # calculate the signals emerging from final output

layer

74 final_outputs = self.activation_function(final_inputs

)

75

76 return final_outputs
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A test run of the code could be done for example using the following
parameters

1 # number of input , hidden and output nodes

2 input_nodes = 3

3 hidden_nodes = 3

4 output_nodes = 3

5

6 # learning rate is 0.3

7 learning_rate = 0.3

8

9 # create instance of neural network

10 n = neuralNetwork(input_nodes ,hidden_nodes ,output_nodes ,

learning_rate)

9.5 Testing the Neural Network on MNIST Data Set

The previous code shows us how to make a neural network. Now we can test
it and see how it works on the MNIST Data Set. The MNIST database is
a large database of handwritten digits that is commonly used for training
various image processing systems. The previous subsection was titled ”Final
Code”. That was a lie. Kind of. If we are going to test the code on an actual
dataset, we need to add some more things.
First we need to add some lines for reading data from the dataset,

1 data_file = open("mnist_train_100.csv", ’r’) #enter the name

of file to be used

2 data_list = data_file.readlines ()

3 data_file.close ()

Then we need to convert the dataset into a suitable format which can then
be used by our neural network for processing.

1 all_values = data_list [0]. split(’,’)

2 image_array = numpy.asfarray(all_values [1:]).reshape ((28 ,28))

3 matplotlib.pyplot.imshow(image_array , cmap=’Greys ’,

4 interpolation=’None’)

5 scaled_input = (numpy.asfarray(all_values [1:]) / 255.0 *

0.99) +0.01

Now, if we are going to test our neural network, we need to have a way of
providing it with a score at the end. What use is a test without a result? So
for that, we add the following code snippet,
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1 # test the neural network

2 # scorecard for how well the network performs , initially

empty

3 scorecard = []

4 # go through all the records in the test data set

5 for record in test_data_list:

6 # split the record by the ’,’ commas

7 all_values = record.split(’,’)

8 # correct answer is first value

9 correct_label = int(all_values [0])

10 print(correct_label , "correct label")

11 # scale and shift the inputs

12 inputs = (numpy.asfarray(all_values [1:]) / 255.0 * 0.99) +

0.01

13 # query the network

14 outputs = n.query(inputs)

15 # the index of the highest value corresponds to the label

16 label = numpy.argmax(outputs)

17 print(label , "network ’s answer")

18 # append correct or incorrect to list

19 if (label == correct_label):

20 # network ’s answer matches correct answer , add 1 to

21 scorecard

22 scorecard.append (1)

23 else:

24 # network ’s answer doesn ’t match correct answer , add 0 to

25 scorecard

26 scorecard.append (0)

27 pass

28 pass

29 # calculate the performance score , the fraction of correct

answers

30 scorecard_array = numpy.asarray(scorecard)

31 print ("performance = ", scorecard_array.sum() /

32 scorecard_array.size)

Another useful addition to the code would be the option of doing multiple
runs. That can be achieved using the following lines of code.

1 # train the neural network

2 # epochs is the number of times the training data set is used

for

3 training

4 epochs = 2

5 for e in range(epochs):

6 # go through all records in the training data set

21



7 for record in training_data_list:

8 # split the record by the ’,’ commas

9 all_values = record.split(’,’)

10 # scale and shift the inputs

11 inputs = (numpy.asfarray(all_values [1:]) / 255.0 * 0.99) +

12 0.01

13 # create the target output values (all 0.01, except the

14 desired label which is 0.99)

15 targets = numpy.zeros(output_nodes) + 0.01

16 # all_values [0] is the target label for this record

17 targets[int(all_values [0])] = 0.99

18 n.train(inputs , targets)

19 pass

20 pass

Now with all these snippets added, we finally get the code which we can
use to test the neural network. The Real Final Code,

1 # python notebook for Make Your Own Neural Network

2 # code for a 3-layer neural network , and code for learning

the MNIST dataset

3 # (c) Tariq Rashid , 2016

4 # license is GPLv2

5 import numpy

6 # scipy.special for the sigmoid function expit ()

7 import scipy.special

8 - 169 -

9 # library for plotting arrays

10 import matplotlib.pyplot

11 # ensure the plots are inside this notebook , not an external

window

12 %matplotlib inline

13 # neural network class definition

14 class neuralNetwork:

15 # initialise the neural network

16 def __init__(self , inputnodes , hiddennodes , outputnodes ,

17 learningrate):

18 # set number of nodes in each input , hidden , output layer

19 self.inodes = inputnodes

20 self.hnodes = hiddennodes

21 self.onodes = outputnodes

22 # link weight matrices , wih and who

23 # weights inside the arrays are w_i_j , where link is from

24 node i to node j in the next layer

25 # w11 w21

26 # w12 w22 etc
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27 self.wih = numpy.random.normal (0.0, pow(self.hnodes , -0.5),

28 (self.hnodes , self.inodes))

29 self.who = numpy.random.normal (0.0, pow(self.onodes , -0.5),

30 (self.onodes , self.hnodes))

31 # learning rate

32 self.lr = learningrate

33 # activation function is the sigmoid function

34 self.activation_function = lambda x: scipy.special.expit(x)

35 pass

36 # train the neural network

37 def train(self , inputs_list , targets_list):

38 # convert inputs list to 2d array

39 inputs = numpy.array(inputs_list , ndmin =2).T

40 targets = numpy.array(targets_list , ndmin =2).T

41 # calculate signals into hidden layer

42 hidden_inputs = numpy.dot(self.wih , inputs)

43 # calculate the signals emerging from hidden layer

44 - 170 -

45 hidden_outputs = self.activation_function(hidden_inputs)

46 # calculate signals into final output layer

47 final_inputs = numpy.dot(self.who , hidden_outputs)

48 # calculate the signals emerging from final output layer

49 final_outputs = self.activation_function(final_inputs)

50 # output layer error is the (target - actual)

51 output_errors = targets - final_outputs

52 # hidden layer error is the output_errors , split by weights ,

53 recombined at hidden nodes

54 hidden_errors = numpy.dot(self.who.T, output_errors)

55 # update the weights for the links between the hidden and

56 output layers

57 self.who += self.lr * numpy.dot(( output_errors *

58 final_outputs * (1.0 - final_outputs)),

59 numpy.transpose(hidden_outputs))

60 # update the weights for the links between the input and

61 hidden layers

62 self.wih += self.lr * numpy.dot(( hidden_errors *

63 hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(

inputs))

64 pass

65 # query the neural network

66 def query(self , inputs_list):

67 # convert inputs list to 2d array

68 inputs = numpy.array(inputs_list , ndmin =2).T

69 # calculate signals into hidden layer

70 hidden_inputs = numpy.dot(self.wih , inputs)
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71 # calculate the signals emerging from hidden layer

72 hidden_outputs = self.activation_function(hidden_inputs)

73 # calculate signals into final output layer

74 final_inputs = numpy.dot(self.who , hidden_outputs)

75 # calculate the signals emerging from final output layer

76 final_outputs = self.activation_function(final_inputs)

77 return final_outputs

78 - 171 -

79 # number of input , hidden and output nodes

80 input_nodes = 784

81 hidden_nodes = 200

82 output_nodes = 10

83 # learning rate

84 learning_rate = 0.1

85 # create instance of neural network

86 n = neuralNetwork(input_nodes ,hidden_nodes ,output_nodes ,

87 learning_rate)

88 # load the mnist training data CSV file into a list

89 training_data_file = open("mnist_dataset/mnist_train.csv", ’r

’)

90 training_data_list = training_data_file.readlines ()

91 training_data_file.close ()

92 # train the neural network

93 # epochs is the number of times the training data set is used

for

94 training

95 epochs = 5

96 for e in range(epochs):

97 # go through all records in the training data set

98 for record in training_data_list:

99 # split the record by the ’,’ commas

100 all_values = record.split(’,’)

101 # scale and shift the inputs

102 inputs = (numpy.asfarray(all_values [1:]) / 255.0 * 0.99) +

103 0.01

104 # create the target output values (all 0.01, except the

105 desired label which is 0.99)

106 targets = numpy.zeros(output_nodes) + 0.01

107 # all_values [0] is the target label for this record

108 targets[int(all_values [0])] = 0.99

109 n.train(inputs , targets)

110 pass

111 pass

112 # load the mnist test data CSV file into a list

113 test_data_file = open("mnist_dataset/mnist_test.csv", ’r’)
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114 - 172 -

115 test_data_list = test_data_file.readlines ()

116 test_data_file.close()

117 # test the neural network

118 # scorecard for how well the network performs , initially

empty

119 scorecard = []

120 # go through all the records in the test data set

121 for record in test_data_list:

122 # split the record by the ’,’ commas

123 all_values = record.split(’,’)

124 # correct answer is first value

125 correct_label = int(all_values [0])

126 # scale and shift the inputs

127 inputs = (numpy.asfarray(all_values [1:]) / 255.0 * 0.99) +

0.01

128 # query the network

129 outputs = n.query(inputs)

130 # the index of the highest value corresponds to the label

131 label = numpy.argmax(outputs)

132 # append correct or incorrect to list

133 if (label == correct_label):

134 # network ’s answer matches correct answer , add 1 to

135 scorecard

136 scorecard.append (1)

137 else:

138 # network ’s answer doesn ’t match correct answer , add 0 to

139 scorecard

140 scorecard.append (0)

141 pass

142 pass

143 # calculate the performance score , the fraction of correct

answers

144 scorecard_array = numpy.asarray(scorecard)

145 print ("performance = ", scorecard_array.sum() /

146 scorecard_array.size)

Now we test the neural network and rate its performance while vary-
ing three relevant parameters, learning rate, number of epochs ( runs), and
number of hidden nodes. The results are as follows.

25



Figure 7: Varying performance with Learning rate

(a) Singular Learning Rate.
(b) Different Learning Rates.

Figure 8: Varying performance with number of epochs.
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Figure 9: Varying performance with number of Hidden Nodes
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